Ресурсосберегающие технологии и технические средства орошения

Исследование современного состояния проблемы создания технических средств и технологий малообъемного орошения. Разработка рекомендаций по модернизации существующих оросительных систем на основе типовых схем оросительной сети малообъемного орошения.

Рубрика Сельское, лесное хозяйство и землепользование
Вид автореферат
Язык русский
Дата добавления 13.02.2018
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

154

Размещено на http://www.allbest.ru/

РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ И ТЕХНИЧЕСКИЕ СРЕДСТВА орошения

Специальность 06.01.02 «Мелиорация, рекультивация и охрана земель»

А в т о р е ф е р а т диссертации на соискание ученой степени

доктора технических наук

ХРАБРОВ Михаил Юрьевич

Москва 2008

Работа выполнена в отделе мелиорации земель Государственного научного учреждения Всероссийский научно-исследовательский институт гидротехники и мелиорации им. А.Н. Костякова Россельхозакадемии.

Научный консультант: доктор сельскохозяйственных наук, профессор, академик РАСХН, заслуженный деятель науки РФ Кружилин Иван Пантелеевич

Официальные оппоненты:

доктор технических наук, профессор, академик РАСХН, заслуженный деятель науки и техники РФ Григоров Михаил Стефанович;

доктор технических наук, профессор Гостищев Дмитрий Петрович;

доктор сельскохозяйственных наук, профессор Ольгаренко Геннадий Владимирович.

Ведущая организация: Федеральное государственное образовательное учреждение высшего профессионального образования «Новочеркасская государственная мелиоративная академия»

Защита состоится < 16 > октября 2008 года в 10 часов на заседании диссертационного совета Д 006.038.01 при Всероссийском научно-исследовательском институте гидротехники и мелиорации им. А.Н. Костякова (ГНУ ВНИИГиМ Россельхозакадемии) по адресу: 127550, Москва, Б. Академическая, 44.

С диссертацией можно ознакомиться в библиотеке ГНУ ВНИИГиМ им. А.Н.Костякова.

Автореферат разослан < > 2008 года.

Ученый секретарь диссертационного совета,

доктор технических наук Исаева С.Д.

ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Федеральной целевой программой «Сохранение и восстановление плодородия почв земель сельскохозяйственного назначения и агроландшафтов как национального достояния России на 2006-2010 годы» предусматривается проведение реконструкции оросительных систем на площади 160 тыс. га. В Российской Федерации в 2004 году отнесены к разряду орошаемых 4.5 млн.га сельскохозяйственных земель, однако фактически поливалось не более 1,2 млн.га. На 70% этой территории применяют широкозахватные дождевальные машины. Подача оросительной воды при дождевании производится периодически при расходах, существенно превышающих впитывающую способность почвы, в то время как водопотребление по мере роста растений, повышения температуры воздуха и почвы возрастает плавно. В результате при дождевании происходит повышение влажности в верхних слоях почвы до уровня, при котором нарушается благоприятный водно-воздушный режим. Несоответствие интенсивности водоподачи впитывающей способности почвы приводит к образованию поверхностного стока и, как следствие, к эрозии почвы и загрязнению водоисточников. Для рационального использования воды, предотвращения указанных негативных явлений и сохранения плодородия требуется создание принципиально новых экологически безопасных, ресурсосберегающих способов орошения. При этом одним из важнейших условий является снижение расхода воды на единицу произведенной продукции.

Наиболее перспективными с этих позиций являются капельное и внутрипочвенное орошение, подкроновое, мелкодисперсное и синхронное импульсное дождевание. Эти способы орошения объединены общим понятием «малообъемное орошение». Водоподача в этом случае осуществляется периодически небольшими нормами, объем поданной воды соответствует впитывающей способности почвы и близок по величине суточной эвапотранспирации за межполивной период. Значительное снижение или полное отсутствие непроизводительных потерь воды на испарение, глубинный и поверхностный сброс характеризуют технологию полива как безотходную и экологически безопасную. Данные способы орошения нашли применение во многих странах, испытывающих острый дефицит оросительной воды. Они обеспечивают экономию водных, энергетических и материальных ресурсов при повышении урожайности сельскохозяйственных культур на 20 - 30 %.

Малообъемные способы орошения особенно эффективны при поливах различных сельскохозяйственных культур на землях, где другие способы орошения практически неприменимы (склоновые земли, недостаточное обеспечение водными ресурсами, близкое залегание грунтовых вод), площадь таких земель в Южном Федеральном округе превышает 1 млн. га.

В то же время применение способов малообъемного орошения предполагает использование для полива практически чистой воды без механических примесей; в ряде случаев возможно зарастание внутренней полости водовыпусков водорослями и засорение коллоидными частицами. Для систем малообъемного орошения характерна высокая стоимость. Каждый из данных способов орошения обладает специфическими особенностями, обуславливающими определенные требования к природно-хозяйственным условиям и набору сельскохозяйственных культур.

Анализ проблем применения малообъемных способов орошения показал, что необходимо совершенствование способов малообъемного орошения, технологии и технических средств применительно к рельефным, гидрологическим, микроклиматическим особенностям агроландшафта. Разработка методов расчета систем, принципиальных схем, способов модернизации существующих оросительных систем и технологий выращивания сельскохозяйственных культур при малообъемных способах орошения должна осуществляться на основе модульных конструкций оросительных систем.

Гипотеза. Рабочая гипотеза состояла в том, что новая технология создания систем малообъемного орошения и усовершенствованные технические средства полива обеспечат повышение эффективности использования водных и энергетических ресурсов при создании экологически ориентированных гидромелиоративных систем.

Цель исследований заключается в разработке ресурсосберегающей технологии и технических средств малообъемного орошения, обеспечивающих эффективность орошения и экологическую безопасность оросительных систем.

Для достижения поставленной цели были поставлены следующие задачи:

-дать анализ современного состояния проблемы создания технических средств и технологий малообъемного орошения;

- изучить закономерности распространения влаги в почве на основе натурных наблюдений, лабораторных исследований и дать теоретическое обоснование режимов орошения в зависимости от применяемых технических средств полива;

- выявить влияние различных способов малообъемного орошения на величину суммарного испарения с орошаемого поля;

- разработать технологию создания модульных систем малообъемного орошения при возделывании различных сельскохозяйственных культур;

- разработать и экспериментально апробировать режимы орошения сельскохозяйственных культур с учетом особенностей различных технологий малообъемного орошения;

- усовершенствовать технические средства систем малообъемного орошения;

- разработать типовые схемы систем малообъемного орошения, обеспечивающие достижение расчетной продуктивности сельскохозяйственных культур при соблюдении требований экологической безопасности; орошение технический оросительный система

- разработать рекомендации по модернизации существующих оросительных систем на основе типовых схем оросительной сети малообъемного орошения;

- оценить экономическую эффективность малообъемного орошения (на примере одного из видов малообъемного орошения).

