Исследование процесса разгона машинно-тракторного агрегата с упругодемпфирующим механизмом в трансмиссии трактора класса 5

Определение преимуществ применения скоростных тракторов в сельскохозяйственном производстве. Улучшение показателей разгона машинно-тракторных агрегатов за счёт установки в трансмиссию трактора упругодемпфирующего механизма с переменной жёсткостью.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык русский
Дата добавления 26.05.2017
Размер файла 236,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование процесса разгона машинно-тракторного агрегата с упругодемпфирующим механизмом в трансмиссии трактора класса 5

Кравченко Владимир Алексеевич

Целью работы является теоретическое и экспериментальное подтверждение возможности улучшения показателей разгона машинно-тракторных агрегатов за счёт установки в трансмиссию трактора упругодемпфирующего механизма с переменной жёсткостью. Применение скоростных тракторов в сельскохозяйственном производстве встречает ряд трудностей, связанных с неустановившимися процессами при разгоне машинно-тракторных агрегатов. Возникающие значительные инерционные нагрузки при разгоне приводят к потерям части мощности двигателя, из-за чего машинно-тракторный агрегат работает с меньшей производительностью и экономичностью. Анализ опубликованных работ показал, что на показатели разгона машинно-тракторных агрегатов большое влияние оказывает жёсткость и демпфирующие свойства трансмиссии энергетических средств. Предложено для обеспечения плавного разгона агрегата устанавливать в трансмиссию трактора упругодемпфирующий механизм с переменной жёсткостью. В результате этого уменьшается напряженность процесса разгона. Приведены результаты аналитических и экспериментальных исследований по влиянию упругодемпфирующего механизма, устанавливаемого в трансмиссию трактора класса 5, на разгонные характеристики машинно-тракторных агрегатов. Определены оптимальные параметры элементов упругодемпфирующего механизма с переменной жёсткостью для тракторов класса 5. Доказано, что применение в трансмиссии трактора упругодемпфирующего механизма с переменной жёсткостью способствует улучшению показателей разгона

Ключевые слова: МАШИННО-ТРАКТОРНЫЙ АГРЕГАТ, ТРАКТОР, УПРУГОДЕМПФИРУЮЩИЙ МЕХАНИЗМ, ЖЁСТКОСТЬ ТРАНСМИССИИ РАЗГОН, ВРЕМЯ РАЗГОНА, РАБОТА ТРЕНИЯ МУФТЫ СЦЕПЛЕНИЯ

Эффективность агропромышленного комплекса в значительной степени связано с его оснащённостью высокопроизводительной техникой, в том числе скоростными энергонасыщенными тракторами. [1]. Однако для современных тракторов в составе сельскохозяйственных агрегатов характерно повышенное значение приведенных масс, что оказывает негативное влияние на характер его разгона [1]. Поэтому при выполнении сельскохозяйственной операции двигатель трактора работает с низким коэффициентом использования мощности, что приводит к снижению производительности агрегата и увеличению удельного расхода топлива [1].

В теории трактора разгон рассматривают лишь для случая ступенчатой механической трансмиссии и поршневого двигателя [3, 7].

Как показали наши исследования, существенное влияние на показатели разгона машинно-тракторного агрегата (МТА) оказывают жёсткость и демпфирующие свойства трансмиссии энергетического средства.

Аналитические исследования математических моделей сельскохозяйственных агрегатов [5] на базе тракторов класса 5 (рисунок 1) показали, что упругодемпфирующий механизм (УДМ) в трансмиссии энергетического средства [2, 5] способствует улучшению показателей разгона МТА.

--- - серийный трактор;

- - - - - трактор-макет;

1, 2 - угловые скорости вращения вала двигателя и первичного вала коробки передач;

3 - ведущий момент;

4 - коэффициент буксования

Рисунок 1 - Показатели разгона МТА с опытной и серийной трансмиссиями

При разгоне МТА на базе энергетического средства с серийной трансмиссией наблюдается в течение двух секунд существенное снижение угловой скорости коленчатого вала двигателя (кривая 1). При разгоне агрегата на базе трактора-макета с упругодемпфирующим механизмом в трансмиссии угловая скорость коленчатого вала двигателя также снижается, но по сравнению с серийным энергетическим средством она несколько выше (на 12 рад/с). Это объясняется тем, что УДМ способствует снижению влияния колебаний ведущего момента упругой связи на характер работы двигателя. Длительность первой фазы разгона, при которой наступает равенство угловых скоростей коленчатого вала двигателя и первичного вала коробки передач (кривая 2), для обоих вариантов практически одинакова ? 3,5...4,0 с.

