Litter feed additive as source of amino acids and beneficial bacteria
Biochemical characteristics of chicken eggs after feeding with powder. Microflora of litter after feed additive application. Amino acid analysis of litter and powder samples. Feed additive was derived from poultry manure by microbiological synthesis.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | статья |
Язык | английский |
Дата добавления | 20.03.2021 |
Размер файла | 34,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Litter feed additive as source of amino acids and beneficial bacteria
Anna M. Stepanova, Nadezhda P. Tarabukina, Marfa P. Scryabina,
Mikhail P. Neustroev, Svetlana I. Parnikova
Abstract
Feed additive was derived from poultry manure by microbiological synthesis. After a 10-day feeding poultry with probiotic strains of bacteria B. subtilis TNP-3 and B. subtilis TNP-5, the litter does not contain potential enteropathogens and can be used as a raw material for feed additive. Based on the results of microbiological and biochemical studies the technology of feed additive (powder) with the use of extrusion was developed. Extrusion at a temperature of up to 120 °C for 5--6 seconds provides presence of beneficial bacteria and significantly high content of essential amino acids. According to the results of biochemical studies, litter feed additive contains 18 free amino acids. The total concentration of free amino acids in the feed additive (powder) is 406.3 mg/kg, which is 1.7 times higher than that in the litter without fermentation and extrusion. The experiments have shown that inclusion of 3.3% feed additive in the diet does not have negative effect on physiological state, viability and productivity of laying hens. Survival of birds in both groups was 100%. Additive application in the experimental group of chickens revealed absence of opportunistic pathogenic microorganisms and microscopic fungi, presence of bifidobacteria and spore-forming aerobic Bacillus bacteria in powder, as well as predominance of beneficial micro flora and lack of potential enteropathogens (compared to control). It allows to conclude that feed additive obtained by microbiological synthesis from bird droppings possess probiotic properties. The results of biochemical study of egg production indicate that the use of food additives (to 3.3% of the basic diet) for laying hens significantly increases content of major micro and macro-elements in eggs, compared to the control. Therefore, the use of feed additive-powder (up to 3.3% of the basic diet) does not reduce egg quality. Thus, based on the results of these studies, it can be concluded that the litter obtained from laying hens, after application of probiotic `Nord-Bakt', further fermentation with strains Bacillus subtilis TNP-3 and Bacillus subtilis TNP-5, followed by extrusion can be used as a feed additive as a source of amino acids and beneficial bacteria.
Key words: laying hens, bird droppings, probiotics, strains of bacteria, Bacillus subtilis TNP-3, Bacillus subtilis TNP-5, exrusion, dust, free amino acids, beneficial microbiota, enteropathogens
Кормовая добавка из помета --источник аминокислот и полезных бактерий
А.М. Степанова, Н.П. Тарабукина*, М.П. Скрябина,
М.П. Неустроев, С.И. Парникова
ФИЦ «Якутский научный центр СО РАН»,
Якутский НИИ сельского хозяйства им. М.Г. Сафронова,
Якутск, Российская Федерация
Аннотация
Из птичьего помета путем микробиологического синтеза получена кормовая добавка. Помет птиц после 10 дней выпаивания пробиотиком из штаммов B. subtilis ТНП-3 и B. sub- tilis ТНП-5 не содержит потенциальных энтеропатогенов и может быть использован в виде сырья для получения кормовой добавки. При разработке технологии кормовой добавки -- пудрета с применением экструдирования основывались на результатах микробиологических и биохимических исследований. Экструдирование при температуре до 120 °С в течение 5--6 с обеспечивает содержание полезных бактерий и достоверно высокое содержание незаменимых аминокислот. По результатам биохимических исследований в кормовой добавке из помета содержится 18 свободных аминокислот. Общая концентрация свободных аминокислот в пудрете составляет 406,3 мг/кг, что 1,7 раза выше, чем в помете без ферментации и экструдирования. Как показали опыты, включение в рацион 3,3% кормовой добавки не оказывает отрицательного действия на физиологическое состояние, жизнеспособность и продуктивность кур-несушек. Сохранность птиц в обеих группах -- 100%. Отсутствие условно-патогенных микроорганизмов, микроскопических грибов и присутствия бифидо- и спорообразующих аэробных бактерий рода Bacillus в пудрете, а также преобладание представителей полезной нормофлоры и отсутствие потенциальных энтеропатогенов у опытной группы кур после его применения (по сравнению с контролем) позволяют сделать заключение о пробиотических свойствах кормовой добавки, полученной путем микробиологического синтеза из птичьего помета. Результаты биохимического исследования яичной продукции свидетельствуют, что применение кормовой добавки (до 3,3%) от основного рациона кур-несушек достоверно повышает содержание основных микро- и макроэлементов в яйце, по сравнению с контролем. Следовательно, применение кормовой добавки -- пудрета (до 3,3% от основного рациона) не снижает качество яичной продукции.
