Изучение эрозионных процессов с помощью трехмерного моделирования рельефа (на примере СПК "Искра" Тарбагатайского района Республики Бурятия)
Характеристика специфических особенностей антропогенной эрозии почв. Ознакомление с процессом картографической привязки эродированных участков. Рассмотрение показателей гидротермического коэффициента. Исследование и анализ трехмерной карты уклонов.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | статья |
Язык | русский |
Дата добавления | 12.02.2018 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Бурятская государственная сельскохозяйственная академия
Изучение эрозионных процессов с помощью трехмерного моделирования рельефа (на примере СПК «Искра» Тарбагатайского района Республики Бурятия)
Цыдыпов Б.З., Коменданова Т.М.
Улан-Удэ, Россия
Summary
The problems of extension of accelerated anthropogenic erosion are considered in this article.
Areas of agricultural lands on eroded classes are detected. The erosion-preventive organization of territory is carried out. The prediction analytical equation of erosion processes for given territory is received. The georeference of eroded surfaces is carried out. The three-dimensional terrain model for detection and visualization of surface erosion processes is created.
Введение
Антропогенная эрозия почв принадлежит к числу сложных явлений, возникновение и развитие которых связано с рядом как природных, так и хозяйственных факторов. В условиях сложного рельефа и разнообразного по эродированности и дефлированности почвенного покрова рациональная организация территории и поддержание ландшафтного равновесия обеспечивается проведением комплекса работ по защите почв от эрозии.
Исследование эрозионных процессов и формирующихся под их влиянием эродированных почв важно для правильного обоснования, разработки и осуществления дифференцированных систем мероприятий по борьбе с эрозией почв и рационального производственного использования эродированных земель.
В настоящее время развитие эрозионных процессов в условиях Республики Бурятия стало не только сельскохозяйственной, но и серьезной экологической проблемой. Исключение из сельскохозяйственного оборота больших площадей пахотных и кормовых угодий ведет к увеличению производственной и иных нагрузок на оставшиеся продуктивные угодья, что вызывает их деградацию. Так, эрозия наносит значительный ущерб почвенному покрову, снижению плодородия и урожайности сельскохозяйственных культур. В связи с этим большое значение приобретают исследования эрозионных процессов.
Основной чертой рельефа Республики Бурятия является ее горный характер, характеризующийся значительной расчлененностью, чередованием горных хребтов различной высоты, межгорными впадинами и речными долинами, освоенными в той или иной степени. Большинство долин обрамлено высокими горными хребтами - Баргузинским, Хамар-Дабанским, Тункинскими Альпами и горными сооружениями средней высоты в Селенгинском среднегорье. Долины представляют собой естественные аэродинамические трубы, усиливающие развитие эрозионных процессов в сочетании с другими компонентами географической среды (малой, почти на всех типах почв, лесистости земледельческой части Бурятии, обнаженностью местности, легким механическим составом почв) [8].
Территория исследования входит в природный округ Селенгинского среднегорья, расположенного в пределах Тарбагатайской межгорной мезозойской впадины, вытянутой в широтном направлении; на севере граничит с отрогами Хамар-Дабан и Улан-Бургасы, на юге - с северными отрогами хребта Цаган-Дабан. Она характеризуется распространением эрозионных процессов пахотных угодий и, в меньшей степени, пастбищ и сенокосов. По данным генеральной схемы противоэрозионных мероприятий Республики Бурятия в районе 33 тыс. га пахотных и подверженных водной эрозии угодий; площадь дефляционно-опасных угодий составляет 5,2 тыс. га (по состоянию на 1 сентября 1993 г.) [4].
Цель данного исследования - выявление эрозионных процессов с помощью трехмерного моделирования рельефа. Использование ГИС-технологий и методов дистанционного зондирования Земли при обследовании объекта позволяет значительно расширить возможности картографического описания.
Задачи исследования:
- изучение и анализ факторов развития эрозии;
- прогнозирование эрозионных процессов;
- картографическая привязка эродированных участков;
- 3D-моделирование по радарным высотным данным.