Методика исследований: При разработке технологии и технических средств малообъемного орошения использованы методы системного подхода, системотехники, теории проектирования новой техники. При проведении полевых исследований на опытно-производственных участках использовалась методика полевого опыта (Б.А.Доспехов,1979), методика оценки качества полива дождеванием в условиях сложного рельефа (ВНИИМиТП, 1978), методические указания по математической обработке результатов полевых опытов (ВАСХНИЛ-НИИКХ, 1961).

При проведении полевых исследований по оценке параметров поливной техники применены стандартные программы и методы государственных испытаний РД 10.11.1-87 «Испытания сельскохозяйственной техники. Машины и установки дождевальные. Программа и методы испытаний» и РД 10. 11.2-87 «Испытания сельскохозяйственной техники. Машины и установки поливные. Программа и методы испытаний». При работе над диссертацией использованы методологические основы научной школы ВНИИГиМ им. А.Н. Костякова, ВНИИОЗ, МГУП и Волгоградской ГСХА.

Личный вклад автора состоит в теоретических исследованиях по выявлению закономерностей влагопереноса в почвах при малообъемных способах орошения, определению методов снижения расхода оросительной воды на единицу продукции. Разработаны и уточненены параметры технологий малообъемного орошения, методика расчета элементов техники орошения для различных систем. Предложены новые технические средства для систем малообъемного орошения и рекомендации по проектированию новых и модернизации существующих оросительных систем. Разработаны методические основы постановки исследований. При участии автора проведены опыты и проанализированы экспериментальные данные, полученные на системах мелкодисперсного дождевания в ОПХ Заволжской ОМС Волгоградской области, капельного и внутрипочвенного орошения на землях Гиссарского полигона и в совхозе «Коминтерн», синхронного импульсного дождевания в совхозе «Коминтерн», Колхозабадском откормочном комплексе Республики Таджикистан на площади более 350 гектар.

Достоверность результатов исследований. Разработанные принципы, методы и способы базируются на фундаментальных положениях мелиоративной науки. Полученные результаты подтверждаются данными многолетних исследований в Республике Таджикистан и в Волгоградской области РФ, а также математической обработкой полученных данных.

Научная новизна работы:

- впервые дано теоретическое обоснование расчета режима орошения с учетом его влияния на величину суммарного испарения с орошаемого поля в зависимости от способа малообъемного орошения, типа почв, вида сельскохозяйственных культур;

- предложена новая технология создания модульных систем малообъемного орошения, включая расчет элементов технологии полива при малообъемных способах орошения в соответствии с их типовыми схемами.

- разработаны новые водосберегающие и почвозащитные конструкции оросительных систем и технические средства малообъемного орошения;

- разработаны современные рекомендации по модернизации существующих оросительных систем с широкозахватными дождевальными машинами с целью их использования для малообъемного орошения.

Практическая значимость результатов работы. Рекомендации по применению технических средств и технологии малообъемного орошения позволяют производить модернизацию старых и строительство новых оросительных систем в соответствии с требованиями экологической безопасности, обеспечивая высокую эффективность использования водных, трудовых и энергетических ресурсов. Результаты работы использованы при составлении нормативно-методической документации, утвержденной и введенной в действие решениями научно-технических советов Минводхоза СССР и В/О «Союзводпроект» (Пособие к СНиП 2.06.03-85 «Проектирование оросительных систем синхронного импульсного дождевания»; дополнение к Пособию к СНиП 2.06.03-85 «Капельное орошение», «Проектирование систем капельного и подкронового орошения на базе технических средств Симферопольского завода»; «Руководство по проектированию оросительных систем синхронного импульсного дождевания», В/О «Союзводпроект», №419; «Руководство по проектированию, строительству и эксплуатации систем капельного орошения» ВТР-11-28-81.

Основные положения, выносимые на защиту:

1. Теоретическое обоснование режимов малообъемного орошения.

2. Технология создания модульных систем малообъемного орошения.

3. Расчет элементов технологии полива при малообъемных способах орошения склоновых земель.

4. Новые конструкции и технические средства систем малообъемного орошения для создания новых и модернизации существующих гидромелиоративных систем.

Апробация работы. Основные положения диссертационной работы докладывались и получили одобрение на заседаниях Ученого Совета ВНИИГиМ в 1976...2007 гг., а также на научно-методических, научно-технических и научно-производственных конференциях, семинарах и совещаниях, в том числе на научно-технической конференции СХИ 1979г., г. Волгоград; научно-технической конференции ВИСХОМ 1979 г., г. Москва; научно-технической конференции СХИ 1981г., г. Волгоград; Всесоюзной конференции, г. Душанбе, 1982г.; научно-технической конференции ВНИИОЗ, г. Волгоград, 1995г.; научно-технической конференции, г. Новочеркасск, 1996г.; Всероссийской научно-технической конференции ВНИИОЗ, г. Волгоград, 1997г.; Всероссийской научно-практической конференции ВНИИАЛМИ, г. Волгоград, 1998г.; научной конференции (к 75-летию ВНИИГиМ) 1999г.; 2nd international conference on land degradation / Khon Kaen, Thailand, 1999.; 17 th congress on irrigation and drainage. Transactions / Astes. Volume - 1D. Question 48. Granada. Spain. 1999.; 19th European Regional Conference of ICID./ Brno and Pragua, Czech Republic. Proceedings, 2001.; International commission on irrigation and drainage (ICID). Bled. Slovenia. 2002; международной конференции «Экологические проблемы мелиорации» (Костяковские чтения) 27-28 марта 2002 г.; 55 сессии МКИД и Межрегиональной конференции «Производство продовольствия и вода: социально-экономические проблемы ирригации и дренажа», Москва, 8-10 сентября 2004 г.

Разработки по теме диссертации демонстрировались во Всероссийском выставочном центре на выставках «Мелиорация земель России», «Аграрная наука - Москве и москвичам», «Наука России - агропромышленному комплексу» (1997), «Мелиорация земель и сельскохозяйственное водоснабжение России», «Агропромышленный комплекс России»(1998), «Наука - агропромышленному комплексу», «Инвестиции-99. Технология живых существ. П Международная выставка» (1999) и удостоены 8-ю медалями и дипломом 2-й степени ВВЦ, дипломом РАСХН за лучшую завершенную научную разработку года (2000).