Доказано, что фекалии от птиц при использования препарата «Норд-Бакт» и дальнейшей ферментации их сочетанием бактерий B. subtilis ТНП-3 и B. subtilis ТНП-5 после экструдирования могут быть применены в качестве кормовой добавки как источник аминокислот и полезных микроорганизмов.
Ключевые слова: куры-несушки, птичий помет, пробиотик, штаммы бактерий, B. subtilis ТНП-3, B. subtilis ТНП-5, экструдирование, пудрет, свободные аминокислоты, полезная микробиота, энтеропатогены
Благодарности. Финансирование. Научно-исследовательская работа финансировалась за счет бюджетных средств в рамках выполнения государственного задания.
Introduction
Today, there are many poultry farms in the country, where chickens, geese, turkeys and other bird species are bred in large quantities. Poultry products are meat, eggs, down and feathers. At the same time, the amount of generated waste (bird droppings) can often exceed the volume of the main production, reaching hundreds of tons per year. Therefore, the task of developing safe and waste-free technologies for obtaining poultry products, including organic waste in poultry complexes is urgent [1]. There are several ways to utilize organic poultry waste: they can be used in crop production as fertilizers, raw materials for feed additives, biofuels, as well as an additive for obtaining clean water from wastewater. Feed additives from processed raw materials and animal waste are not inferior to many feeds in nutritional value [2]. In addition, with bird droppings, up to 30...35% of undigested feed is released. Depending on keeping and feeding conditions, bird droppings can serve as a source of nutrients or as an environmental pollution factor [3].
The aim of the study was to develop production of probiotic feed additives from bird droppings processed using Bacillus subtilis bacteria strains.
Materials and methods
chicken egg additive application
The research work was carried out at Yakutsk Poultry Factory and microbial drug development laboratory of Physics and Technology Center of Siberian Branch of Russian Academy of Sciences. Laying hens of Rodonit-3 cross from industrial herd of No. 18 workshop were studied. Raw poultry manure of chickens was used as material for obtaining a feed additive (powder) after a 10-day use of Nord-Bakt probiotic, 0.01 ml or 5 x 107 CFU per head, daily. For fermentation of fresh litter, Nord-Bakt was also used (equal combination of B. subtilis TNP-3 and B. subtilis TNP-5 bacterial strains containing 5 x 109 CFU/ml) at the rate of 1 ml per 100 g of litter and kept for 2 days at a temperature of 25...28 °C.
Then, to obtain powder, litter was treated in a thermal way: passed through Ekorm-1-1600.000 extruder. During the movement, the litter was heated and pressed at a temperature of 100...120 °C for 5--6 seconds, then cooled and crushed. For experiments on testing the obtained feed additive, laying hens at the age of 14 months in the amount of 24 animals were selected. An experimental group of laying hens received 3.3% of the powder from the main diet. The control group received the main diet without powder. The content was similar, corresponding to zootechnical standards, drinking was grooved with free access.