Ведущий момент упругой связи в МТА с серийной трансмиссией энергетического средства (кривая 3) в начальный период разгона резко увеличивается, а затем уменьшается до установившейся величины в течение четырёх секунд. Коэффициентом динамичности [5], с помощью которого оценивают динамические нагрузки на двигатель, при разгоне сельскохозяйственного агрегата на базе серийного трактора класса 5 равен 2,8.

В опытной трансмиссии энергетического средства ведущий момент упругой связи имеет сглаженный характер (объясняется работой дросселя и предохранительного клапана), максимальное его значение на 24,5% меньше при таком же установившемся значении, как в серийном варианте (коэффициент динамичности равен 2,2).

Максимальное значение буксования ведущих колёс энергетического средства, определённого при аналитических исследованиях, у МТА на базе серийного трактора (рисунок 1, кривая 4) составляет 27 %, и это больше, чем у МТА с УДМ в трансмиссии трактора (24 %). Значение буксования при установившемся режиме работы равно 3...4 % для обоих вариантов.

По данным аналитических исследований работа трения муфты сцепления значительно ниже для трактора с УДМ в трансмиссии (207,5 кДж для серийной трансмиссии и 154,3 кДж для опытной трансмиссии).

Аналитические исследования разгона МТА с различными вариантами трансмиссий энергетических средств класса 5 показали, что:

- при разгоне МТА с УДМ в трансмиссии минимальное значение угловой скорости коленчатого вала двигателя на 6,4% больше, чем в серийном варианте;

- характер изменения ведущего момента упругой связи при наличии УДМ в трансмиссии энергетического средства отличается плавностью без наличия значительного «выброса», а максимальное значение этого момента на 24,5% меньше, чем у серийного трактора;

- динамические нагрузки в трансмиссии энергетического средства с УДМ снижаются до 25,3 %;

- при установке УДМ в трансмиссию энергетического средства уменьшается значение максимального буксования ведущих колёс и обеспечивается более плавное, по сравнению с исходным агрегатом, изменение кривой буксования.

Так как на показатели разгона МТА с УДМ в трансмиссии трактора определяющими являются объём пневмогидроаккумулятора и площадь сечения дросселя, были определены их оптимальные значения.

Проведённые экспериментальные исследования [4, 6] показали, что значения основных показателей разгона машинно-тракторного агрегата (минимальная угловая скорость коленчатого вала двигателя , время разгона агрегата и ведущий момент упругой связи ), являющихся случайными величинами, меняются в широких пределах в зависимости от объёма пневмогидроаккумулятора и значения проходного сечения дросселя, поэтому объективная их оценка влияния на разгон МТА может быть получена с помощью статистического анализа.

Оптимальный объём пневмогидроаккумулятора был определён на основе статистического анализа данных его влияния на время разгона , минимальную угловую скорость коленчатого вала двигателя и работу трения муфты сцепления , предположив, что закон распределения исследуемой величины ? нормальный. Для этого были использованы приведённые в таблице 1 экспериментальные данные.

Таблица 1 - Показатели разгона МТА от объёма пневмогидроаккумулятора

Показатели

Объём аккумулятора, м3

0

0,79?10-3

1,71?10-3

3,71?10-3

5,77?10-3

Среднее

4,5

5,0

6,5

7,8

7,5

Дисперсия

0,25

0,09

0,46

0,05

0,80

Средняя

115

122

123

124

128

Дисперсия

2,0

7,0

19,3

5,5

5,5

Средний

154

119

122

117

109

Дисперсия

16,0

2,0

4,6

2,5

24,5

Расчёты, проведённые на основе данных таблицы 1, подтвердили гипотезы о нормальном законе распределения (по критерию Мизеса) и однородности дисперсий (по критерий Бартлета), что дало право проведения дисперсионного анализа по оценке влияния объёма пневмогидроаккумулятора на угловую скорость коленчатого вала двигателя с помощью критерия Фишера (таблица 2) [5].

трактор трансмиссия упругодемпфирующий трансмиссия

Таблица 2 - Зависимость минимальной угловой скорости коленчатого вала двигателя от объёма пневмогидроаккумулятора

серии

Объём аккумулятора , дм3

Число опытов

Математическое

ожидание , рад/с

Дисперсия

1

0

5

115

2,0

2

0,79

3

122

7,0

3

1,71

4

123

19,3

4

3,71

5

124

5,5

5

5,77

5

128

5,5

Зависимость минимальной угловой скоростью коленчатого вала двигателя от объёма пневмогидроаккумулятора описывается следующим уравнением регрессии:

. (1)

Анализ уравнения (1) показал, что наилучшие результаты разгона МТА по величине минимальной угловой скорости двигателя будут получены при полном объёме пневмогидроаккумулятора (рисунок 2 а).

