Органоминеральные удобрения на основе каменного и бурого угля
Препараты, состоящие из веществ органической природы естественного происхождения и получаемые из торфа, бурого угля, сапропеля. Роль азотных удобрений в повышении урожая сельскохозяйственных культур. Гуминовые вещества, входящие в состав удобрений.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | реферат |
Язык | русский |
Дата добавления | 08.02.2017 |
Размер файла | 255,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Кузбасский государственный технический университет имени Т.Ф. Горбачева»
Кафедра химии, технологии органических веществ и нефтехимии
Реферат
Органоминеральные удобрения на основе каменного и бурого угля
Выполнил:
студент гр. ХНм - 161
Власов С.С.
Проверил:
Перкель А.Л.
Кемерово 2016
Введение
Гуминовые удобрения - это препараты, состоящие из веществ органической природы естественного происхождения и получаемые из природного сырья: торфа, бурого угля, сапропеля. Происхождение и свойства сырья различны, но их объединяет наличие в составе гуминовых веществ. Отходы угледобывающих предприятий - окисленные угли, являются источником органического материала, необходимого для стабилизации гумусного состояния почв.
В данной работе будут рассмотрены органоминеральные удобрения, изготовленные на основе каменного и бурого угля и технологии их изготовления.
1. Применение удобрений
органический удобрение гуминовый
Ведущая роль в повышении урожая сельскохозяйственных культур принадлежит азотным удобрениям. Это обусловлено исключительно важной ролью азота в жизни растений. Однако применяемые азотные минеральные удобрения обладают существенным недостатком: их коэффициент полезного действия не превышает 30-40%, остальная часть вымывается в подпочвенные горизонты. Низкий коэффициент полезного действия питательных веществ удобрений влечёт за собой неоправданное увеличение норм внесения удобрений. Высокие нормы внесения в почву способствует засолению почв, снижению органического вещества, гумуса, накоплению нитратов в почве и плодах, развитию эрозии, потере структуры и плодородия почв. Органоминеральные удобрения обладают более высокой агрохимической эффективностью. Особенно большой эффект от их применения наблюдается на бедных гумусом серозёмах и песчанистых почвах. Гуминовые вещества, входящие в состав удобрений, способствуют лучшему усвоению растениями основных элементов питания. Они имеют в своем составе микроэлементы, физиологически- и ростактивные вещества, образуют рыхлую структуру в почве, стимулируют рост и развитие растений. Гуминовые вещества также способны адсорбировать питательные элементы и влагу, при этом снижается возможность вымывания элементов питания в подпочвенные горизонты. Всё это позволяет значительно уменьшить норму внесения в почву питательных элементов, повысить урожайность, качество продукции и плодородие почв.
Наибольшая эффективность органических и минеральных удобрений достигается при их совместном использовании. Отмечается, что только органические удобрения при совместном использовании с минеральными способны обеспечить бездефицитный баланс или прирост гумуса в типичных для зон севооборотах. При высоком содержании гумуса в почве благодаря более благоприятным агрофизическим свойствам и улучшению условий развития растений отдача от минеральных удобрений возрастает в 1,5-2 раза.
На уголь как на сырьевой источник получения органических и органоминеральных удобрений исследователи обратили внимание давно. Оказалось, что не каждый уголь подходит для этой цели, а только окисленный в природных условиях, с содержанием гуминовых кислот выше 45%. А угли с содержанием гуминовых кислот до 20% необходимо окислять с целью получения концентрированных удобрений [1].
2. Технология получения органоминеральных удобрений из углей
На уголь как на сырьевой источник получения органических и органоминеральных удобрений исследователи обратили внимание давно. Оказалось, что не каждый уголь подходит для этой цели, а только окисленный в природных условиях, с содержанием гуминовых кислот выше 45%. А угли с содержанием гуминовых кислот до 20% необходимо окислять с целью получения концентрированных удобрений.
Известны способы химической обработки угля для использования его в качестве удобрения. Основной метод, которым выделяют гуминовые вещества -- щелочная экстракция.
