Разработка и исследование моделей разночастотных временных рядов на примере урожайности зерновых культур

Влияние климата на урожайности яровой пшеницы. Методология интерактивного мониторинга климатических факторов, оказывающих влияние на урожайность зерновых культур в сухостепной зоне России на примере Оренбургской области с учетом отраслевых особенностей.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык русский
Дата добавления 02.04.2019
Размер файла 72,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Разработка и исследование моделей разночастотных временных рядов на примере урожайности зерновых культур

Болодурина И.П., д-р. техн. наук, профессор

Парфёнов Д.И., канд. техн. наук,

Пивоварова К.В., аспирант

Оренбургский государственный университет

На сегодняшний день большинство развивающихся стран достаточно сильно зависят от продуктивности сельского хозяйства и как следствие данного процесса от урожайности пахотных земель. В свою очередь негативные влияния глобального потепления оказывают существенное воздействие на результативность возделывания зерновых культур. Это напрямую сказывается на благосостоянии населения и экономическом развитии стран. Регионы с резко континентальным климатом особенно уязвимы к потенциальному ущербу от агроклиматических и экологических изменений. Это связано с высокой динамикой изменения погодных условий за короткий период времени в этих регионах.

Поэтому в качестве объекта настоящего исследования нами выбрана сухостепная зона России, Оренбургская область, являющиеся одним из лидеров рынка по производству зерновых культур. Резкоконтинентальный климат региона обусловлен расположением Оренбургской области в глубине материка и особенностями рельефа. Отличительной чертой рассматриваемого региона является холодная продолжительная зима и жаркое сухое лето. Осадки вегетационного периода сельскохозяйственных культур неустойчивы, в то время как переходы от зимы к лету очень короткие.

На протяжении нескольких последних лет исследованию влияния климата на урожайность сельскохозяйственных культур уделяется особое внимание. В большинстве исследований оценивается степень, в которой варианты адаптации могут уменьшить ожидаемое воздействие изменения климата. В качестве факторов, влияющих на урожайность, рассматривается такие блоки факторов как природно-климатические, экономические и социальные. Под природно-климатическими факторами обычно подразумевают плодородие и механический состав почвы, температурный режим, уровень грунтовых вод, количество осадков, обогащенность местности кислородом и другие. К экономическим факторам относят количество, качество и структура вносимых удобрений; качество и сроки выполнения всех полевых работ; качество посевного материала; изменение сортового состава посевов; известкование и гипсование почвы; борьба с болезнями и вредителями растений; чередование культур в полях севооборота и др.

Анализ научных работ, связанных с исследованием урожайности зерновых культур позволил сформировать информационную базу, а также осуществить комплексный подход к выбору методологии исследования. При построении математических моделей урожайности сельскохозяйственных культур, выращиваемых в открытом грунте, может быть предъявлен ряд требований. Производителя сельскохозяйственных культур урожайность интересует с точки зрения учета параметра времени. Соответственно при построении математических моделей следует применять анализ временных рядов.

Существуют различные подходы к анализу временных рядов. Однако, большинство из них имеют определенные ограничения. В рамках данной работы, мы предлагаем гибридный алгоритм построения модели, который, используя хорошо изученный популярных методов оценки временных рядов, позволяет создать устойчивую прогнозную систему.

Сингулярный спектральный анализ успешно применяемый метод в различных областях наук от метеорологии и астрономии до био-информатики. Этот метод позволяет сжать информацию, сгладить временные ряды, а также спрогнозировать их дальнейшую динамику. После получения информации о характере временных рядов, следует учитывать его при спецификации моделей.

Панельные данные представляют собой временные ряды одного набора экономических факторов, измеренные для различных объектов. Панельные данные насчитывают три измерения: признаки (переменные) - объекты - время. Преимущества анализа панельных данных перед другими методами заключается в том, что благодаря специальной структуре панельные данные позволяют строить более гибкие и содержательные модели и получать ответы на вопросы, которые недоступны только в рамках, например, моделей, основанных на пространственных данных. Возможность построения моделей с фиксированными и случайными индивидуальными эффектами позволяют оценивать отличия между экономическими единицами, что нельзя сделать в рамках стандартных регрессионных моделей.

Однако интерес представляет построение регрессионных моделей, которые объединяют данные с различными частотами дискретизации. На общем уровне интерес к регрессиям MIDAS часто затрагивает ситуацию на практике, когда соответствующая информация является высокочастотными данными, тогда как переменная, представляющая интерес, отбирается на более низкой частоте. Например, при моделировании урожайности, низкочастотная переменная это урожайность, измеренная ежегодно, в то время как климатические и погодные данные представляют собой низкочастотную информацию, так как большинство погодных данных измеряется ежедневно, а также декадно и ежемесячно.