Microbiological studies of powdered samples and bird droppings were carried out for presence of bifidobacteria, enterococci, aerobic spore-forming bacteria, mesophilic aerobic facultative anaerobic microorganisms, enterobacteria, staphylococci, microscopic fungi according to the accepted standards [4--7]. Biochemical studies of powder and eggs were carried out on NIR SCANNER model 4250 infrared analyzer. The data were processed using the Snedecor program, Microsoft Excel, and Student's statistical processing.
Results and discussion
In litter micro biota of the experimental bird groups after a 10-day watering with Nord-Bakt probiotic, only representatives of intestinal normobiosis (lacto- and bifidobacteria, enterococci, aerobic spore bacteria) were present, no pathogenic staphylococci, mold and toxigenic fungi were present, unlike litter of the control group of laying hens where the probiotic was not used.
The study results confirm the data obtained by A.M. Stepanova [8], when Nord- Bakt probiotic ensured microbiological survival of poultry waste.
High-temperature drying allows to effectively neutralizing the litter from opportunistic and pathogenic bacteria, while maintaining useful elements. Upon receipt of the powder, we proceeded from the results of microbiological and biochemical studies. Microbiological studies analyzed normoflora survival: bifidobacteria, enterococci, spore-forming aerobic bacteria and absence of pathogenic microorganisms. As the results (Table 1) showed, the absence of opportunistic microorganisms and microscopic fungi in the powder provided the extruder drying mode at 100...120 °C for 5--6 s.
Number of microorganisms in litter feed additive, CFU/g
Table 1
Number of microorganisms, CFU/g |
|||
Type of microorganisms |
Before heat treatment |
After heat treatment (extruder) |
|
TMC |
7 x 104 |
4.8 x 104 |
|
Spore bacteria (Bacillus sp.) |
8 x 104 |
1.2 x 105 |
|
Lactobacillus (Lactobacillus sp.) 101 |
1.9 x 105 |
||
103 |
1 x 102 |
- |
|
106 |
- |
- |
|
Bifidobacteria (Bifidum sp.) 101 |
+ + + |
+ + + |
|
103 |
+ + + |
+ |
|
106 |
+ + + |
- |
|
Enterococci (Enterococcus sp) |
1.7 x 105 |
3.2 x 103 |
|
Escherichia L + (Escherichia sp) |
9.2 x 104 |
- |
|
Escherichia L- (Escherichia sp) |
- |
- |
|
Staphylococci (Staphylococcus sp) |
6 x 104 |
- |
|
Yersinia (Yersinia sp) |
- |
- |
|
Microscopic fingi |
Yeasts |
- |
Designation. L+: Escherichia fermenting lactose; L-: Escherichia not fermenting lactose; -: lack of growth; + : single growth; +++: intensive growth.
Litter fermented with B. subtilis strains (1 ml or 5 x 109 CFU per 100 g) and dried for 2 days at 25...28 °C before applying heat treatment contained a significant amount of bifidobacteria, lactobacilli up to 1.9 x 105 CFU/g, enterococcus -- 1.7 x 105 CFU/g, spore-forming bacteria -- 8.0 x 104 CFU/g, lactose-positive Escherichia -- 9.2 x 104 CFU/g, staphylococcus -- 6.0 x 104 CFU/g, also sporadic yeasts.
The obtained feed additive (powder) after extrusion had sharply decreased TMC, bifidobacteria, enterococci; lactobacilli, lactose-positive escherichiae, staphylococci and yeasts disappeared, and increased the number of spore-forming aerobe Bacillus bacteria (up to 1.2 x 105 CFU/g), which were the basis of Nord-Bakt probiotic, used to obtain powder from bird droppings. Preparations based on B. subtilis are known to withstand heat and granulation [9, 10].
According to the results of biochemical studies, litter feed additive contains 18 free amino acids (table 2). The total concentration of free amino acids in the powder is 406.3 mg/kg, which is 1.7 times higher than in the litter without fermentation and extrusion. Free amino acids, getting into the blood, are involved in protein synthesis. A mixture of amino acids, unbound free proteins in animal feed increases their immune biological status, activates metabolism, improves appetite, digestibility of food and resistance to various diseases [2, 11, 12].