На уголь воздействуют 65%-ной азотной кислотой в количестве 100-200 см3 на 100 г сухого угля при 263-373 К, затем нейтрализуют аммиачной водой или NaOH или KOH или кальциево-магниевыми соединениями. Для перевода угля в биологически активное вещество применяют NaOH или KOH или аммиак в количестве 1-20% алкализирующего средства относительно количества угля при 338 375 К, после чего нейтрализуют минеральной кислотой. Бурый уголь в виде деполимеризованного вещества смешивают с минеральным удобрением в соотношении 1:10.
Недостатком этого способа является невысокая эффективность, большая длительность процесса растворения гуммита и неполное извлечение гуминовой кислоты из исходного сырья, что снижает производительность.
На сегодняшний день существует способ полного цикла промышленного производства гуминовых кислот, повышение производительности и эффективности извлечения их из бурого угля, расширение области применения за счет повышения качества готового продукта.
Для достижения поставленной задачи в способе производства концентрата гуминовой кислоты из бурого угля, включающем его измельчение до получения микрочастиц, приготовление суспензии в слабом растворе щелочи и экстрагирование, при механическом перемешивании суспензии в реакторе-смесителе, из микрочастиц угля гуминовой кислоты, уголь подвергают двухступенчатому измельчению, при этом на второй ступени измельчения формируют микрочастицы с рваной поверхностью, подвергая уголь многократным ударам, например, путем столкновения его фракций на большой скорости с билами стержневой дробилки, а при перемешивании суспензии в реакторе-смесителе одновременно воздействуют на нее ультразвуком в течение 7-15 мин, далее производят разделение твердой фазы от жидкой путем осаждения нерастворимого угля (золы) в отстойнике в течение 15-20 мин, а жидкую фазу подают в крекинг-реактор, вводят катализатор, например, соляную кислоту, расщепляя жидкую фазу на воду и гуминовые кислоты 90%-й, 70%-й и 40%-й концентраций, осуществляя отстой в крекинг-реакторе не менее 24 часов, при этом, изменяя концентрацию соляной кислоты, регулируют рН гуминовых кислот и далее направляют концентраты гуминовых кислот в накопительные емкости, а воду возвращают в реактор-смеситель для повторного использования.
Поставленная техническая задача решается также линией для производства концентрата гуминовой кислоты из бурого угля, содержащей измельчитель угля, реактор-смеситель и накопительную емкость. Для этого в линии устанавливают дробилку предварительного измельчения угля и биловый дезинтегратор, при этом винтовой желоб шнека дробилки сообщается с центральной полостью закрытой корзины дезинтегратора, а полость его открытой корзины соединена шнеком с емкостью реактора-смесителя, на боковых стенках которого смонтированы концентраторы ультразвукового генератора, емкость реактора-смесителя соединена трубопроводом с емкостью отстойника, который снабжен выходом для золы и соединен трубопроводом с крекинг-реактором, в котором выполнены четырехуровневые выходы, причем верхний уровень соединен обратным трубопроводом с реактором-смесителем для возврата воды, а три разноуровневых нижних соединены с накопительными емкостями для сбора гуминовых кислот 90%-й, 70%-й и 40%-й концентраций.
Положительный эффект достигается за счет формирования микрочастиц угля с рваной поверхностью, у которых увеличивается удельная поверхность взаимодействия реагентов. Этот фактор и дальнейшее диспергирование микрочастиц при обработке их ультразвуком, при которой происходит кавитационное разрушение структуры материала и одновременная барботация раствора, резко увеличивает извлечение и выход гуминовой кислоты из исходного сырья.