Предупреждение эрозии почв и борьба с ней, повышение плодородия и высокопроизводительное использование эродированных земель должны базироваться на глубоком и всестороннем знании их агрономических свойств (физических, физико-химических, биохимических, микробиологических, производственно-экономических, морфологических и т.д.) и условий формирования. эрозия почва гидротермический картографический
В ходе исследования были детально изучены эродированные почвы и их взаимосвязи с растениями, климатом, рельефом и приемами окультуривания.
Движущей силой эрозионных процессов являются погодные условия, влияющие на образование эродированных почв, т.к. этот фактор определяет количество поступающих в почву атмосферных осадков, распределение их в течение года, приток тепла и света, а также влажность воздуха, от которой зависит скорость испарения.
Согласно климатическому районированию Б.П. Алисова территория Тарбагатайского района Республики Бурятия, входящая в природный округ Селенгинского среднегорья, расположена в климатической области умеренного пояса в пределах 50-52 с.ш. Физико-географическое положение этой территории в центре евроазиатского материка, удаленность от морей и океанов и горно-котловинный характер рельефа определяют резко континентальный умеренно-холодный климатический режим. Среднегодовая температура воздуха колеблется в пределах -0,1ч-3 C, средняя температура июля равна 16-18 C. Среднегодовое количество осадков варьирует от 265 до 416 мм, большая их часть (80-90 %) выпадает летом. Отсутствие устойчивого снежного покрова способствует глубокому промерзанию почвы. Для степей сумма положительных температур выше 10 С равна 1785 С, а продолжительность солнечного сияния - 2500 часов. С одной стороны, влияние Байкала с его барьерами гор определяет влажность (гумидность) климата, с другой, влияние аридного климата Монголии характеризует различную климатическую обстановку склонов хребтов, что в значительной мере определяет закономерности распределения и формирования почвенно-растительного покрова [3].
1. Прогнозирование деградационных процессов
Большое влияние на эрозию почв в период снеготаяния оказывает температурный режим. При быстром снеготаянии, даже при малом запасе снега, создаются условия для формирования большого стока. Для оценки эрозионной обстановки пользуются величиной гидротермического коэффициента, характеризующего влагообеспеченность растений в вегетационный период. В регионах с продолжительным вегетационным периодом создаются лучшие условия для защиты почв растительным покровом. Гидротермический коэффициент рассчитывается по формуле:
,
где - сумма осадков (мм) за период с температурами выше 10 С, - сумма положительных температур выше 10 С.
При большом гидротермическом коэффициенте, в связи с высокой почвозащитной способностью растений, эрозионная опасность снижается.
На интенсивность эрозии влияют влажность воздуха и ветры. Они определяют разный расход почвенной влаги на испарение. Это создает различные условия для формирования поверхностного стока. В зависимости от силы ветра и его направления происходит перераспределение на территории снежного покрова. Мощность снежного покрова на наветренных склонах часто на 30-50 % меньше, чем на подветренных. На элементах гидрографической сети (в балках, оврагах, лощинах) снега бывает намного больше, чем на склонах, а это приводит к неравномерному промерзанию почвы, и, следовательно, разному объему стока талых вод.
Проанализировав климатические условия исследуемой территории за двадцатилетний период (с 1989 по 2008 гг.), были вычислены суммы ежемесячных осадков и суммы положительных температур за период с температурами выше 10 °С (май-август). По методике М.И. Лопырева был рассчитан гидротермический коэффициент (табл. 1) [6].
Таблица 1 Показатели гидротермического коэффициента
Год |
1989 |
1990 |
1991 |
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
|
Гидротермический коэффициент |
0,05443 |
0,10538 |
0,10000 |
0,11020 |
0,08726 |
0,18333 |
0,12869 |
0,05964 |
0,12545 |
0,13841 |
|
Год |
1999 |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
2006 |
2007 |
2008 |
|
Гидротермический коэффициент |
0,12004 |
0,11109 |
0,06849 |
0,08519 |
0,09452 |
0,10000 |
0,11366 |
0,13807 |
0,09443 |
0,11709 |
С помощью программы Snedecor был проведен регрессионный анализ гидротермических коэффициентов. При относительной ошибке, равной 23,1 %, получен график уравнения регрессии, который является графиком уравнения прогноза эрозии (рис. 1).