Публикации. Основные положения диссертационной работы опубликованы в 61 печатной работе (16 по перечню ВАК), в 7 нормативно-методических документах и защищены 3 авторскими свидетельствами СССР и 23 патентами РФ, в т. ч. 6 патентов - на способы орошения.

Структура и объем работы. Диссертационная работа изложена на 271 страницах машинописного текста и состоит из введения, 6 глав, общих выводов. В работе содержится 53 рисунка, 33 таблицы. Список использованной литературы включает 428 наименований, в том числе 56 на иностранных языках.

Автор настоящей работы сердечно благодарен за научные консультации академику РАСХН, доктору технических наук, профессору Шумакову Борису Борисовичу, академику РАСХН, доктору сельскохозяйственных наук, профессору Кружилину Ивану Пантелеевичу, а также за ценные советы, постоянную помощь и поддержку сотрудникам ВНИИГиМ д.с-х.н. Шейнкину Григорию Юдковичу, д.т.н. Губеру Кириллу Вадимовичу, д.с-х.н. Бородычеву Виктору Владимировичу, к.с-х.н. Губину Владимиру Константиновичу, к.т.н. Канардову Владимиру Ивановичу.

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Существующие способы и перспективы применения малообъемного орошения

В первой главе представлен анализ современного состояния технологии и технических средств капельного орошения, микродождевания, мелкодисперсного и синхронного импульсного дождевания и внутрипочвенного орошения. В результате анализа работ А.Н.Костякова, Б.Б.Шумакова, И.П.Кружилина, Б.М.Кизяева, С.Ф.Аверьянова, И.П.Айдарова, М.С.Григорова, В.И.Ольгаренко, Г.В.Ольгаренко, А.Д.Александрова, Г.Ю.Шейнкина, Л.М.Рекса, А.И.Голованова, О.Г.Грамматикати, Л.В.Кирейчевой, В.Е.Райнина, Д.П.Гостищева, К.В.Губера, В.А.Сурина, А.Ш.Джалилова, Н.Н.Дубенка, А.Д.Ахмедова, Д.П.Семаша, М.Г.Журбы, М.И.Ромащенко, В.Н.Корюненко, Н.К.Нурматова, Б.К.Рассолова, В.Ф.Носенко, В.И.Канардова, В.К.Губина, Г.В.Лебедева, Н.П.Митянина, Р.М.Муртазина, И.И.Саидова, В.М.Колядича, А.А.Федорца, I.Balogh, M.Decroix, S.Goldberg, P.Grossi, C.Gustafson и др. установлено, что существующие методы оценки выбора технических средств и схем малообъемного орошения недостаточно полно учитывают требования растений и почв к элементам оросительных систем. Разработанные отечественные технические средства не позволяют в полной мере использовать их для полива овощных, бахчевых и других культур на крупных орошаемых системах, а также на садово-огородных и приусадебных участках, что тормозит процесс внедрения их в производство.

Исследования показали, что экономия воды при малообъемном орошении в зависимости от применяемой технологии и технических средств, почвенно-климатических условий и особенностей возделываемых культур может достигать 40...60 % по сравнению с поверхностным поливом и дождеванием. Экономное расходование воды в таких системах обеспечивает высокую их эффективность за счет повышения КПД до 0,8-0,95 (при поверхностном орошении 0,5 - 0,6, при орошении дождеванием 0,7 - 0,8). Использование малообъемного орошения способствует уменьшению числа механизированных обработок почвы, сокращению или полному исключению планировочных работ, а также дренажа. На системах малообъемного орошения отмечается более раннее созревание сельскохозяйственных культур, возможно внесение питательных веществ и гербицидов с поливной водой, что снижает потребление удобрений на 30-50 % по сравнению с традиционными способами их внесения.

При капельном орошении оросительную воду по системе трубопроводов подводят непосредственно к растению или группе растений и подают через микроводовыпуск в виде капель или мелких струек в одну точку расходом, обеспечивающим полное впитывание воды без образования поверхностного стока или глубинного сброса воды. В настоящее время капельное орошение широко распространено в мире и применяется на площади более 1,5 млн. гектар. Более 70 % площади капельного орошения занимают сады и виноградники, а на остальной площади возделываются овощи, ягодники, хлопчатник и др. Наиболее развит этот способ в США, Австралии, Израиле, Италии и Франции. Микродождевание применяется чаще всего для полива плодовых культур дождевальными насадками с расходом воды 16...50 л/ч, действующими под давлением 0,1...0,4 МПа. В зависимости от конструкции микродождевателей диаметр площади полива может изменяться от 0,8 до 4,7м. Основное преимущество микродождевания по сравнению с капельным орошением - это снижение требований к очистке поливной воды. Рабочее давление при микродождевании в 3...4 раза меньше, чем на обычных дождевальных установках, вследствие чего экономия энергии достигает 20...30 %. Мелкодисперсное дождевание находит применение для регулирования фитоклимата на орошаемых полях. Оно позволяет в экстремальных погодных условиях поддерживать благоприятные для произрастания сельскохозяйственных культур фитоклиматические параметры, способствующие устранению депрессии фотосинтеза и тем самым, повышению урожайности. Мелкодисперсное дождевание в жаркое время дня может быть использовано как эффективный прием борьбы с суховеями. Системы синхронного импульсного дождевания наиболее эффективны при орошении кормовых культур сплошного сева на землях с крутыми склонами и изрезанным рельефом. Отличительной особенностью таких оросительных систем является работа импульсных дождевателей в цикличном режиме и обеспечение водоподачи, равной суточной эвапотранспирации. Внутрипочвенное орошение включает подачу воды по подпочвенным увлажнителям в корнеобитаемый слой, где происходит увлажнение за счет капиллярного передвижения влаги. Внутрипочвенное орошение способствует сохранению структуры почвы, поддерживает постоянное и равномерное увлажнение почвы в течение всего вегетационного периода. Благодаря преобладанию восходящего передвижения влаги, питательные вещества не вымываются из верхних слоев почвы. Внутрипочвенный полив почти не имеет потерь на испарение с поверхности.

Глава 2. Теоретические основы малообъемного орошения

Во второй главе показаны теоретические представления о закономерностях увлажнения почвы и расчет водного баланса при применении малообъемного орошения агроландшафтов. Для разработки режимов малообъемного орошения выполнены теоретические расчеты контуров увлажнения при капельном орошении и микродождевании.