Рисунок 1. Схема линии для производства гуминовой кислоты из бурого угля: 1 - бункер, 2, 4, 6 - шнек, 3 - дробилка, 5 - биловый дезигнегратор, 7 - концентраторы генератора УЗИ, 8 - реактор-смеситель, 9 - отстойник, 10 - крекинг-реактор
На рисунке 1 изображена схема линии для производства гуминовой кислоты. Линия содержит бункер 1 для загрузки исходной фракции бурого угля, шнек 2, подающий уголь в дробилку 3 предварительного дробления, шнек 4, соединенный с центральной полостью билового дезинтегратора 5, соединенного шнеком 6 с емкостью реактора - смесителя 8, на боковых стенках которого смонтированы концентраторы 7 ультразвукового генератора. Реактор-смеситель 8 снабжен механической мешалкой и вводом для подачи в реактор экстрагента. Реактор-смеситель соединен трубопроводом с емкостью отстойника 9, который снабжен выходом для золы, его емкость соединена трубопроводом с емкостью крекинг-реактора 10, имеющего четырехуровневые выходы для вывода из емкости воды и гуминовых кислот трех концентраций после 24-часового отстоя, при этом вода возвращается в реактор-смеситель для ее повторного использования.
Линия для производства концентрата гуминовой кислоты из бурого угля работает следующим образом. В бункер 1 загружается исходный материал - бурый уголь крупных фракций, который по шнеку 2 подается в дробилку 3, где уголь предварительно дробится до размеров 5-1 мм. Из дробилки он подается для более тонкого измельчения по шнеку 4 в дезинтегратор 5, который состоит из двух вращающихся в противоположные стороны роторов (корзин), насаженных на отдельные соосные валы. На дисках роторов по концентрическим окружностям расположены ряды ударных элементов. Материал, подлежащий измельчению, подается в центральную часть ротора и, перемещаясь к периферии, подвергается многократным ударам бил, вращающихся с высокой скоростью во встречных направлениях, при этом происходит разрыв внутренних связей измельчаемого материала, в результате чего формируется рваная поверхность микрочастиц, что увеличивает их поверхность и соответственно удельную поверхность для более эффективного химического взаимодействия реагентов. В дезинтеграторе 5 микрочастицы измельчаются до размеров 5 мкм, и подаются по шнеку 6 в реактор-смеситель 8. Туда же подается слабый раствор щелочи и при механическом перемешивании образовавшейся суспензии происходит экстакция гуминового препарата. Смонтированные на боковых стенках реактора-смесителя концентраторы 7 ультразвукового генератора воздействуют на суспензию, активизируют протекание химической реакции и производят дальнейшее диспергирование микрочастиц угля за счет их кавитационного разрушения. Получение микрочастиц угля в дезинтеграторе и дальнейшее их диспергирование воздействием ультразвуком дает возможность снизить концентрацию вводимой щелочи до 0,8%. Из реактора-смесителя раствор подается по трубопроводу в отстойник, где в течение 15-20 мин осаждают твердую фазу (золу) и удаляют ее из отстойника, а жидкую фазу подают в крекинг-реактор 10, в который вводят в качестве катализатора соляную кислоту. В результате каталитического окислительного крекинга происходит расщепление воды и гуминовой кислоты и после не менее 24 часового отстоя образуются четыре контрастно разделенных слоя. Верхний - вода, которая, для ее повторного использования, возвращается в реактор-смеситель. В трех нижних - соответственно гуминовые кислоты 90%-й, 70%-й и 40% концентраций, каждая из которых подается в свою накопительную емкость.
Изменяя концентрацию вводимой в крекинг-реактор соляной кислоты, можно регулировать рН получаемой гуминовой кислоты [2].
На рисунке 2 представлена схема производства органоминеральных удобрений на основе полученных из угля гуминовых кислот. Принципиальная технологическая схема процесса изготовления гранулированных органо-минеральных удобрений такова: измельченное сырье калия подаются в расходные бункера и из них автоматическими дозаторами подаются на винтовые конвейеры и через дробилки направляются в двухвальный смеситель с обогреваемой рубашкой, куда также подается отмеренное количество раствора микроэлементов (бор, цинк, медь, молибден, марганец) из бака для приготовления жидких добавок.