Рис. 1. График уравнения прогноза эрозии.
На графике показано поле доверительного интервала. Когда гидротермический коэффициент ниже поля доверительного интервала, то уровень эрозионной опасности высок. Отклонения зафиксированы в 1996 и 2001 гг., следовательно, в эти годы эрозионные процессы развивались наиболее интенсивно. Целью данного анализа было получение уравнения прогноза эрозионных процессов для исследуемой территории, которое выглядит так:
,
где вместо переменной x можно подставить любой год и получить значение гидротермического коэффициента на интересующий отрезок времени.
2. Создание трехмерной модели местности
Рельеф является важным фактором, влияющим на развитие процессов эрозии [2]. Для оценки пространственной дифференциации деградационных процессов была создана трехмерная модель местности. Первоначально в качестве текстуры 3D-модели был использован мультиспектральный снимок с космического спутника Landsat, полученный спектрорадиометром ETM+. Последовательность работ по обработке спутникового изображения следующая:
1) с FTP-сервера Интернет-портала Global Land Cover Facility произведена загрузка изображений Landsat ETM+;
2) построена мозаика космических снимков;
3) из полученной мозаики был выделен нужный фрагмент (рис. 2).
Рис. 2. Landsat-изображение СПК «Искра» (комбинация каналов 7-4-2).
Известно, что сущность объектов целесообразно определять по снимкам с натуральной цветопередачей, а разделение объектов и их оконтуривание выполнять по снимкам с преднамеренно ложной цветопередачей. Был применен синтез с окрашиванием изображения, полученного в зеленой зоне электромагнитного спектра, синим цветом, в ближней инфракрасной - зеленым, в средней инфракрасной - красным, т.е. для RGB-композита было проведено следующее назначение каналов: R - 7 канал, G - 4 канал, B - 2 канал (табл. 2). Эта комбинация дает изображение близкое к естественным цветам. Здоровая растительность выглядит ярко-зеленой, травянистые сообщества - зелеными, ярко-розовые участки детектируют открытую почву, коричневые и оранжевые тона характерны для разреженной растительности. Сухостойная растительность выглядит оранжевой, вода - голубой.
Таблица 2 Спектральные диапазоны (каналы) радиометра Landsat ETM+
Номер канала |
Разрешение, м |
Зона |
Начало, нм |
Конец, нм |
|
1 |
30 |
синяя |
450 |
515 |
|
2 |
30 |
зеленая |
525 |
605 |
|
3 |
30 |
красная |
630 |
690 |
|
4 |
30 |
ближняя ИК |
760 |
900 |
|
5 |
30 |
средняя ИК |
1550 |
1750 |
|
6 |
60 |
дальняя ИК |
10400 |
12500 |
|
7 |
30 |
средняя ИК |
2080 |
2350 |
|
8 |
15 |
панхроматическая |
520 |
900 |
Для создания 3D-модели были использованы высотные данные радарной интерферометрической съемки поверхности земного шара SRTM (Shuttle Radar Topographic Mission) [1]. Она была осуществлена в течение 11 дней в феврале 2000 г. с помощью двух радиолокационных сенсоров SIR-C и X-SAR, установленных на борту космического корабля многоразового использования «Шаттл». В результате съемки была отснята почти вся территория земного шара (85 %) за исключением самых северных (больше 60 с.ш.) и самых южных широт (больше 54 ю.ш.), а также океанов (рис. 3).
Рис. 3. Схема покрытия территории Земли съемкой SRTM (Land 0-1-2-3-4, Water 0-1-2-3-4 - цифры показывают сколько раз был снят участок земной или водной поверхности).
Всего с помощью метода радарной интерферометрии было получено более 12 терабайт радиолокационных данных, которые затем были обработаны специалистами NASA в течение двух последующих лет.
Файл матрицы высот был загружен с FTP-сервера NASA. В программной среде ENVI 4.2 были проведены работы по топографическому моделированию трехмерного изображения [7, 9, 10]. На рис. 4 приведен фрагмент полученной сцены с наложением в качестве текстуры мультиспектрального снимка Landsat ETM+.