В общем случае при определении коэффициента влагопроводности используется полуэмпирическая модель С.Ф.Аверьянова (1970). Данная модель применима для расчета динамики распределения влаги в почве в тех случаях, когда увлажняется вся поверхность орошаемого массива. При расчете режима малообъемного орошения большую роль играет оценка параметров (расход воды, продолжительность полива, механический состав почвы, коэффициент фильтрации) и показателей (видимый контур увлажнения, диаметр контура увлажнения, глубина промачивания) распределения влаги, проводимый по фактическим эпюрам влажности. В первую очередь это связано с необходимостью обеспечения при поливе равномерного распределения влаги по всей площади питания растений.

Основными факторами формирования контура увлажнения (w) в почвенном профиле от точечного источника являются: q - расход водоисточника, h - глубина насыщения влагой в почве; t - время распределения влаги в почве (время полива), b - ширина контура увлажнения;

w = f (q,h,t,b). (1)

При выводе дифференциального уравнения увлажнения почвенного слоя для оценки показателей контура увлажнения исходят из уравнения неразрывности П.Я. Полубариновой-Кочиной (1977).

(2)

где: Vx, Vy, Vz - составляющие скорости фильтрации.

Определение времени движения воды в почве предлагается проводить по уравнению (И.И.Кулабухова, 1977):

; (3)

где: А и В - степенные функции, зависящие от изменения размеров контура увлажнения, влажности почвы во время проведения полива и водно-физических свойств грунтов.

Поливная норма m для одиночного контура (А.Н.Костяков, 1960) определяется по зависимости:

m = 10 Fh(нв -пв), (4)

где: F- площадь увлажнения, м2; h- глубина расчетного слоя, м; - плотность почвы, т/м3; нв - требуемая влажность в % НВ, пв - исходная предполивная влажность почвы, соответствующая нижней границе оптимального увлажнения почвы, %.

М.И.Ромащенко (1995) на основе имитационного моделирования установил степенные зависимости для определения диаметра D зоны (контура) увлажнения (М.И. Ромащенко, 1995):

D = Qm (5)

и глубины:

h = Qk (6)

где d и h - диаметр и глубина зоны увлажнения, м; Q - объем водоподачи, л; , , m, k - эмпирические коэффициенты, зависящие от типа почвогрунта.

Исследования формирования зоны увлажнения с точечным водовыпуском на поверхности почвы проведены на основе имитационного моделирования. В результате статистической обработки экспериментальных данных была получена расчетная зависимость для определения предельных размеров контура увлажнения D (см) при распространении влаги в различных почвах (Дополнение к пособию к СНИП 2.06.03-85, 1988). При имитационном моделировании приняты следующие исходные данные: оптимальные величины влажности почвы - 0,6...0,7 наименьшей влагоемкости (НВ) для песков и 0,7...0,8 НВ для суглинков и глин; расход водоисточника Q? 1,7 см3/с (водоподача до 4,0...6,0 л/ч); экспериментально установленные размеры видимого контура увлажнения на поверхности почвы d: для песков 4-6 см, для супесей 5-23 см, для суглинков 15-23 см, для глин 35-52 см.

Полученная зависимость имеет вид:

(7)

где: Q -расход водовыпуска, см3/с; d - диаметр видимого контура увлажнения на поверхности почвы, см; k - коэффициент фильтрации, см/с; - безразмерный коэффициент, зависящий от капиллярных свойств грунта.

Учитывая сложность расчета периода увлажнения почвы по уравнению (3), предложена эмпирическая формула для расчета продолжительности t распространения влаги на заданную глубину h.

; (8)

где: n -безразмерный коэффициент, зависящий от водно-физических свойств (n = 0,05 - для песчаных грунтов; n = 0,2 - для глинистых и суглинистых почв); V - объем увлажненной почвы; Q - расход водовыпуска, м3/час.

В таблице 1 приведены основные параметры диаметра контура увлажнения D в почве, определенные в лабораторных и полевых исследованиях. Параметры видимого контура увлажнения d и коэффициент получены в результате обобщения экспериментальных данных.

Расчет поливных норм при капельном орошении проводится в зависимости от размера контура увлажнения почвы.

Таблица 1

Экспериментальные данные по определению диаметра контура увлажнения D при капельном орошении в зависимости от воднофизических свойств почвогрунтов

№№ п/п

Расход капельницы Q, см3

Почвогрунты

Коэффициенты фильтрации

k, см/с

Видимый контур увлажнения

d,см

Коэффициенты зависящие от капиллярности грунта

Диаметр контура увлажнения

D, см

1

2

3

4

5

6

7

1

? 1,7

песок

0,01

4,0-6,0

0,1

5,3

2

? 1,7

супесь рыхлая

0,005

5,0-8,0

0,7

9,4

3

?1,7

супесь плотная

0,00051

15,0-23,0

0,75

35,4

4

?1,7

суглинок

0,00006

32,0-48,0

0,77

142,0

5

?1,7

глина

0,00005

35,0-52,0

0,9

152,0

В частном случае для средних и тяжелых почв, у которых влагопроводность по вертикали и горизонтали близки между собой, контур увлажнения представляет собой усеченный шар или шаровой пояс (рисунок 1,2). Для определения объема увлажненной почвы Vk предложена расчетная зависимость:

Vk =Vшар. пояса= Vшара- (V1 шар. сегм.+ V2 шар. сегм.) =

=4/3 R3- h21(R - 1 /3 h1)+ h22(R - 1 /3 h2) , (9)

где: R - радиус шара; h1 - высота верхнего сегмента; h2 - высота нижнего сегмента.

Заменяя в зависимости (4) величины F и h на объем шарового поясаVшар. пояса получим формулу для определения поливной нормы при поливе одной капельницей:

m = 10 Vшар. пояса (нв -пв) , (10)

На легких почвах расчетный объём увлажнения при капельном орошении не охватывает всю зону размещения корневой системы. В этом случае целесообразно применение микродождевания (рисунок 3,4), которое обеспечивает распределение влаги по площади, соответствующей распространению основной части корневой системы растений. В случае микродождевания на легких почвах контур увлажнения принимает форму цилиндра. Объем увлажненной части почвенного слоя вычисляется по зависимости.

Vцилиндра. = R2 h, (11)

где: h - высота цилиндра; R-радиус цилиндра.

Исходя из зависимости (11) поливная норма для легких почв при микродождевании равна:

m= 10 Vцилиндра (нв -пв), (12)

Величину поливных норм при частом проведении поливов малым объемом достаточно точно можно определять по величине водопотребления за межполивной период. Для расчета водопотребления использовали метод теплового баланса. При увлажнении всей поверхности увлажняемого участка применима следующая зависимость (М.И.Будыко, 1954; Г.Ю.Шейнкин,1970):

где: V- затраты тепла на испарение, кал/см2Чмин; R- радиационный баланс подстилающей поверхности, кал/см2Чмин; В - поток тепла в почву, кал/см2Чмин, которым в данном случае можно пренебречь, так как величина В составляет ?5 % от радиационного баланса; - разность температуры воздуха на высотах 20 и 160 см, о С; - разность абсолютной влажности воздуха на тех же высотах, мб.