The inclusion of 3.3% of the powder in the diet does not have a negative effect on physiological state, vitality and productivity of laying hens. The survival of birds in both groups was 100%.
Table 2
Amino acid analysis of litter and powder samples
Amino acid, mg/kg |
Litter of chickens who took Nord- Bakt probiotic with water (0.01 ml per bird) |
Litter after B. subtilis fermentation and drying for 2 days at 25...28 °C |
Powder after heat treatment through Ekorm 1.1600.000 extruder |
Proportion of the total number of amino acids in the feed additive, % |
|
Aspartic acid |
22.1 ± 0.1 |
27.5 ± 1.1 |
45.1 ± 0.3*** |
9.1 |
|
Threonine |
11.9 ± 0.1 |
14.8 ± 0.6 |
24.4 ± 0.2*** |
6.0 |
|
Serine |
10.9 ± 0.1 |
13.1 ± 0.4 |
20.3 ± 0.1*** |
4.9 |
|
Glutamic acid |
29.4 ± 0.1 |
35.0 ± 1.1 |
53.4 ± 0.3*** |
13.1 |
|
Proline |
9.9 ± 0.1 |
11.8 ± 0.4 |
17.8 ± 0.1*** |
4.4 |
|
Glycine |
13.2 ± 0.1 |
15.7 ± 0.5 |
23.7 ± 0.1*** |
5.8 |
|
Alanine |
19.2 ± 0.1 |
21.0 ± 0.3 |
26.6 ± 0.1*** |
6.5 |
|
Cysteine |
0.4 ± 0.1 |
0.5 ± 0.0 |
1.0 ± 0.0*** |
0.3 |
|
Valine |
15.3 ± 0.1 |
18.5 ± 0.7 |
28.8 ± 0.2*** |
7.0 |
|
Methionine |
6.0 ± 0.1 |
7.3 ± 0.2 |
12.2 ± 0.1*** |
3.0 |
|
Isoleucine |
13.7 ± 0.1 |
16.7 ± 0.6 |
26.6 ± 0.2*** |
6.5 |
|
Leucine |
22.3 ± 0.1 |
25.1 ± 0.6 |
34.3 ± 0.2*** |
8.4 |
|
Tyrosine |
11.7 ± 0.1 |
12.9 ± 0.3 |
16.9 ± 0.22*** |
4.2 |
|
Phenylalanine |
13.4 ± 0.1 |
14.9 ± 0.3 |
19.8 ± 0.1*** |
4.9 |
|
Ornithine |
0.6 ± 0.1 |
0.7 ± 0.1 |
0.9 ± 0.1*** |
0.2 |
|
Lysine |
17.2 ± 0.1 |
19.1 ± 0.4 |
25.3 ± 0.1*** |
6.2 |
|
Histidine |
5.5 ± 0.1 |
6.6 ± 0.2 |
10.2 ± 0.1*** |
2.5 |
|
Arginine |
-- |
16.0 ± 0.2 |
19.0 ± 0.1*** |
4.7 |
Note. *** P > 0.001.
Microflora of litter after feed additive application
Table 3
Microorganisms |
The number of microorganisms, CFU/g |
||
Experimental group |
Control group |
||
TMC |
1.2 ± 105 |
1.2 ± 105 |
|
Spore bacteria (Bacillus sp.) |
2.0 ± 105 |
4.3 ± 105 |
|
Lactobacillus (Lactobacillus sp.) |
4.5 ± 105 |
1.2 ± 105 |
|
Bifidobacteria ( Bifidum sp.) 101 |
+ + + |
+ + |
|
103 |
+ + |
+ |
|
106 |
+ |
- |
|
Enterococci (Enterococcus sp) |
8.2 ± 104 |
5.5 ± 104 |
|
Escherichia L + (Escherichia sp) |
4 9 ± 104 |
5.1 ± 103 |
|
Escherichia L- (Escherichia sp) |
- |
1.4 ± 103 |
|
Staphylococci (Staphylococcus sp) |
9.1 ± 104 |
1.6 ± 105 |
|
Yersinia (Yersinia sp) |
- |
- |
|
Microscopic fingi |
- |
- |
Designation. L+: Escherichia fermenting lactose; L-: Escherichia not fermenting lactose; -: lack of growth; +: single growth; +++: intensive growth.