В рамках проведенного исследования на первом шаге осуществляется сингулярный спектральный анализ временных рядов, определяется структура ряда. На втором этапе реализовано оценивание двух типов моделей MIDAS и модели на панельных данных. С помощью ретроспективного моделирования принимается решение о том, какой тип модели лучше подходит под текущий набор исходных данных. Затем, на третьем этапе происходит уточнение модели, выбранной на предыдущем шаге. Если выбрана модель MIDAS, то посредством имитационного моделирования происходит подбор частотных регрессоров. Если же выбрана модель на панельных данных, то происходит сравнение моделей с фиксированными и случайными случайными эффектами. На выходе имеем обоснованную спецификацию модели, имеющую наибольшую точность по сравнению с исследованием моделей целого класса.

Для исследования временных рядов и прогноза урожайности в рамках настоящего исследования выбраны 4 посевные зоны Оренбургской области: - Бузулукский район; - Соль-Илецкий район; - Чебеньки; - Тоцкое. В рамках данной статьи произведена иллюстрация работы алгоритма на примере урожайности в Бузулукском районе. С помощью стандартных статистических тестов доказана нестационарность временного ряда, а также наличие тренда и сезонных компонент. Для того чтобы отделить накладывающиеся друг на друга сезонные колебания, а также определить периоды смены поведения линии тренда проведен сингулярный спектральный анализ временного ряда. В исследуемом временном ряде присутствует нелинейный тренд с переменчивой структурой (рисунок 1 и 2), что говорит о том, что на данный ряд не является рядом авторегрессии, а зависит и от изменения сторонних факторов.

Рисунок 1 - первая сингулярная тройка

интерактивный урожайность зерновой климат

Рисунок 2 - вторая сингулярная тройка

Также можем заметить, что присутствуют регулярные колебания на графиках последующих сингулярных троек, что говорит о наличии сезонности с различной частотой, но для подтверждения этого предположения необходимо построить двумерные изображения. Примеры идентификация гармоник с помощью двумерных диаграмм представлена на рисунках 3 и 4.

Рисунок 3 - Двумерная диаграмма 3 и 4 гармоник

Рисунок 4 - Двумерная диаграмма 6 и 7 гармоник

На рисунках 3 и 4 различимы регулярные двумерные изображения, образующие траектории с вершинами, лежащими на кривой спиралеобразной формы. Таким образом, можем сделать вывод о том, что в рассматриваемом ряду присутствует несколько гармоник. Причем они отделимы и имеют различный период колебаний. Для того, чтобы определить период колебаний, был построен график логарифмов собственных чисел траекторной матрицы, представленный на рисунке 5.

Рисунок 5 - График логарифмов собственных чисел траекторной матрицы,

На рисунке 5 отчетливо заметны «ступеньки», что говорит о наличии отделимых гармоник. Причем периоды сезонности составляют 3 года, 6 и 12 лет. А также несколько более мелких, шумовых гармоник, которые можно отнести к волатильности урожайности. Использование сингулярного спектрального анализа позволяет увидеть наслоение гармоник с кратными периодами колебаний.

При проведении аналогичного спектрального разложения для временного ряда осадков в оренбургской области в рассматриваемом периоде были получены принципиально иные результаты. Например, в данном случае сделать вывод о наличии тренда не представляется возможным, так как первые сингулярные тройки имеют рваный вид и не соответствуют ни гармоникам, ни монотонно ведущим себя числовым рядам. Заметить регулярные колебания на нескольких графиках, но они требует более детальной проверки: построение двумерных изображений. Однако на построенных графиках нельзя различить регулярные двумерные изображения, образующие двумерные траектории с вершинами, лежащими на кривой спиралеобразной формы. Таким образом, можем сделать предположение о том, что гармоник в ряду нет (сезонности не наблюдается).

Данное предположение идет вразрез с большим количеством исследований данной тематики, поэтому проведено дополнительное исследование, так как логично предположить, то при выбранных параметрах происходит смешивание компонент ряда, порожденное отсутствием сильной разделимости. Детальный анализ графиков логарифмов собственных чисел новой тракторной матрицы позволил сделать вывод о наличии отделимой сезонной компоненты. Медленное, почти без скачков убывание собственных значений говорит о наличии шума в сигнале. Также подтверждением правильности разделения сигнала и шума является проверка на принадлежность к шуму компоненты ряда, полученной по «шумовым» собственным тройкам, стандартными статистическими методами.

Таким образом, при анализе исходного временного ряда пришлось столкнуться с проблемой перемешивания компонент ряда, то есть с проблемой отсутствия сильной разделимости, вызванной близкими собственными числами, соответствующим разным компонентам. Однако, стоит заметить, что рассматриваемый временной ряд является достаточно специфичным в связи с сильной волатильностью рассматриваемых значений, ведь нередко после затяжной засухи выпадает рекордное количество осадков, что вызывает осложнения при анализе числовой информации только осадков, без учета температуры воздуха и атмосферного давления. Однако, в результате исследовании обоих временных рядов (осадков и урожайности) удалось выявить сезонность периодами кратными трём.