154

Размещено на http://www.allbest.ru/

Рисунок 1 Расчетный контур увлажнения при капельном орошении в тяжелых и средних почвах

Рисунок 2 Видимый контур увлажнения при капельном орошении

154

Размещено на http://www.allbest.ru/

Рисунок 3 Расчетный контур увлажнения при микродождевании в легких почвах

Рисунок 4 Микродождевание сада

Для практического применения зависимости (11) и выполнения расчетов проведены натурные исследования по определению водопотребления, которые позволили получить регрессионные уравнения для определения суммарного испарения по затратам тепла на испарение и радиационному балансу подстилающей поверхности. Уравнения имеют вид:

где: E0 - суммарное испарение за день, мм; - затраты тепла на испарение, кал/см2Чмин: R- радиационный баланс подстилающей поверхности, кал/см2Чмин.

Величины испарения, полученные по формулам (14) и в результате экспериментов, различаются на 4...6 %, что допустимо при определении объема суммарного испарения.

Анализ полученных экспериментальных данных показал, что полное уравнение водного баланса зоны аэрации при условии отсутствия пополнения грунтовых вод за счет инфильтрации осадков и поливных вод, имеет вид:

-Wa = Ро + M - Eо (15)

где: М - оросительная норма, мм; Po -количество осадков, поступающее в активный слой почвы в течение вегетационного периода, мм; Eo - испарение с поверхности почвы за тот же период, мм; DWа - используемые внутренние запасы влаги в почве за этот период, мм.

При малообъемных способах орошения структура величины суммарного испарения имеет свои особенности. В этом случае испарение происходит: с неувлажненной почвы ; с увлажненной почвы и с растительного покрова . В частности, при капельном орошении увлажняется менее 30% поверхности поля. С оставшейся, не увлажняемой при орошении площади, испарение происходит как с поверхности в условиях естественного увлажнения. Микродождевание обеспечивает увлажнение примерно 50-55% площади. При внутрипочвенном орошении благодаря подаче воды непосредственно в корнеобитаемый слой, испарение её мало отличается от испарения с естествено увлажненной поверхности. Мелкодисперсное дождевание обеспечивает увлажнение только растений, поэтому дополнительное испарение по сравнению с неорошаемым полем происходит за счет воды, которая оседает на листьях растений. В остальное время вегетационного периода испарение синхронно с испарением с естественно увлажненной поверхности, если не производились поливы другими способами.

Использование импульсного дождевания связано с постоянным увлажнением почвы и растений в течение вегетационного периода. Поэтому испарение при таком способе орошения происходит как с растительного покрова, так и с увлажненной почвы, заметно увеличиваясь по сравнению с участками капельного, внутрипочвенного и других способов малообъемного орошения. Для расчета суммарного испарения при малообъемных способах орошения, основываясь на результатах экспериментальных данных, в формулу водного баланса введены соответствующие компоненты (таблица 2).

Таблица 2

Элементы водного баланса зоны аэрации при малообъемных способах орошения

Приходно-расходные статьи водного баланса

Усл.

обоз.

Способы орошения

Капельное орошение

Микродож-девание

Внутрипочвенное орошение

Мелкодисперсное дождевание

Импульсное дождевание

Атмосферные осадки

Ро

+

+

+

+

+

Оросительная норма

М

+

+

+

+

+

Испарение:

- с неувлажненной почвы;

- с увлажненной почвы;

-с увлажненного растительного покрова

+

+

-

+

+

+

+

-

-

+

-

+

-

+

+

Запасы влаги в почве

DWа

+

+

+

+

+

Для расчета водного баланса предлагается использовать математическое описание процесса с учетом изменяющейся во времени площади полива с помощью следующих уравнений:

для системы капельного орошения:

,(16)

для системы микродождевания (подкронового дождевания садовых и кустарниковых культур):

, (17)

для системы внутрипочвенного орошения:

, (18)

для системы мелкодисперсного дождевания:

, (19)

для системы импульсного дождевания:

,(20)

На основе анализа закономерностей формирования контура увлажнения почвы и водного баланса зоны аэрации определены технические характеристики систем малообъемного орошения (таблица 3).

Таблица 3

Технические характеристики систем малообъемного орошения

№ п.п

Способ орошения

Тип увлажнения

Диапазон уклонов местности

Тип водо-выпусков

Допустимая мутность мг/л

Давление в сети, МПа

Расход водовыпуска, л/ч.

Количество водовыпусков, шт/га

Гидромодуль

(л/с. га)

1

капельный

локальный, полосовой

0,0...0,3

капельницы, трубчатые увлажнители

до 50

0,1-0,6

4...8

1600...1900

0,35...

0,79

2

низконапорный капельный

локальный

0,03...0,2

низконапорные водовыпуски

250...

500

0,01-0,015

4...20

400...500

0,35...

0,55

3

микродождевание

локальный

до 0,2

микронасадки

до 500

0,1-0,4

15...40

300...350

0,50...

0,77

4

внутрипочвенный

сплошной или полосовой

0,008...

0,2

Гончарные или полиэтиленовые увлажнители

50...500

0,01-0,015

10...20

400...500

0,35...

0,55

5

Мелкодисперсное дождевание

сплошное увлажнение растений

0,0...0,05

Микронасадки

до 300

0,2-0,4

40...50

200...250

0,48...

0,66

6

Синхронное импульсное дождевание

сплошное увлажнение почвы

0,0...0,2

дождевальные аппараты

до 5000

0,4-0,5

700...800

59

0,30...

0,80

При малообъемном орошении с учетом установленных закономерностей и технических характеристик должны быть соблюдены следующие требования:

- подача оросительной воды реализуется в соответствии с водопотреблением растений в течение всего вегетационного периода, обеспечивая оптимальную влажность, водновоздушный и температурный режимы почв и воздуха.

- величина гидромодуля в зависимости от климатических условий, благодаря дозированию поливных норм в соответствии с водопотреблением растений за межполивной период, должна быть в пределах 0,8 л/с.га.

- оросительные системы должны быть адаптированы к применению на различных уклонах местности и к изрезанному рельефу.

- конструкции оросительных систем должны обеспечивать возможность модульного их комплектования.

- элементы оросительных систем должны быть взаимозаменяемы.

Глава 3. Экспериментальная проверка теоретических положений.