--- - кривые регрессии;

- - - - экспериментальные данные

Рисунок 2 - Зависимость минимальной угловой скорости вала двигателя, времени разгона и работы трения муфты сцепления энергетического средства класса 5 от объёма пневмогидроаккумулятора

Взаимосвязь между продолжительностью разгона агрегата и объёмом пневмогидроаккумулятора, установленная на основе данных таблицы 1, описывается следующим уравнением регрессии:

. (2)

Анализ кривой регрессии (рисунок 2 б) показывает, что оптимальное значение объёма аккумулятора 4?10-3 м3, при котором обеспечивается самая большая плавность разгона агрегата.

Дисперсионный анализ, проведённый с помощью критерия Фишера по данным таблицы 3, показывает на значительное влияние объёма пневмогидроаккумулятора на работу трения муфты сцепления, описываемое уравнением регрессии:

. (3)

Таблица 3 - Зависимость работы трения муфты сцепления при разгоне трактора класса 5 от объёма пневмогидроаккумулятора

Серия

опытов

м3

Число опытов

Математическое ожидание

работы трения , кДж

Оценка условных дисперсий , кДж

1

0

5

202

2,5

2

0,79

3

173

4,0

3

1,71

4

211

4,6

4

3,71

5

136

3,5

5

5,77

5

245

0,5

Как показывает решение уравнения регрессии (3) (рисунок 2 в), оптимальное значение объёма пневмогидроаккумулятора, которое соответствует минимальной работе трения муфты сцепления, равно 3?10-3 м3.

Учитывая решение уравнений (1) и (2), а также данные экспериментальных исследований, оптимальный объём пневмогидроаккумулятора будет находиться в пределах (3...4)?10-3 м-3.

Оптимальное значение площади сечения дросселя достаточно определить при оценке влияния этого параметра на минимальную угловую скорость коленчатого вала двигателя с помощью дисперсионного и регрессионного анализов результатов экспериментальных исследований разгона МТА, представленных в таблице 3.

Таблица 3 - Зависимость минимальной угловой скорости коленчатого вала двигателя от площади сечения дросселя .

Площадь сечения дросселя ?105, м2

Число опытов

Математическое ожидание

, рад/с

Условная

дисперсия

3,2

5

157

0,5

4,1

5

154

2,5

5,0

5

149

1,5

6,5

5

146

2,5

Так как критерий Кохрана подтверждает однородность ряда дисперсий, а критерий Фишера ? гипотезу о значительном влиянии площади сечения дросселя на минимальную угловую скорость коленчатого вала двигателя при разгоне сельскохозяйственного агрегата, получим на основании данных таблицы 3 уравнение регрессии в следующем виде:

. (4)

Решение уравнения регрессии (4) показало, что оптимальная площадь сечения дросселя является = 3?10-5 м2, что соответствует минимальному снижению угловой скорости коленчатого вала двигателя при разгоне МТА (рисунок 3).

--- - кривая регрессии;

- - - - экспериментальные данные

Рисунок 3 - Зависимость минимальной угловой скорости коленчатого вала двигателя от площади сечения дросселя

Оценка результатов процесса разгона МТА обычно проводится по диаграммам ведущего момента, угловой скорости коленчатого вала двигателя и работы муфты сцепления и сопровождается снижением, построенным по результатам экспериментальных исследований [3, 7].

Для определения вышеперечисленных показателей были проведены экспериментальные исследования процесса разгона агрегата на базе опытного энергетического средства класса 5 с различными объёмами пневмогидроаккумулятора (таблица 4 и рисунок 4).

Таблица 4 - Показатели разгона агрегата на базе энергетического средства класса 5 с УДМ в трансмиссии

Показатели

Объём, л

0

0,79

1,71

3,71

5,77

Продолжительность первой фазы, с

2,3

4,5

5,8

5,7

5,8

Продолжительность второй фазы, с

2,2

0,5

0,7

1,8

1,5

Общее время разгона, с

4,5

5,0

6,5

7,3

7,2

Минимальная угловая скорость вала двигателя,

113

120

122

125

130

Максимальный ведущий момент, Н•м

1560

1150

1200

1100

1060

Удельная работа трения муфты сцепления, Дж/м2

1875

384

364

240

440

1 - при V=0 (серийный вариант);

2 - при V=1.71 л; 3 - при V=5,77 л;

