Моделирование распространения влаги при боковом периодическом подтоплении почво-грунта
Обоснование запасов влаги в почве как важная составляющая в разработке комплекса мероприятий по охране от подтопления и иссушения агроландшафтов. Методика построения полиномиальной линии тренда, показывающей процесс увлажнения при боковой фильтрации.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | статья |
Язык | русский |
Дата добавления | 29.04.2017 |
Размер файла | 180,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Обоснование запасов влаги в почве является важной составляющей в разработке комплекса мероприятий по охране от подтопления и иссушения агроландшафтов.
Плодородие почв во многом зависит от водного режима территорий. Одним из факторов формирования водного режима почво-грунтов является впитывание воды в почву. Интенсивность впитывания в значительной степени определяет водный режим почвы и увеличение запасов грунтовых вод.
Интенсивность впитывания подвержена значительным изменениям в пространстве и времени. Отвод избыточных вод с подтопляемых сельскохозяйственных угодий путем устройства осушительных каналов и дрен включает задачу определения распространения фронта влажности по всему профилю используемого сельскохозяйственного участка.
Для обоснования эффективности применения в природных условиях мелиоративной обработки почвы необходимы специальные комплексные исследования. Прежде чем проводить изыскания и опытные полевые работы, связанные с большими затратами, целесообразно предварительно исследовать возможные варианты при подтоплении и осушении сельскохозяйственных земель методами моделирования.
Нами для исследования движения фронта влаги в грунте и подтверждения теоретического исследования был выбран способ физического моделирования на разработанной песчаной физической модели.
Рассматриваемый метод физического моделирования позволяет проводить исследование влажности грунта, а также прогнозировать его состояние в период подтопления или иссушения.
С учетом того, что физическое моделирование натурного грунтового потока на масштабных песчаных моделях аналогичных явлений одинаково воспроизводится в пористой среде, как в натуре, так и на модели, то при помощи выбранных параметров можно изучить и проанализировать процесс влагопереноса, происходящий в период подтопления и переувлажнения на используемых сельскохозяйственных территориях. Необходимо рассмотреть взаимодействие выбранных параметров для того, чтобы дальнейшая математическая обработка данных позволила выбрать наилучшее соотношение изучаемых параметров.
В данном опыте рассматривались параметры, которые в природных условиях влияют на уровень грунтовых вод в период подтопления и переувлажнения, т.е. на формирование водного режима почво-грунтов - это уровень воды в источнике увлажнения, удаленность от источника увлажнения и временной период.
Одной из задач нашего исследования стало определение распространения влажности в почво-грунте под действием подтопления и иссушения.
Продолжительность эксперимента составляла 30 дней. Общее число измерений в течение эксперимента включало около 6000 ежедневных отборов.
Расчеты стандартного отклонения, ошибки выборочной средней, коэффициенты вариации и относительные ошибки выборочной средней производились по стандартным методикам. Полученные результаты влажности почво-грунта обрабатывались программным обеспечением в среде Microsoft Excel методом наименьших квадратов. По экспериментальным данным были получены функциональные зависимости распространения влаги по уровням в почво-грунте.
Приведем графики, показывающие динамику увлажнения почво-грунта в течение первых трех суток (рис. 1-6).
Рисунок 1. Увлажнение почво-грунта на первые сутки
Рисунок 2. Обработанные данные увлажнения почво-грунта на первые сутки методом наименьших квадратов
Рисунок 3. увлажнение почво-грунта на вторые сутки
Рисунок 4. Обработанные данные увлажнения почво-грунта на вторые сутки методом наименьших квадратов
Рисунок 5. Увлажнение почво-грунта на третьи сутки
Рисунок 6. Обработанные данные увлажнения почво-грунта на третьи сутки методом наименьших квадратов
Повторные опыты подтопления почво-грунта показали подобные результаты, диапазон отклонения составлял ± 1,5 %.
Таким образом, в результате исследования можно сделать вывод о том, что распространение влаги в почво-грунте при боковой фильтрации в ситуации периодического подтопления происходит в виде затухающих колебаний.