В главе 3 представлены результаты экспериментальной проверки теоретических разработок по анализу распределения влаги в почве при капельном орошении, микродождевании, импульсном и мелкодисперсном дождевании, а также апробации режимов орошения на опытно-производственных участках.

Для получения достоверной информации о технических параметрах систем малообъемного орошения, а также их отдельных узлов и элементов, исследования проводились преимущественно на модульных участках. Эти участки включали все необходимые элементы систем: головной узел, распределительную сеть первого и второго порядка, увлажнители с водовыпусками, контрольно-измерительные приборы. Таким образом, результаты, полученные при проведении экспериментальных исследований, репрезентативны и для производственных условий.

Экспериментальные исследования, проведенные на опытно-производственных участках, были направлены на определение режима орошения, обеспечивающего предотвращение поверхностного стока и глубинного просачивания оросительной воды. Формирование увлажняемой зоны по длине трубопровода определяет особенности выбора числа капельниц, схемы расположения сети и состав ее элементов. Исследования проводились на наиболее типичной для предгорной зоны категории грунтов - темных среднесуглинистых сероземах. Наблюдения показали, что при подаче поливной нормы одной капельницей на ровной, безуклонной поверхности, наблюдается формирование контура увлажнения в соответствии с эпюрой, приведенной на рисунке 5, с четкими границами глубиной до 1,20 м и диаметром до 1,40 м.

При полосовом увлажнении на таких землях, образовывалась полоса со средней шириной 0,7м. Здесь, при размещении капельниц через 0,5м, наблюдалось равномерное движение фронта влаги по всей полосе до глубины 0,8м.

Таким образом, на безуклонных землях увеличение числа капельниц не приводит к увеличению глубины промачивания почвы, которая соответствует расчетной, а происходит увеличение площади увлажненной поверхности почвы (видимого контура увлажнения). В результате образуется увлажненная полоса без поверхностного стока и глубинного просачивания (рисунок 6).

С целью определения влияния уклона участка на формирование контура увлажнения были проведены модельные исследования на различных уклонах. В качестве примера приведены контуры увлажнения при работе одной капельницы (рисунок 7) на уклоне 0,2.

Рисунок 5 Контур увлажнения при работе одной капельницы. 1-капельница, 2-изолинии влажности, 3-растение

Рисунок 6 Контур увлажнения при работе группы капельниц 1-капельница, 2-изолинии влажности

Рисунок 7 Формирование контура увлажнения при уклоне 0,2. а) через сутки после полива; б) через шесть суток после полива

При уклоне 0,2 диаметр контура увлажнения отличается от теоретически установленного и имеет сильно выраженное смещение в сторону склона. Распределение влаги вверх по склону от капельницы составляло до 0,50 м, а вниз до 2,00 м, середина контура смещена от капельницы на 0,40м, при глубине увлажнения 1,20 м. На поверхности участка наблюдается овальный контур, направленный по уклону. Смещение контура увлажнения в сторону от капельницы (таблица 4, рисунок 8) превышает 1,50...2,00м, что делает затруднительным проведение поливов без специальных приемов, обеспечивающих повышение симметричности контура промачивания.

Таблица 4

Смещение контура увлажнения в зависимости от уклона местности

№ п.п.

Уклон местности, i

Смещение оси контура увлажнения

по уклону местности, ?L, м

Через сутки

Через 6 суток

1

0,05

0,5

0,6

2

0,12

0,6

0,7

3

0,20

0,8

1,0

При устройстве микротеррасы (лунка) под капельницей

1

0,05

0,0

0,1

2

0,12

0,05

0,15

3

0,20

0,2

0,3

В качестве проверки был заложен дополнительный опыт, где варианты были повторены с подачей воды в микротеррасы, расположенные под капельницей. Микротеррасы выполнены в виде лунки параболической формы диаметром 0,40 м и глубиной 0,20 м.

Экспериментальные данные показали, что при уклонах 0,05 и 0,12 устройство лунок под капельницами позволяет полностью исключить влияние уклона участка и обеспечить формирование симметричного контура увлажнения, соответствующего по размерам зоне распространения основной массы поглощающих корней, в данном случае, виноградной лозы. На уклонах 0,2...0,42 устройство лунок хотя и обеспечивает значительное уменьшение смещения контура в сторону склона, но не исключает его полностью.

а) при i=0,0 б) при i=0,05 в) при i=0,2

?L ?L

Рисунок 8 Смещение контура увлажнения при различных уклонах

Для уменьшения количества водовыпусков используют системы микродождевания, где вместо капельниц используют микродождеватели. При работе микродождевателя на поверхности почвы образуется увлажненный контур в виде круга, от которого под действием капиллярных и гравитационных сил происходит распространение влаги вниз и в стороны, образуя контур увлажнения почвы. Распространение контура увлажнения при поливе микродождевателями имеет цилиндрическую форму (рисунок 9). Глубина промачивания составляет 1,0-1,2 м при поливной норме 300м3/га. Использование микродождевания ограничено уклонами 0,1...0,15. При таких уклонах изменение расхода насадок по длине поливного трубопровода не превышает 10...15 %. При больших уклонах неравномерность увлажнения почвенного профиля увеличивается. Полив из микронасадок обеспечивает увлажнение не только почвы, но и приземного слоя воздуха.

Рисунок 9 Распространение влаги в почве от микродождевателя при поливной норме 300 м3/га

Основная качественная характеристика искусственного дождя - степень равномерности распределения его по орошаемой площади. Агротехническими требованиями к дождевальным машинам и установкам предусмотрено значение коэффициента эффективного полива не менее 0,7. Это означает, что более 70% площади должно быть полито с интенсивностью дождя не менее 0,75сm и не более 1,25 сm. Для определения качества распределения слоя дождя по площади полива на землях с различными уклонами были проведены исследования на участках с уклонами от 0,03 до 0,25. Увеличение расстояния между импульсными дождевателями приводит к снижению равномерности распределения слоя дождя, подаваемого на орошаемую площадь (таблица 5).