Рисунок 4 - Зависимости ведущего момента (----) и угловой скорости коленчатого вала двигателя (---) от времени разгона при различных объёмах пневмогидроаккумулятора

Анализ аналитических и экспериментальных исследований (таблица 4, рисунок 4) показывает, что при установке УДМ в трансмиссию энергетического средства по сравнению с разгоном серийного агрегата уменьшается на 30…47% «выброс» момента двигателя, увеличивается минимальная угловая скорость коленчатого вала двигателя до 15%, снижается работа трения муфты сцепления. Минимальная работа трения муфты сцепления наблюдается при объёме пневмогидроаккумулятора =(3...4)?10-3 м-3. при оптимальном значении площади сечения дросселя = 3?10-5 м2.

Сравнение полученных данных полностью подтверждает положительное влияние упругодемпфирующего механизма, устанавливаемого в трансмиссии энергетического средства класса 5, на динамические показатели разгона машинно-тракторного агрегата.

ЛИТЕРАТУРА

1. Болтинский, В.Н. Разгон МТА на повышенных скоростях / В.Н. Болтинский // Механизация и электрификация социалистического сельского хозяйства. - 1961. - № 3. - С. 1…8.

2. Кравченко, В.А. Влияние упругодемпфирующего механизма на показатели пахотного агрегата на базе трактора класса 1,4 / В.А. Кравченко, В.В. Дурягина. // Вестник аграрной науки Дона. - 2015. ? № 3 (31). С. 13…21.

3. . Кравченко, В.А. Исследование процесса разгона машинно-тракторного агрегата на базе трактора класса 1,4 с переменной вращающейся массой двигателя/ В.А. Кравченко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2015. - № 113. - IDA: 1131509077 / Режим доступа: http: // ej.kubagro.ru/2015/09/pdf/77.pdf. - С.1060…1070.

4. Кравченко, В.А. Математическое моделирование тяговой нагрузки МТА / В.А. Кравченко, В.В. Дурягина, И.Э. Гамолина. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2014. - № 101. - IDA: 1011407024 / Режим доступа: http: // ej.kubagro.ru/2014/07/pdf/24.pdf. - С. 459…472.

5. Кравченко, В.А. Повышение эффективности машинно-тракторных агрегатов на базе колёсных тракторов / В.А. Кравченко, В.А. Оберемок, Л.В. Кравченко // Технология колёсных и гусеничных машин. - 2014. ? № 6 (16). С. 45…49.

6. Кравченко, В.А. Результаты испытаний машинно-тракторных агрегатов на базе трактора класса 1,4 с переменной вращающейся массой двигателя / В.А. Кравченко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2014. ? № 99 (05). ? IDA: 0991405015. - Режим доступа: http//ej.kubagro.ru/2014/05/15/pdf/24.pdf. ?С. 223…233.

7. Кутьков, Г.М. Теория трактора и автомобиля / Г.М. Кутьков. - Москва: Колос, 1996. - 287 с.

Размещено на Allbest.ru

...

Подобные документы

  • Агротехнический прием в технологии возделывания. Основные показатели качества лущения. Выбор трактора и сельскохозяйственной машины. Требования, предъявляемые при комплектовании машинно-тракторных агрегатов. Расчет состава машинно-тракторного агрегата.

    курсовая работа [40,6 K], добавлен 24.12.2011

  • Структурная схема возделывания проса. Агротехнические требования и контроль качества работы. Технико-экономические показатели машинно-тракторных агрегатов. Подготовка поля. Построение графика машиноиспользования. Планирование технического обслуживания.

    курсовая работа [819,4 K], добавлен 24.06.2013

  • Производственная деятельность хозяйства. Состояние машинно-тракторного парка и его использование. Выбор и обоснование марок тракторов и сельскохозяйственных машин. План тракторных работ для подразделения на заданный период, агротехнические требования.

    курсовая работа [94,6 K], добавлен 22.10.2011

  • Общее устройство гусеничного трактора и назначение его основных частей. Влияние использования тяговой мощности на производительность машинно-тракторного агрегата и себестоимость тракторных работ. Устройство и технологический процесс туковых сеялок.

    контрольная работа [44,3 K], добавлен 07.01.2011

  • Агротехнические требования. Энергетика. Расчет состава машинно-тракторного агрегата. Подготовка агрегата к работе. Определение производительности машинно-тракторного агрегата. Подготовка поля. Контроль и оценка качества работы. Эксплуатационные затраты.