Рис. 4. Трехмерное изображение Landsat-сцены СПК «Искра».
3. Географическая привязка сельскохозяйственной карты
В данной работе использовался современный подход к актуализации картографической информации методами дистанционного зондирования. Геопривязанная карта позволяет решать большой спектр задач в землеустройстве и кадастре:
- определение координат точек местности;
- определение площадей угодий;
- построение 3D-моделей рельефа местности и т.д.
Для картографической привязки опорных точек местности, предварительно выбранных в программной среде Google Earth, был использован пакет прикладных программ OziExplorer, который позволяет использовать GPS-навигацию на предварительно отсканированных картах.
В качестве растровой подложки была использована сельскохозяйственная карта местности М 1:25 000. Листы карты были отсканированы с небольшим перекрытием на широкоформатном (формата А0) сканере 42” Xerox CSTF XEScan, затем «склеены» векторизатором Easy Trace, после чего было проведено редактирование карты средствами Adobe Photoshop.
2 апреля 2009 г. был произведен выезд на полевые натурные измерения на территорию СПК «Искра». В работе использовался GPS-навигатор Garmin GPS60, точность определения плановых координат которого составляет ±3-5 м. В результате съемки было получено 9 маршрутных точек. Данные точки были выбраны не случайно. Перед выездом на полевые измерения были проведены рекогносцировочные работы, для этого был использован картографический Интернет-портал Google Earth (рис. 5). Данный программный продукт создан на основе спутниковых изображений высокого и сверхвысокого разрешения. Организационно картографический ресурс Google представляет собой программное обеспечение Google Earth и удаленную (то есть находящуюся в сети Интернет на серверах Google) базу географических данных.
Были проделаны следующие операции.
1. С помощью меню «Fly to» осуществлено перемещение на требуемую территорию. Навигационными клавишами и посредством мыши была достигнута визуализация сцены во весь экран монитора.
2. С помощью меню «Add > Placemark» проставлены хорошо опознаваемые опорные точки местности (пересечения и крутые изгибы дорог, углы зданий). Так были получены координаты точек, которые впоследствии были использованы для географической привязки сельскохозяйственной карты.
Рис. 5. Примерное местоположение опорных точек в Google Earth Pro.
Полученные GPS-навигатором координаты опорных точек использовались для привязки пиксельных координат сельскохозяйственной карты к географическим координатам местности. Привязка осуществлялась средствами OziExplorer по 9 опорным точкам, что обеспечило достаточно высокую точность привязки (рис. 6).
Рис. 6. Привязка почвенной карты с использованием данных GPS-навигатора.
Векторные слои высотных горизонталей и тематических слоев сельскохозяйственной карты (слои типов почв, уклонов, внутрихозяйственного устройства) были получены в программных продуктах СorelDraw и AutoCAD. Слои впоследствии были наложены на растровую подложку. В AutoCAD были рассчитаны площади земельных угодий. Затем полученные растры были наложены на полученную трехмерную модель рельефа (рис. 7, 8, 9).
Рис. 7. Почвенная 3D-карта территории СПК «Искра».
Рис. 8. 3D-карта внутрихозяйственного устройства территории СПК «Искра».
Среди условий, оказывающих влияние на развитие эрозии, решающая роль принадлежит крутизне и длине склона, т.к. с увеличением крутизны растет скорость стекающей воды, а от длины зависит его масса. На исследуемом объекте были выделены контуры склонов с крутизной до 1, 1-3, 3-5, 5-8 и 8-10 градусов (рис. 9). Средневзвешенная крутизна склонов составила 3,5, что позволяет отнести данную территорию к землям, подверженным средней эрозии [5].
Рис. 9. Трехмерная карта уклонов СПК «Искра».
Выводы
· При помощи ГИС-технологий и методов дистанционного зондирования создана трехмерная модель местности по радарным высотным данным с картографической привязкой эродированных участков для определения склоновых процессов эрозии при противоэрозионной организации территории. Это позволило более детально проанализировать рельеф местности и выявить участки, непригодные для использования под пашню.
· С помощью программы Snedecor проведен регрессионный анализ гидротермических коэффициентов, получено прогнозное уравнение эрозии, применимое для исследуемой территории.