Рисунок 2. Схема производства органоминеральных удобрений: 1-4 - расходные бункеры для минеральных компонентов, 5-8 - дозаторы минеральных компонентов, 9, 12 - конвейер, 10 - бункер для органических компонентов, 11 - дозатор органических компонентов, 13 - дробилка, 14 - бак раствора микроэлементов, 15 дозатор, 16 двухвальный смеситель с обогреваемой рубашкой, 17 гранулятор - шнековый экструдер, 18 сушильный аппарат, 19 холодильник, 20 бункер готовой продукции
Полученная в двухвальном смесителе влажная шихта непрерывно поступает в гранулятор - шнековый экструдер. Полученная в двухвальном смесителе влажная шихта непрерывно поступает в гранулятор-экструдер. Эффективное перемешивание компонентов и получение однородной шихты обеспечивает равномерное распределение органо-минеральных удобрений в почве по всей засеваемой площади поля.
Влажные, откалиброванные гранулы поступают на сушку. После высушивания гранулы из сушильного аппарата поступают в холодильник для охлаждения и, далее, подаются в бункер готовой продукции, после чего готовое гранулированное органоминеральное удобрение расфасовывается [3].
Заключение
В данной работе была рассмотрена технология производства гуминовых кислот из бурого и каменного угля и дальнейшее производство органоминеральных удобрений на их основе.
Список литературы
1. Органоминеральные удобрения. Теория и практика их получения и применения./ Мельников Л.Ф. СПб.: Изд-во Политехн. ун-та, 2007. 305 с.
2. Способ производства органоминеральных удобрений: патент 2435749 РФ/ Ю.И. Зелепукин, Н.И. Бирюкова; Заявитель и патентообладатель - Ю.И. Зелепукин, Н.И. Бирюкова, заявл. 03.10.2010, опубликовано. 10.12.2011.
3. Способ производства концентрата гуминовой кислоты из бурого угля и линия для производства концентрата гуминовой кислоты: патент 2473527 РФ/ Н.В. Проселков, В.И. Фильянов; Заявитель и патентообладатель - Н.В. Проселков, В.И. Фильянов, заявл. 12.06.2010, опубликовано. 27.11.2011.
Размещено на Allbest.ru
...Подобные документы
Агрохимическая характеристика почв Забайкалья. Динамика содержания азота в почвах, его роль в питании растений. Влияние азотных удобрений на урожайность и качество сельскохозяйственных культур. Экологические аспекты применения различных удобрений.
курсовая работа [127,4 K], добавлен 21.12.2014- Система применения удобрений в полевом севообороте СПК "Юг Руси" Сальского района Ростовской области
Разработка и обоснование системы удобрения сельскохозяйственных культур в СПК "Юг Руси". Описание климатических и почвенных условий хозяйства, особенности питания сельскохозяйственных растений, свойств удобрений и содержания в них действующих веществ.
курсовая работа [61,0 K], добавлен 08.05.2012 Обоснование применения органических и минеральных удобрений. Рекомендации по химической мелиорации почв. Проектирование системы удобрения сельскохозяйственных культур севооборота. Определение агроэкономической эффективности применения удобрений.
курсовая работа [76,3 K], добавлен 06.11.2011Урожайность сельскохозяйственных культур. Агрохимическое обоснование применения удобрений и средств мелиорации. Расчет накопления, хранения и применения органических удобрений. Определение потребности растений в элементах питания. Расчет норм удобрений.
курсовая работа [84,1 K], добавлен 17.03.2014Характеристика климатических и почвенно-агрохимических условий применения удобрений. Планирование урожая сельскохозяйственных культур. Баланс питательных веществ в севообороте, расчёт норм удобрений под планируемый урожай. Химическая мелиорация почв.
курсовая работа [64,2 K], добавлен 21.06.2011Роль и значение удобрений в повышении урожайности и качества сельскохозяйственных культур, их влияние на плодородие почв и окружающую среду. Биологические особенности корневой системы растений. Расчёт доз удобрений на прибавку в полевом севообороте.
курсовая работа [101,2 K], добавлен 05.06.2013Влияние различных форм азотных удобрений на урожайность сельскохозяйственных культур. Выявление лучших форм удобрений, способствующих повышению урожайности культуры и качества продукции. Зависимость урожайности ярового ячменя от доз вносимых удобрений.