    курсовая работа [67,0 K], добавлен 24.10.2004

  • Экономическая характеристика сельскохозяйственного предприятия, анализ его обеспеченности техническими средствами. Оценка динамики и выполнения плана объемов машинно-тракторных работ. Пути повышения эффективности использования машинно-тракторного парка.

    курсовая работа [92,7 K], добавлен 24.05.2012

  • Условия и особенности использования машинно-тракторных агрегатов при возделывании сельскохозяйственных культур. Оптимальные сроки проведения полевых работ. Морфологические признаки и физические свойства семян. Зональные особенности полива, орошение.

    контрольная работа [222,7 K], добавлен 18.09.2011

  • Проектирование системы машин для комплексной механизации лесохозяйственных работ в декоративном питомнике. Расчет состава и использования машинно-тракторного парка. Определение потребности машинно-тракторных агрегатов в топливе и смазочных материалах.

    курсовая работа [220,0 K], добавлен 25.01.2015

  • Исследование путей повышения производительности сельскохозяйственных машинно-тракторных агрегатов. Выбор их оптимальных режимов. Конструкторская разработка, расчет и построение тяговых характеристик трактора МТЗ-82 с использованием энергетического модуля.

    курсовая работа [144,4 K], добавлен 28.10.2010

  • Суть и содержание операционной технологии сельскохозяйственного боронования. Условия работы машинно-тракторного агрегата. Агротехнические требования. Выбор и подготовка машинно-тракторного агрегата к работе. Мероприятия по охране труда и окружающей среды.

    курсовая работа [103,8 K], добавлен 07.06.2011

  • Рекомендации по подбору машинно-тракторного агрегата, данные для самостоятельного решения ряда проблемных задач, справочные материалы по эксплуатации МТП. Обоснование оптимального состава машинно-тракторного агрегата, проведение профилактики и ремонтов.

    учебное пособие [101,3 K], добавлен 23.03.2010

  • Эксплуатация машинно-тракторного парка - наука о методах использования машин в сельскохозяйственном производстве. Назначение технологической операции: посев перекрестный с внесением гранулированного суперфосфата. Выбор трактора, экономические показатели.

    курсовая работа [98,8 K], добавлен 27.12.2011

  • Характеристика машинно-тракторного парка. Организация его оптимизации. Ресурсный потенциал и финансовые результаты деятельности предприятия. Инновационные технологии энергоемких технологий использования тракторов. Затраты на переоборудование прицепа.

    курсовая работа [62,1 K], добавлен 28.12.2014

  • Агротехнические требования при посадке картофеля. Комплектование основного и вспомогательного агрегатов. Скоростной режим и время цикла работы трактора Беларусь 1523+КСМ-8. Расчет потребного количества и производительности автомобилей ГАЗ-САЗ-3502.

    контрольная работа [80,7 K], добавлен 13.12.2013

  • Выбор и обоснование технологии озеленительных работ. Обеспечение оптимального с технической (агротехнической) и экономической точек зрения сочетания трактора с рабочими машинами. Расчет количества и производительности машинно-тракторных агрегатов.

    контрольная работа [25,1 K], добавлен 14.11.2012

  • Анализ использования техники при выполнении сельскохозяйственных работ. Подготовка поля и организация работы тракторного агрегата. Расчёт потребности в топливо-смазочных материалах и пути их снижения. Подготовка машинно-тракторного агрегата к работе.

    курсовая работа [110,3 K], добавлен 04.12.2011

  • Характер динамических нагрузок трансмиссий и ходовой системы сельскохозяйственных тракторов. Способы повышения энергетических показателей энергонасыщенных тракторов. Расчет оптимальной жесткости пневмогидравлической планетарной муфты сцепления.

    дипломная работа [232,8 K], добавлен 17.11.2013

  • Разработка проекта колесного тягового трактора сельскохозяйственного назначения. Определение эксплуатационного веса тяговый расчет трактора. Обоснование параметров ходовой части машины и подбор двигателя. Выбор передаточных чисел трансмиссии трактора.

    курсовая работа [481,5 K], добавлен 27.09.2014

  • Подбор оптимального состава машинно-тракторного парка лесничества. Разработка графика использования машинно-тракторного состава. Планирование технического обслуживания и ремонта агрегатов. Расчет потребности машин в топливе и смазочных материалах.

    курсовая работа [153,3 K], добавлен 25.05.2012

  • Порядок расчетов по комплектованию пахотного и непахотного тракторных агрегатов. Выбор скоростного режима и марки плуга, нахождение действительного коэффициента использования тягового усилия трактора, определение его производительности и расхода топлива.

    курсовая работа [176,3 K], добавлен 14.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.