Литература
1. Farr T.G., Hensley S., Rodriguez E., Martin J., Kobrick M. The Shuttle Radar Topography Mission // CEOS SAR Workshop, Toulouse, 26-29 Oct.1999, Noordwijk. - 2000. - P. 361-363.
2. Moore I.D., Grayson R.B., Ladson A.R. Digital terrain modeling - a review of hydrological, geomorphological and biological applications // Hydrol. Proc. - 1991. - N 5. - P. 3-30.
3. Алисов Б.П. Климат СССР. - М.: Изд-во МГУ, 1956. - 125 с.
4. Генеральная схема противоэрозионных мероприятий Республики Бурятия. Улан-Удэ: ВОСТСИБНИИГИПРОЗЕМ, 1994.
5. Землеустроительное проектирование. Противоэрозионная организация территории сельскохозяйственного предприятия. - М.: ГУЗ, 2007. - 121 с.
6. Лопырев М.И., Рябов Е.И. Защита земель от эрозии и охрана природы. - М.: Агропромиздат, 1989. - 240 с.
7. Миронов И.А., Цыдыпов Б.З. Особенности морфометрического устройства Баргузинской котловины для целей землеустроительного планирования // Студент и научно-технический прогресс в АПК: сб. материалов VIII региональной научной студенческой конференции аграрных вузов Сибирского федерального округа. Часть II (13-15 мая 2009 г., Улан-Удэ) - Улан-Удэ: Изд-во БГСХА, 2009. - С. 133-140.
8. Намжилов Н.Б. Дефляция и методы оптимизации противоэрозионной устойчивости каштановых почв Бурятии. - Улан-Удэ: Бурятский госуниверситет, 2000.
9. Очиров О.Н., Цыдыпов Б.З., Баженов В.С. Определение площади котловин с использованием радарных топографических данных // Вестник БГСХА. - 2009. - Вып. 1(14) - С. 127-133.
10. Пояркова Т.А., Цыдыпов Б.З., Коменданова Т.М. Пространственная дифференциация деградационных процессов в Тарбагатайском районе // Студент и научно-технический прогресс в АПК: сб. материалов VIII региональной научной студенческой конференции аграрных вузов Сибирского федерального округа. Часть II (13-15 мая 2009 г., Улан-Удэ) - Улан-Удэ: Изд-во БГСХА, 2009. - С. 143-149.
Размещено на Allbest.ru
...Подобные документы
Виды оросительных систем. Источники загрязнения почв, меры по их охране. Предупреждение экологических последствий в Бурятии: ветровой и водной эрозии, эрозионных процессов на лесных территориях, засоления и заболачивания, техногенного опустынивания.
курсовая работа [597,8 K], добавлен 13.12.2017Проблема разрушения горных пород и почв поверхностными водными потоками и ветрами. Возникновение и проявление эрозионных почв. Схема оврага и его частей. Географическое распространение водноэрозионных процессов на территории Республики Беларусь.
курсовая работа [556,7 K], добавлен 10.01.2014Организационно-экономический анализ хозяйственной деятельности предприятия и зоотехническая характеристика. Состав и структура оборота стада. Землепользование и состояние кормовой базы. Влияние стресс-факторов на организм свиней и их продуктивность.
дипломная работа [123,8 K], добавлен 01.05.2015Ознакомление с комплексностью почвенного покрова, основными типами и подтипами почв в черте города и окрестностей. Изучение растительности, рельефа, особенностей почвообразования зональных и интразональных почв. Методы мелиорации солонцов и солончаков.
отчет по практике [1,5 M], добавлен 22.07.2015Природные условия и характеристика СПК "Урняк". Географическое распространение почв севооборотной площади. Типы почв, их генезис, морфологические признаки, состав, степень эрозии и пути повышение их плодородия. Агропроизводственная группировка почв.
курсовая работа [73,3 K], добавлен 31.01.2011Проблема эрозии почв и основные методы борьбы с ней. Организационно-хозяйственные, агротехнические и лесомелиоративные мероприятия, направленные на предотвращение процессов линейной, ветровой и водной эрозии, строительство гидротехнических сооружений.