Table 4
Biochemical characteristics of chicken eggs after feeding with powder
Elements |
Experimental group |
Control group |
|||
Yolk |
White |
Yolk |
White |
||
Water, % |
7.8 ± 0.1* |
14.9 ± 0.1* |
7.6 ± 0.1 |
14.5 ± 0.3 |
|
Protein, % |
38.4 ± 0.1* |
81.3 ± 0.4* |
38.1 ± 0.2 |
79.9 ± 0.8 |
|
Fat, % |
55.7 ± 0.1* |
5.4 ± 0.2* |
55.6 ± 0.2 |
4.9 ± 0.3 |
|
Carbohydrate, % |
8.5 ± 0.1** |
9.6 ± 0.1* |
8.2 ± 0.1 |
9.2 ± 0.3 |
|
Ash, % |
26.9 ± 17.2* |
8.3 ± 0.1* |
6.7 ± 0.1 |
7.9 ± 0.3 |
|
Sodium, mg % |
171.6 ± 1.4* |
1071.0 ± 7.3* |
168.3 ± 1.5 |
1048.9 ± 14.0 |
|
Potassium, mg % |
189.9 ± 1.4 |
2.2 ± 0.01* |
186.7 ± 1.4 |
2.1 ± 0.1 |
|
Calcium, mg % |
277.2 ± 0.4* |
79.3 ± 0.4* |
276.3 ± 0.3 |
77.9 ± 0.8 |
|
Magnesium, mg % |
34.9 ± 0.2* |
87.5 ± 0.4* |
34.4 ± 0.2 |
86.4 ± 0.7 |
|
Phosphorus, g/100 g |
1.2 ± 0.01 |
248.7 ± 2.3** |
1.2 ± 0.01 |
241.6 ± 4.5 |
|
Iron, mg % |
29.6 ± 0.3 |
11.7 ± 0.2* |
29.0 ± 0.3 |
11.0 ± 0.4 |
|
Vitamin A, mg % |
2.6 ± 0.01 |
-- |
2.6 ± 0.01 |
-- |
|
Vitamin B1, mg % |
0.5 ± 0.01 |
-- |
0.5 ± 0.01 |
-- |
|
Vitamin B2, mg % |
0.8 ± 0.01* |
6.7 ± 0.1 |
0.8 ± 0.01 |
6.3 ± 0.2 |
Note. *P < 0.05; **P > 0.05.
Despite the absence and small number of beneficial microflora in the powder, chickens of the experimental group (Table 3) showed a higher content of lacto- and bifidobacteria in the intestinal microbiota, and the absence of lactose-negative escherichia compared to the control chickens, which received the full main feed ration without feed additives. The absence of opportunistic microorganisms, microscopic fungi, the presence of bifidobacteria and Bacillus spore-forming aerobic bacteria in the powder, predominance of beneficial normoflora and the absence of potential enteropathogens in the experimental group of chickens after its use (compared with the control) result in probiotic properties of the feed additive obtained by microbiological synthesis from bird droppings. The data obtained are consistent with the results of studies on the use of feed additives based on B. subtilis, Bac. licheniformis [13--18].
The results of egg biochemical study (Table 4) indicate that the use of powder (up to 3.3% of the main ration for laying hens) significantly increases content of main micro- and macro-elements in eggs, compared with the control. At the same time, egg quality does not decrease. Thus, the litter obtained by litter extrusion after watering with the Nord-Bakt probiotic and subsequent fermentation with B. subtilis TNP-3 and subtilis TNP-5 is promising as a feed additive containing amino acids and beneficial microorganisms.
Conclusions
The drying mode for litter feed additive with an extruder at 100...120 °C for
6 s ensures destruction of opportunistic pathogenic microorganisms and microscopic fungi.