С учетом выявленные структурных особенностей проведена апробация MIDAS модели на основе данных об урожайности яровой пшеницы в Бузулукском районе Оренбургской области, а в качестве регрессоров такие декадные данные метеоусловий как средняя температура воздуха, влажность воздуха, процент осадков от нормы, промерзание почвы и высота снега. Оценивание коэффициентов модели произведено с помощью языка программирования Python и дополнительного пакета midaspy с помощью нелинейного метода наименьших квадратов. Результатом оценивания служит сильно разряженная матрица коэффициентов, при этом к оцениваемым параметрам также относятся и величины лагов при объясняемой переменной.

Анализ блока коэффициентов, отвечающих за лаговые значения зависимой переменной, показал, что урожайность текущего периода зависит от урожайности предыдущего года прямо пропорционально с положительным знаком. Что свидетельствует, о том, что урожайность текущего периода зависит от качества посевных культур, являющимися результатом урожайности предыдущего периода.

Анализ блока коэффициентов отвечающих за количество осадков подтвердил гипотезу о влиянии. Значимыми лаговыми переменными оказались переменные осенних и весенних периодов. Также, лаговые переменные температуры воздуха значимыми оказались для весенних и осенних периодов, о чем свидетельствует анализ блока коэффициентов. Показатель влажность воздуха значим только в летнем периоде. А в зимние периоды оказался положительно значим показатель высоты снега.

Поскольку данные измерены как в пространстве, так и во времени, то практический интерес представляют модели панельных данных.

В качестве зависимой переменной выступает урожайность зерновых культур, объектами выступают районы Оренбургской области (Бузулукском, Соль-Илецком районах, Чебеньки, Тоцкое), к регрессорам относятся влажность воздуха (%), скорость ветра (м/c), атмосферное давление (гПа), объемное содержание кислорода в воздухе (г/м3), снежный покров, осадки, температура воздуха (°C), а также их квадраты. Так как в результате спектрального анализа и построенной модели MIDAS выявлено наличие сезонных компонент, то к факторам осадки и температура воздуха добавим мультипликативно коэффициент сезонности, чтобы определить степень влияния. Общий вид регрессионной модели с фиксированными записывается как:

В результате модели получили двунаправленную модель с фиксированными эффектами, то есть значимы не только индивидуальные природно-климатические особенности муниципальных образований, но и временные эффекты.

Таким образом, результаты показывают, что большинство квадратов климатических переменных значимы ежегодно и сезонно на уровне 1% значимости, что подразумевало, что климат оказывает нелинейное влияние на продуктивность зерновых культур.

В результате произведенного исследования разработана методология интерактивного мониторинга агроклиматических факторов, оказывающих влияние на урожайность зерновых культур в сухостепной зоне России на примере Оренбургской области с учетом географических и отраслевых особенностей. Применение эконометрических модели, построенной на разночастотных данных, позволило определить структурные влияния на урожайность в течение всего года, а также учитывая ключевые вегетативные периоды зерновых культур. Кроме того, в результате исследования с помощью языка программирования Python разработано универсальное программное средство, позволяющее быстро производить оценку моделей, не только в рамках предметной области урожайности, но и на примере других данных, в которых важным фактором является динамическая взаимосвязь различных показателей во времени. Таким образом, установлено что, предложенный подход, основанный на проведении агрегации результатов сингулярного спектрального анализа, позволяет сэкономить время для подбора спецификации модели.

Разработанное программное средство, реализующее предложенную нами методологию исследования, позволяет автономно и динамически оценивать уточненные на актуальных данных модели. При этом, для исследователя упрощается задача интерпретации полученных результатов, так как перед ним предстает полная картина взаимосвязей, присутствующая в исходных данных: сингулярный спектральный анализ позволяет увидеть сезонность и зависимость исследуемых факторов от времени, в то время как оцениваемая модель позволяет судить о взаимосвязи между факторами, открывая доступ к информации, способной помочь влиять на исследуемый фактор, а также делать более точные прогнозы.

Список литературы

1. Максютов Н.А., Жданов, В.М., Лактионов О.В. Биологическое и ресурсосберегающее земледелие в степной зоне Южного Урала. 2-е доп. изд. Оренбург: ООО «Печатный дом «Димур», 2008. 232 с.

2. Ковтун В.И. Влияние селекции на качество зерна на юге России // Известия Оренбургского государственного аграрного университета. 2010. № 27-1. С. 9-11.

3. Аксарина Е.А., Пасов В.М. Прогноз урожайности яровой пшеницы до сева в Казахстане на основе использования особенностей развития циркуляции в атмосфере // «Экспресс-информация» ВНИИГМИ-МЦД. 1978. Вып. 1(51). С. 12-20.

4. Ермакова Л.Н., Толмачева Н.И. Прогноз урожайности яровой пшеницы на Урале синоптико-статистическим методом // Географический вестник. 2006. 2(4). С. 111-114.

5. Bollen K.A., Brand J.E. A general panel model with random and fixed effects: a structural equations approach // Social Forces. 2010. 89(1). Р. 1-34.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.