реферат [37,5 K], добавлен 20.07.2010Рассмотрение составных питательных веществ в органических растительных и животных удобрениях. Изучение правил внесения в почву навоза, компоста, птичьего помета, фекальных, азотных, фосфорных удобрений, торфа с целью обогащения земли микроэлементами.
контрольная работа [26,8 K], добавлен 22.02.2010Задачи растениеводческой отрасли. Почвенно-климатические условия зоны. Программирование урожая сельскохозяйственных культур. Комплекс агротехнических мероприятий, обеспечивающий получение действительно возможного урожая. Система удобрений, расчет их норм.
курсовая работа [70,3 K], добавлен 13.04.2012Необходимость перехода от удобрения отдельных культур к всесторонне обоснованным системам удобрения каждого севооборота в любом хозяйстве. Взаимоотношения растений, почвы и удобрений. Определение средневзвешенного плодородия почв. Система удобрений сои.
реферат [13,3 K], добавлен 12.11.2011Классификация удобрений по составу: минеральные; органические и органоминеральные; бактериальные. Рассмотрение основных способов внесения удобрений в сельском хозяйстве: основной, припосевной и подкормка. Применение центробежных разбрасывателей удобрений.
контрольная работа [3,1 M], добавлен 17.03.2013Урожайность сельскохозяйственных культур и резервы местных удобрений в хозяйстве. Баланс азота, фосфора и калия в пахотных почва. Расчет выноса азота с урожаями сельскохозяйственных культур. Разработка проектов системы удобрения в севооборотах.
курсовая работа [88,2 K], добавлен 24.09.2019Обзор природных и климатических условий хозяйства. Экологические показатели состояния почв. Система удобрений в севообороте. Биологические особенности возделываемых культур. Расчет норм удобрений под планированный урожай. Система мер борьбы с сорняками.
курсовая работа [72,6 K], добавлен 07.11.2014Применение органических и минеральных удобрений в Дуванском районе Республики Башкортостан, методы расчета дозы внесения минеральных удобрений, планирование урожая культур. Многолетний план применения удобрений в севообороте с учетом плодородия почвы.
курсовая работа [96,7 K], добавлен 15.07.2009Народно-хозяйственное значение озимой пшеницы, роль удобрений в повышении качества урожая. Основные регионы возделывания данной культуры, почвенные условия. Особенности биологии, агротехники, питания озимой пшеницы, размещение удобрений в севообороте.
курсовая работа [42,8 K], добавлен 05.04.2012Анализ агрохимических свойств почвы Ярославской области. Известкование почв, баланс гумуса. Расчет доз удобрений на планируемую урожайность сельскохозяйственных культур. Баланс питательных веществ в севообороте. Годовой план применения удобрений.
курсовая работа [121,2 K], добавлен 17.06.2017Используемое сырьё. Характеристика выпускаемой продукции. Сушка и сепарация торфа. Подготовка водной суспензии торфа. Экстрагирование. Декантация щелочной суспензии торфа. Центрифугирование. Применение малоотходных и безотходных технологий.
курсовая работа [47,2 K], добавлен 05.04.2003Чередование культур в севообороте. Наличие машин по внесению минеральных удобрений. Характеристика климатических условий хозяйства. Система удобрения в севообороте. Расчёт доз минеральных удобрений при возделывании овощных культур в защищенном грунте.
курсовая работа [103,3 K], добавлен 28.05.2014Агрохимия как наука о взаимодействии растений, почвы и удобрений в процессе выращивания сельскохозяйственных культур. Агроклиматическая характеристика совхоза – техникума «Калужский». Агрохимическая характеристика почвы севооборота, применяемые удобрения.
курсовая работа [51,6 K], добавлен 28.04.2009Удобрения как вещества, применяемые для улучшения питания растений, свойств почвы, повышения урожаев. Знакомство с основными особенностями оценки применения минеральных и органических удобрений на сельскохозяйственных угодьях Гомельской области.
курсовая работа [6,1 M], добавлен 16.06.2016