Таблица 5

Качество распределения слоя осадков по площади полива

Уклон

местности

Расстояние между аппаратами при треугольной схеме их расстановки, м

Коэффициент

эффективного

полива

(от 0,75сm до1,25 сm)

Коэффициент

избыточного

полива

(более 1,25 сm)

Коэффициент

недостаточного

полива

(менее 0,75сm)

0,03

48`48

0,47

0,27

0,26

48`45

0,69

0,155

0,155

45`45

0,67

0,155

0,17

0,07

42`42

0,71

0,2

0,19

39`39

0,787

0,118

0,095

51`51

0,46

0,28

0,26

48`48

0,65

0,13

0,22

0,15

45`45

0,72

0,15

0,13

42`42

0,511

0,316

0,173

39`39

0,579

0,207

0,214

48`48

0,44

0,16

0,4

0,25

45`45

0,61

0,18

0,21

42`42

0,54

0,18

0,28

На основе полученных данных для обеспечения равномерности полива установлены зависимости для определения рационального расстояния как между поливными трубопроводами Lm, так и между импульсными дождевателями Ld при треугольной схеме их расстановки:

Lm = (1,54 - 0,98 i) R (21)

Ld = (1,78 - 1,26 i) R (22)

где: R - радиус действия импульсного дождевального аппарата, м; i - уклон местности.

Эти формулы получены для уклона поверхности до 0,05 при суточной водоподаче системой синхронного импульсного дождевания до 90 м3/га. Расстояния, определенные по этим формулам, обеспечивают коэффициент эффективного полива не менее 0,7.

Капельное орошение на опытно-производственном участке исследовалось в условиях возделывания винограда. При определении режима водоподачи на винограднике за основу были приняты потребности виноградной лозы во влажности почвы в периоды: до конца цветения, налива ягод и их созревания. По данным института виноградарства в период до конца цветения нижний уровень влажности следует поддерживать на уровне 80 % НВ; в период налива ягод и их созревания он должен быть снижен до 60...70% НВ. Для поддержания такого режима проведение поливов осуществлялось с разовой нормой подачи воды 200...230 л на растение при межполивном периоде 5...7 дней (рисунок 10).

Рисунок 10 Режим орошения виноградника на опытно-производственном участке системой капельного орошения

Анализ результатов определения влажности в период систематических поливов показал, что увлажнение почвы происходило на всю расчетную глубину, а расходование влаги - по всему увлажняемому слою. Переувлажнение в период полива и сильное иссушение наблюдалось преимущественно в слое 0...0,10 м. Последний полив обеспечил повышение влажности до НВ практически на всю глубину увлажнения; эти запасы влаги обеспечивали поддержание влажности почвы на заданном уровне вплоть до начала уборки урожая в третьей декаде сентября. Результаты сбора урожая показали, что средняя урожайность винограда составила 22,0 т/га.

Исследования по определению режима орошения люцерны при синхронном импульсном дождевании проводились на склоновых землях с уклонами 0,1...0,3. Величина суточного водопотребления определялась методом теплового баланса, глубину расчетного слоя приняли равной 1,0 м (С.Д. Лысогоров, 1971). Величина расчетной поливной нормы обеспечивалась за счет регулирования продолжительности паузы между импульсами выплеска воды. На рисунке 11 приведен фактический режим орошения люцерны второго года.

Рисунок 11 Режим орошения люцерны системой импульсного дождевания

Экспериментальные работы показали, что при проведении ежедневных поливов достигается более равномерный режим влажности почвы в расчетном слое в течение всего вегетационного периода, и создаются условия для лучшего роста и развития люцерны. В соответствии с полученными результатами нами был рекомендован круглосуточный полив при орошении кормовых трав синхронным импульсным дождеванием.

Таким образом, в результате экспериментальных исследований, подтверждены теоретические закономерности формирования водного баланса зоны аэрации орошаемых агроландшафтов в зависимости от выбранного способа полива, опытным путем установлены размеры контуров увлажнения при локальной подаче оросительной воды и апробированы режимы орошения на опытно-производственных участках.

Анализ применения малообъемных способов орошения на опытно-производственных участках показал, что необходима разработка технологии создания модульных систем и технических средств малообъемного орошения применительно к рельефным, гидрологическим, микроклиматическим особенностям агроландшафта, а также разработка методов расчета систем, принципиальных схем, способов модернизации существующих оросительных систем и технологий выращивания сельскохозяйственных культур при малообъемных способах орошения.

Глава 4. Разработка технологии создания модульных систем малообъемного орошения

В главе 4 представлена технология создания модульных систем малообъемного орошения (рисунок 12), принципиальные схемы модульных участков, особенности технологии малообъемного орошения при возделывании различных сельскохозяйственных культур, а также способы модернизации существующих дождевальных систем.

Технология создания модульной системы малообъемного орошения включает анализ исходных данных по природным условиям, расчет элементов технологии поливов, выбор системы малообъемного орошения.

Анализ природных условий включает сбор и анализ информации по природным условиям территории, в том числе климатические, почвенные, инженерно-геологические и геоморфологические условия.

Анализ биологических особенностей сельскохозяйственных культур включает анализ требований растений к уровню влажности почвы по фазам вегетационного полива, к влажности и температуре воздуха, к питательному режиму и др.

При оценке ресурсов для создания систем и их эксплуатации рассматривают водные, земельные, социальные, энергетические ресурсы, а также наличие строительных материалов. Определяется наличие водоисточника и его дебит, способ подачи воды. Оценивается площадь орошения, уклоны местности, механический состав почвы. Проводится обследование на наличие квалифицированных кадров для подбора обслуживающего персонала. В расчете на 50га, для обслуживания большинства систем малообъемного орошения требуется один оператор, со знанием правил эксплуатации микропроцессора. В круг его обязанностей входит проведение подкормок, замена или промывка засорившихся водовыпусков. Техническое обслуживание: осенью подготовка к зимнему хранению и весной - расконсервация: бригада из 3 человек, слесарь Y разряда - 1, механик Y разряда - 1, электрик Y разряда -1.Для малообъемного орошения необходимо также наличие линий электропередач и достаточная их мощность. Основными строительными материалами для изготовления оросительной сети систем малообъемного орошения являются полимеры: полиэтилен или поливинилхлорид (ПВХ). Распределительная сеть последнего порядка строится из длинномерных полимерных труб диаметром 150-110 мм и труб диаметром 63 мм в бухтах. Поливные трубопроводы выполняют из труб 20...32 мм, выпускаемых в бухтах. Вентильные задвижки и другая соединительная арматура изготавливаются из ПВХ. Водовыпуски изготавливаются из различных видов пластмасс. Расход полиэтилена составляет от 200 до 600 кг/га.

Предварительный выбор системы малообъемного орошения. Все системы малообъемного орошения строятся по модульному принципу, т.е. образуются из отдельных модулей, каждый из которых может содержать все элементы системы и использоваться как самостоятельно, так и в совокупности с другими модулями. Модуль системы малообъемного орошения состоит из головного напорообразующего узла, блока автоматизации управления поливом, гидроподкормщика и трубопроводной сети с водовыпусками.