TMC sharply decreased in powder after extrusion, the number of bifidobacteria, enterococci, lactobacilli, lactose-positive escherichia, staphylococcus, and yeast completely disappeared, but the number of spore-forming aerobic Bacillus bacteria increased (1.2 x 105 CFU/g), which are the basis of Nord-Bakt probiotic used to obtain powder from birds litter.
The litter contains 18 free amino acids. The total concentration of free amino acids in the powder was 406.3 mg/kg, which was 1.7 times higher than in the litter without fermentation and extrusion.
The inclusion of 3.3% of the feed additive in the bird ration did not adversely affect the physiological state, viability and productivity of laying hens, significantly increased the content of the main micro and macro elements in the egg.
The powder obtained by extruding bird droppings after watering with the Nord- Bakt probiotic and fermenting with B. subtilis TNP-3 and B. subtilis TNP-5 strains can be added as a source of amino acids and useful bacteria to the ration of laying hens.
References
Kisil I, Ter-Sarkisyan E. The poultry's dung is a source of growth promoters. Kombikorma. 2007; (8):83--84. (In Russ).
Bolotina EN. Extruded feeds use for pigs fattening. Bulletin Samara state agricultural academy. 2014; (1):118--122. (In Russ).
Garzanov A, Dorofeeva O, Kapustin C. Extruded feed from biowaste. Kombikorma. 2011; (8):47--48. (In Russ).
Artemieva SA, Artemieva TN, Dmitrieva AI, Dorutina VV. Mikrobiologicheskii kontrol' myasa zhivotnykh, ptitsy, yaits i produktov ikh pererabotki: spravochnik [Microbiological control of animal meat, poultry, eggs and their products: handbook. Moscow: KolosS Publ.; 2002. (In Russ).
Sidorov MA, Skorodumov DI, Fedotov VB. Opredelitel' zoopatogennykh mikroorganizmov: spravochnik [Determinant of zoopathogenic microorganisms: a guide]. Moscow: Kolos Publ.; 1995. (In Russ).
Berkeley R, Bock E, Boone D, Brenner D. Opredelitel' bakterii Berdzhi: Spravochnik: v 2 t. [The determinant of bacteria Bergey: a guide: in 2 volumes]. Vol. 1. 9th ed. Moscow: Mir Publ.; 1997. (In Russ).
Cherepneva IE. Sovremennye metody issledovaniya mikroorganizmov [Modern methods for study of microorganisms]. Kazan: KSU Publ.; 1998. (In Russ).
Stepanova AM. Tekhnologiyaprimeneniyaprobiotika iz shtammov bakterii B. subtilis TNP-3 i B. subtilis TNP-5 v ptitsevodstve [The technology of using a probiotic from B. subtilis TNP-3 and B. subtilis TNP-5 bacterial strains in poultry farming] [Dissertation] Yakutsk; 2011. (In Russ).
Gryazneva TN. Tekhnologiya proizvodstva probiotika Biod-5 i ego lechebno-profilakticheskaya effektivnost' dlya raznykh vidov zhivotnykh [The production technology of probiotic Biod-5 and its therapeutic and prophylactic efficacy for different types of animals] [Dissertation]. Moscow; 2005. (In Russ).
Tatarchuk OP. General properties of Bacillus subtilis CBS 117162 probiotic strain and feed additive thereof. Veterinary medicine. 2012; (4):20--22. (In Russ).
Dhama K, Verma V, Sawant PM, Tiwari R, Vaid RK, Chauhan RS. Applications of probiotics in poultry: enhancing immunity and beneficial effects on production performances and health. Journal of Immunology andImmunopathology. 2011; 13(1):1--19.
Park YH, Hamidon F, Rajangan C, Soh KP, Gan CY, Lim TS, Abdullah WN, Liong MT. Application of probiotics for the production of safe and high-quality poultry meat. Korean J FoodSci Anim Resour. 2016; 36(5): 567--576. doi: 10.5851/kosfa.2016.36.5.567
Malik EV, Kozak SS, Adamov AN. The use of probiotic additive `Biocorm Pioneer' to increase microbiological safety of poultry products. In: Novye mirovye tendentsii v proizvodstve pro- duktov iz myasa ptitsy i yaits [New global trends in the production of products from poultry meat and eggs]. Moscow: VNIIPP Publ.; 2006. p. 205--209. (In Russ).