При аналогичном исследовании процесса иссушения почво-грунта на физической модели можно сделать вывод о том, что распространение влаги в почво-грунте при боковой фильтрации в ситуации иссушения происходит в виде затухающих колебаний. При проведении повторного опыта иссушения были получены результаты, диапазон отклонения которых составлял не более ± 2 %. Следовательно, при обосновании движения влаги в почве при боковом периодическом подтоплении необходимо учитывать инертность почвенной среды. Инертность почвы заключается в накопительной способности пористой среды при периодически повторяющихся процессах. На исследуемой песчаной модели происходит периодическое боковое подтопление почво-грунта. С учетом выполненного моделирования считаем, что впитывание влаги в однородный грунт при боковом увлажнении из локального (единичного) источника происходит как колебательный процесс.
Для описания движения грунтовых вод (влаги) использовали метод Лагранжа. В каждой точке элементарной площадки можно говорить об установившемся перемещении влаги. Будем считать, что при рассмотрении любой элементарной площадки грунта за единицу времени проходит одинаковое элементарное увлажнение, то есть , где m - масса жидкости фильтрационного потока, прошедшего через поперечное сечение элементарной площадки Щ= за время t (d - высота; b - длина элементарной площадки).
В результате выполнения ряда простых преобразований получим:
,
где:
, (1)
то масса проходящей жидкости через поры однородного грунта равна:
. (2)
Разделив обе части равенства (2) на время t получим:
, (3)
где - плотность жидкости; а - ширина рассматриваемой элементарной площадки; t - время увлажнения грунта; и - скорость боковой фильтрации в рассматриваемой элементарной площадке.
Из равенства (3) имеем:
. (4)
Площадь основания очага увлажнения и поперечного сечения считали неизменяющимися величинами.
Скорость боковой фильтрации прямо пропорционально зависит от глубины очага подтопления и обратно пропорциональна времени увлажнения грунта.
Действительно, если рассматривать сечение около источника увлажнения, то, чем глубже расположена площадка, тем большее давление она испытывает и тем больше сила F продавливания влаги в почву:
,(5)
где р - давление жидкости на боковую площадку источника увлажнения; - плотность жидкости; - глубина погружения элементарной площадки.
Поэтому скорость фильтрации можно записать следующим образом:
, (6)
где S - площадь проекции основания источника увлажнения.
В качестве упругой среды имеем почво-грунт в естественном состоянии. Источник увлажнения возбуждает впитывание влаги в почво-грунт частицы среды. Вследствие взаимодействия частиц увлажнение будет распространяться в среде от частицы к частице с некоторой скоростью фильтрации.
Увлажнение грунта при боковом впитывании происходит безнапорной фильтрацией. При повторном и далее цикличном увлажнении почвы влага в почве перемещается «продольными волнами». При распределении продольной волны в грунте создаются чередующиеся сгущения (насыщение влажностью) и разряжения (перемещения влаги в направлении распространения волны). Этот процесс, распространяясь от источника увлажнения (источника колебаний), охватывает все новые и новые части пространства (грунта) последовательно. Фронт волны представляет собой ту поверхность, которая отделяет собой часть пространства, уже увлажненного, вовлеченного в процесс, от области, в которой увлажнение еще не началось, где колебания еще не возникли.
Благодаря использованию теории волнового движения, можно сделать вывод о том, что одновременное распространение нескольких волн происходит по принципу суперпозиции. Если произошло наложение волн в какой-либо точке своими сгущениями или своими разряжениями, то влажность в этой точке возрастает. Если сгущение одной волны налагается на разряжение другой, то влажность в этой точке уменьшается. Возникает устойчивая интерференционная картина, в которой в некоторых точках увлажнения при сложении усиливают друг друга, в других точках, наоборот, ослабляют.