реферат [27,4 K], добавлен 28.04.2011Географическая характеристика Бокситогорского района. Описание главных генетических типов почв и основных почвообразующих процессов их формирования. Степень сельскохозяйственной освоенности района. Основные мероприятия по повышению плодородия почв.
курсовая работа [51,8 K], добавлен 26.11.2012Факторы формирования смытых почв в Пермском крае. Почвообразующие породы и почвенно-растительный покров. Климатические условия развития эрозии. Морфологическая характеристика почв. Вред, причиняемый почвам эрозией. Охрана почв от водной эрозии.
курсовая работа [35,2 K], добавлен 31.07.2015Проявление эрозии почв, природные факторы, влияющие на развитие эрозии. Особенности проявления и распространения эрозии почв на территории Беларуси. Потери гумуса и элементов питания, ухудшение агрофизических, биологических и агрохимических свойств.
курсовая работа [1,9 M], добавлен 17.06.2016Анализ природных факторов водной эрозии: рельеф, климат, почвенные условия, характер хозяйственного использования территории, разнообразие растительности. Мероприятия по защите почв от водной эрозии, направления реализации и оценка эффективности.
реферат [202,4 K], добавлен 04.05.2014Ознакомление с метеорологическими, климатическими условиями сухостепенной зоны Республики Бурятия. Изучение биологических особенностей культуры. Определение влияния предшественников на водный, пищевой режим каштановой почвы, на качество яровой пшеницы.
дипломная работа [108,9 K], добавлен 14.04.2010Мониторинг плодородия земель на примере СПК "Михайловское". Агроклиматическая и почвенная характеристика района хозяйства. Структура посевных площадей и севообороты. Резервы местных удобрений. Особенности моделирования плодородия почв хозяйства.
курсовая работа [114,0 K], добавлен 25.01.2014Изучение технических мероприятий, направленных на улучшение почв и повышение их продуктивности. Характеристика основных видов мелиорации: осушения, орошения, борьбы с эрозией и химической мелиорации. Исследование темпов и причин развития эрозии почвы.
презентация [161,5 K], добавлен 20.05.2011Основные требования к текстовой и графической частям карты-плана территории, выполнению комплексных кадастровых работ, сведениям о согласовании местоположения границ земельных участков. Масштаб картографической основы, необходимой для карты-плана.
презентация [406,4 K], добавлен 06.05.2017Рассмотрение плодородия почвы как способности удовлетворять потребности растений в элементах питания и воде. Виды плодородия почв, роль гумуса. Изучение плодородия почв с помощью космических методов. Обзор динамики свойств почвы Чувашской республики.
курсовая работа [32,2 K], добавлен 29.03.2011Методы оценки ресурсов влаги в географических зонах. Сущность гидротермического коэффициента. Оценка различных культур как предшественников по зонам страны. Химическая и агробиологическая мелиорация почв. Системы земледелия Среднего и Нижнего Поволжья.
контрольная работа [31,0 K], добавлен 27.09.2009Составление карты крутизны склона и категорий эрозионно-опасных земель. Анализ специализации растениеводства и ее соответствия требованиям предотвращения процессов эрозии. Установление состава и площадей угодий. Устройство территории севооборотов.
курсовая работа [28,5 K], добавлен 01.02.2012Природные условия и факторы почвообразования. Систематический список основных типов почв и их морфологическая характеристика. Водно-физические свойства почв, их гранулометрический, агрегатный и химический состав, объемная масса. Методы защиты почв.
курсовая работа [46,5 K], добавлен 07.02.2010Землеустройство и мелиорация земель. Система обработки почв. Мероприятия по защите почв от эрозии. Агрохимическая картограмма сельхозугодий. Объемы применения удобрений и пути повышения плодородия почв. Основные пути повышения эффективности удобрений.
курсовая работа [1,4 M], добавлен 24.06.2012Природно-климатические условия, почвы и почвенные ресурсы Мухоршибирского района Республики Бурятия. Виды оросительных мелиораций, техника дождевания. Порядок выполнения расчетов режима орошения дождеванием. Экономическая эффективность в мелиорации.
курсовая работа [3,9 M], добавлен 19.01.2013