Расчет элементов технологии поливов проводится на основе математической модели водного баланса зоны аэрации. Расчетная зона увлажнения для фруктовых деревьев и плодовых кустарников определяется горизонтальной проекцией основной массы кроны. Расчетный слой увлажнения принимают в соответствии с агробиологическими показателями сельскохозяйственных культур и водно-физическими свойствами почвы в зависимости от расхода водовыпусков и продолжительности полива. Продолжительность полива определяют при отсутствии фильтрационных потерь в нижележащие горизонты в зависимости от расчетной глубины увлажнения и скорости впитывания воды в почву. Поливы производят нормой, соответствующей количеству воды, израсходованной полем в предшествующие сутки.

...

Подобные документы

  • Природно-климатические условия, почвы и почвенные ресурсы Мухоршибирского района Республики Бурятия. Виды оросительных мелиораций, техника дождевания. Порядок выполнения расчетов режима орошения дождеванием. Экономическая эффективность в мелиорации.

    курсовая работа [3,9 M], добавлен 19.01.2013

  • Понятие о режиме орошения сельскохозяйственных культур. Проектирование внутрихозяйственной оросительной сети, мелководных лиманов непосредственного наполнения. Дорожная сеть и защитные лесные насаждения на орошаемых землях. Экологическая оценка проекта.

    курсовая работа [2,2 M], добавлен 02.07.2011

  • Определение запасов влаги в почве, средних дат поливов графоаналитическим способом. Проектирование сети орошаемого участка. Расчёт поливного расхода, продолжительности поливного периода, режима орошения баклажана, суммарного, подекадного водопотребления.

    курсовая работа [386,9 K], добавлен 08.06.2012

  • Подвод воды на поля, испытывающие недостаток влаги, и увеличение ее запасов в корнеобитаемом слое почвы в целях увеличения плодородия. Снабжение корней растений влагой и питательными веществами. Искусственное орошение полей. Основные способы орошения.

    презентация [4,2 M], добавлен 27.05.2013

  • Характеристика природных условий Усть-Удинского района. Планирование потребных в хозяйстве мелиораций. Режим орошения сельскохозяйственных культур. Проектирование оросительной сети для полива дождеванием. Разработка систем защитных лесных насаждений.

    курсовая работа [196,2 K], добавлен 16.06.2010

  • Способы улучшения почвенно-гидрологических условий земель лесохозяйственного использования. Проектирование сельскохозяйственных прудов комплексного назначения. Разработка режима орошения лесного питомника. Техника поливов сельскохозяйственных культур.

    курсовая работа [61,0 K], добавлен 26.09.2009

  • Оценка качества поливной воды по ирригационному коэффициенту Стеблера. Орошаемый участок, отвечающий однородным почвенно-мелиоративным и гидрогеологическим требованиям. Проектирование режима орошения севооборота. Подбор дождевального оборудования.

    курсовая работа [90,4 K], добавлен 14.01.2014

  • Значение искусственной системы полива при орошении. Плюсы метода медленного полива (капельное орошение) и его применение в Узбекистане. Метод орошения по принципу натурального дождя (спринклерный полив), его экономическая эффективность и недостатки.

    презентация [89,0 K], добавлен 01.02.2017

  • Определение режима орошения с учетом состава всех культур севооборота и построение графика гидромодуля оросительной системы. Гидравлический расчет каналов оросительной системы. Расчет элементов горизонтального придамбового дренажа не совершенного типа.

    курсовая работа [238,0 K], добавлен 30.03.2015

  • Свойства навоза и его действие на почву. Природно-климатические условия и почвы свинокомплекса "Родниковский". Химический состав свиностоков и их использование на орошении. Прогнозные расчеты по влиянию орошения на грунтовые воды. Охрана труда и природы.

    дипломная работа [92,4 K], добавлен 14.07.2010

  • Организация территории орошаемого лесопитомника. Режим орошения лесных и сельскохозяйственных культур. Основные элементы оросительной системы, их размещение и создание. Проектирование пруда на местном стоке, насыпной плотины и водосбросного сооружения.

    курсовая работа [187,2 K], добавлен 07.08.2013

  • Почвенно-климатические условия района. Разработка источника орошения. Определение площади водосбора, емкости чаши пруда. Расчет поливных норм и сроков поливов, режима орошения сельскохозяйственных культур севооборота. Проектирование земляной плотины.

    курсовая работа [36,2 K], добавлен 28.01.2014

  • Общая характеристика дождевания. Природно-климатические условия Мелеузовского муниципального района. Расчет режима орошения сельскохозяйственных культур в севообороте. Сроки и продолжительность поливов. Экономическое обоснование размещения полей.

    курсовая работа [63,2 K], добавлен 17.08.2013

  • Особенности коренного улучшения земель в результате осуществления комплекса мер. Основные виды мелиорации и ее задачи, преобладание орошения и осушения земель. Водосберегающая технология полива, роль оросительных систем и регионы их применения.

    реферат [20,1 K], добавлен 03.06.2010

  • Химический состав и оценка пригодности животноводческих стоков для орошения. Влияние орошения стоками на агромелиоративные показатели чернозема выщелоченного и на качество кормовой культуры. Экономическая эффективность применения органических удобрений.

    дипломная работа [74,3 K], добавлен 18.07.2010

  • Мелиорация - система агротехнических мероприятий, направленных на улучшение земель. Природно-климатическая характеристика Абзелиловского района Башкортостана. Характеристика дождевания; расчет режима орошения сельскохозяйственных культур в севообороте.

    курсовая работа [56,5 K], добавлен 20.08.2012

  • Значение мелиорации как важного фактора интенсификации сельскохозяйственного производства. Планирование природно-экономической микрозоны, регулирование водного режима с помощью осушения, орошения и обводнения. Определение поливных и оросительных норм.

    курсовая работа [32,6 K], добавлен 21.04.2010

  • Изучение технических мероприятий, направленных на улучшение почв и повышение их продуктивности. Характеристика основных видов мелиорации: осушения, орошения, борьбы с эрозией и химической мелиорации. Исследование темпов и причин развития эрозии почвы.

    презентация [161,5 K], добавлен 20.05.2011

  • Органическое вещество почв и его изменение под влияниянием сельскохозяйственного использования. Структурно-агрегатный состав черноземов при системе орошения. Методика определения содержания и состава легкоразлагаемого органического вещества почв.

    дипломная работа [210,6 K], добавлен 23.09.2012

  • Расчет суммарного водопотребления и его дефицита. Проектирование режима орошения сельскохозяйственных культур. Проект закрытой сети при поливе лука репчатого машиной Днепр ДФ-120–04, расчет параметров основных элементов данной сети при дождевании.

    курсовая работа [462,8 K], добавлен 17.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.