Следовательно, при периодическом подтоплении движение влаги представляет собой процесс распространения гармоничных колебаний. Боковое увлажнение в точке, меняющееся по времени, можно представить в аналитическом виде следующим уравнением:
,(7)
где А - амплитуда изменения влажности; - фаза колебания влажности.
Распространение влажности вдоль некоторого направления на расстояние х происходит с некоторым запаздыванием t1, которое учитывается скоростью фильтрации в почво-грунте. Тогда этот процесс (7) можно представить в виде уравнения гармонических колебаний:
,(8)
где - время прохождения влагой расстояния х.
В процессе бокового увлажнения грунта происходит поглощение влаги средой. При распространении влаги в поглощающей среде интенсивность её с удалением от источника увлажнения постепенно уменьшается. Этот процесс согласуется с уравнением (7).
Учтем в уравнении (8) уменьшение влажности вдоль расстояния х от источника увлажнения, т.е. затухающие колебания, которые описываются по экспоненциальному закону:
, (9)
где А0 - амплитуда в точках плоскости х, h - коэффициент вязкости.
Таким образом, выражение (8) распространения влажности при боковом увлажнении с течением времени можно представить в виде:
.(9)
С учетом скорости боковой фильтрации и, распространения влажности при боковом увлажнении с течением времени, величины источника увлажнения и УГВ формула (9) примет вид:
.(10)
На рисунках 7 и 8 представлены экспериментальные данные и полиномиальная линия тренда, показывающие процесс увлажнения при боковой фильтрации. На графиках 7-8 указана величина достоверности степени аппроксимации.
Рисунок 7. Кривая увлажнения почво-грунта на глубине 10 см в первые два дня
Рисунок 8. Кривая увлажнения почво-грунта на глубине 10 см в последние два дня
полиномиальный увлажнение фильтрация агроландшафт
Таким образом, полученная полуэмпирическая формула (10) распространения влажности в зависимости от параметров увлажнения в однородной грунтовой среде позволяет оценить динамику влажности при подтоплении и иссушении почво-грунта.
Размещено на Allbest.ru
...Подобные документы
Определение запасов влаги в почве, средних дат поливов графоаналитическим способом. Проектирование сети орошаемого участка. Расчёт поливного расхода, продолжительности поливного периода, режима орошения баклажана, суммарного, подекадного водопотребления.
курсовая работа [386,9 K], добавлен 08.06.2012Изучение комплексной стандартизации всех объектов и процессов, которые влияют на качество готового изделия. Характеристика методов определения содержания влаги в зерне и зерновых продуктах. Анализ потери массы зерна полученной в результате высушивания.
контрольная работа [635,3 K], добавлен 14.09.2011Отличия защищенного грунта от открытого. Конструктивные особенности культивационных сооружений. Назначение овощеводства защищенного грунта и решаемые задачи. Классификация теплиц и их устройство. Состав и подготовка грунта. Система полива и увлажнения.
реферат [26,0 K], добавлен 07.12.2009Роль гумуса в плодородии почвы. Законы научного земледелия, их значение и применение. Биологические меры борьбы с сорняками. Чистые пары, особенности их обработки в зависимости от наличия влаги в почве. Обработка почв, подверженных ветровой эрозии.
контрольная работа [36,0 K], добавлен 07.11.2009Подвод воды на поля, испытывающие недостаток влаги, и увеличение ее запасов в корнеобитаемом слое почвы в целях увеличения плодородия. Снабжение корней растений влагой и питательными веществами. Искусственное орошение полей. Основные способы орошения.
презентация [4,2 M], добавлен 27.05.2013Характеристика абиотических условий и эдафические условия района. Экологическая оценка агроландшафтов и состояния агроэкосистем. Мероприятия по повышению стабилизации агроландшафтов, экологичности земледелия и экологической устойчивости почвенного блока.
курсовая работа [59,4 K], добавлен 11.11.2010Биологические особенности озимой пшеницы. Отзывчивость озимой пшеницы на минеральное питание. Динамика содержания влаги и подвижного фосфора в почве. Экономическая эффективность внесения доз фосфорных удобрений под озимую пшеницу после занятого пара.
дипломная работа [118,2 K], добавлен 06.02.2011Характеристика погодных условий г. Курска за период вегетации овса. Основные отличительные признаки видов овса, их морфологические признаки. Определение урожая по сумме осадков за вегетационный период и запасов доступной влаги в метровой мощности почвы.
курсовая работа [68,8 K], добавлен 17.10.2014Характеристика климатических и погодных условий хозяйства. Расчет норм удобрений на планируемую урожайность по общему выносу питательных веществ. Оценка уровня продуктивности севооборота, разработка мероприятий по запасу влаги в метровом слое почвы.
курсовая работа [80,6 K], добавлен 24.05.2009Характеристика почвенного покрова области. Гранулометрический состав, физические свойства, структурное состояние и оценка почв. Типы гумуса, их роль в почвообразовании. Расчёт бонитета почв и запасов продуктивной влаги в них. Пути сохранения плодородия.
курсовая работа [88,7 K], добавлен 11.06.2015Биологические особенности люцерны на семена. Расчет потенциальной урожайности. Определение урожая по сумме осадков за вегетационный период и запасов доступной влаги в метровой мощности почвы. Размещение посевов в севообороте. Выбор сортов, уборка урожая.
курсовая работа [100,3 K], добавлен 01.03.2015Систематическое положение вредителей и диагностика болезней. Биоэкология возбудителей болезней. Методика учета распространенности и степени развития болезней. Меры борьбы против гельминтоспориоза проса, гельминтоспориоза, мучнистой росы, склеротиниоза.
курсовая работа [644,7 K], добавлен 19.04.2012Понятие, особенности и процесс образования гумуса. Гуминовые вещества как основная органическая составляющая почвы, воды и твердых горючих ископаемых. Значение и роль гумификации в почвообразовании. Химическая структура и свойства гуминовых веществ.
реферат [519,6 K], добавлен 15.11.2010Основные расчетные физические характеристики: плотность грунта и минеральной части грунта, естественная влажность. Определение удельного веса сухого грунта, коэффициента пористости и водонасыщения грунта. Плотность грунта, облегченного весом воды.
презентация [119,7 K], добавлен 10.12.2013Расчет теплопотерь через наружные ограждения, теплопоступлений, выделений влаги и газов в помещении свинарника, содержащего 160 подсосных свиноматок с поросятами. Тепловая мощность отопительно-вентиляционной системы, подбор калориферов и вентиляторов.
курсовая работа [607,2 K], добавлен 16.09.2010Почвенно-климатические условия хозяйства. Биологические особенности культуры. Требования к теплу и свету, к влаге, к почве и элементам питания. Обоснование и разработка агротехнических мероприятий возделывания культуры по адаптивной технологии.
курсовая работа [70,4 K], добавлен 14.04.2011Методы оценки ресурсов влаги в географических зонах. Сущность гидротермического коэффициента. Оценка различных культур как предшественников по зонам страны. Химическая и агробиологическая мелиорация почв. Системы земледелия Среднего и Нижнего Поволжья.
контрольная работа [31,0 K], добавлен 27.09.2009Причины недостатка осадков и влаги в течение длительного времени, его последствия для урожая полевых культур и прочих растений. Сущность почвенной и физиологической засухи, методы борьбы с ними. Характеристика климата и природы основных пустынь мира.
реферат [17,7 K], добавлен 27.01.2011Характеристика кератинсодержащих отходов. Структура кератина и способы его получения. Рациональное использование белковых препаратов. Исследование химического состава растворов кератина по показателям: содержания влаги, жировых и минеральных веществ.
дипломная работа [264,8 K], добавлен 13.06.2015Дискование почвы как прием обработки почвы, обеспечивающий уничтожение сорняков, сохранение, а при выпадении осадков и накопление влаги, агротехнические требования к данному процессу. Часовая производительность машины, расчет параметров рабочего органа.
контрольная работа [167,3 K], добавлен 11.12.2011