Panin AN, Malik IN. Probiotics in rational feeding of animals. Probiotics, prebiotics, synbiotics and functional foods. Klinicheskoepitanie. 2007; (1--2):59--60.
Samburov NV, Trubnikov DV, Popov VS, Babaskin RN. Probiotic feed additives in technology of cultivation weaned piglets. Vestnik of Kursk State Agricultural Academy. 2017; (2):29--34. (In Russ).
Stepanova AM, Tarabukina NP, Neustroev MP, Neustroev DD, Parnikova SI, Fedorova MP. Feed additive obtained by micro-biological synthesis from poultry waste. Trudy VIEV. 2016; 79:289--296. (In Russ).
Fisinin VI, Egorov IA, Okolelova TM, Imangulov SA. Nauchnye osnovy kormleniya sel'sko- khozyaistvennoiptitsy [Scientific principles of feeding poultry]. Sergiev Posad: VNITIP Publ.; 2009. (In Russ).
Nozdrin GA, Ivanova AB, Shevchenko AI, Shevchenko SA. Probiotiki i mikronutrienty pri intensivnom vyrashchivanii tsyplyat krossa Smena [Probiotics and micronutrients during intensive rearing of Smena chickens]. Novosibirsk: Ornament Publ.; 2009.
Библиографический список
Кисиль И., Тер-Саркисян Э. Птичий помет -- источник стимуляторов роста // Комбикорма. 2007. № 8. С. 83--84.
Болотина Е.Н. Использование экструдированных кормов при откорме свиней // Известия Самарской государственной сельскохозяйственной академии. 2014. № 1. С. 118--122.
Гарзанов А., Дорофеева О., Капустин С. Экструдированные корма из биоотходов // Комбикорма. 2011. № 8. С. 47--48.
Артемьева С.А., Артемьева Т.Н., Дмитриева А.И., Дорутина В.В. Микробиологический контроль мяса животных, птицы, яиц и продуктов их переработки: справочник / под ред. Г.В. Быковская, Л.Л. Кожина. М.: КолосС, 2002. 287 с.
Сидоров М.А., Скородумов Д.И., Федотов В.Б. Определитель зоопатогенных микроорганизмов: справочник. М.: Колос, 1995. 107 с.
Беркли Р., Бок Э., Бун Дэвид, Бреннер Д. Определитель бактерий Берджи: Справочник: в 2 т. / под ред. Д. Хоулт, Н. Криг, П. Снит; пер. с англ. под ред., предисл. Г.А. Заварзин. 9-е изд. М.: Мир, 1997. Т. 1.
Современные методы исследования микроорганизмов / сост. И.Е. Черепнева; ред. И.Б. Лещинская. Казань: КГУ, 1998. 63 с.
Степанова А.М. Технология применения пробиотика из штаммов бактерий B. subtilis ТНП-3 и B. subtilis ТНП-5 в птицеводстве: автореф. ... канд. вет. наук. Якутск, 2011. 19 с.
Грязнева Т.Н. Технология производства пробиотика Биод-5 и его лечебно-профилактическая эффективность для разных видов животных: автореф. дисс. ... д-ра биол. наук. М., 2005. 32 с.
Татарчук О.П. Характеристика пробиотического штамма B. subtilis CBS 117162 и кормовой добавки на его основе // Ветеринария. 2012. № 4. С. 20--22.
Dhama K., Verma V., Sawant P.M., Tiwari R., Vaid R.K., Chauhan R.S. Applications of Probiotics in Poultry: Enhancing Immunity and Beneficial Effects on production Performances and Health // Journal of Immunology and Immunopathology. 2011. Vol. 13. № 1. P. 1--19.
Park Y.H., Hamidon F., Rajangan C, Soh K.P., Gan C.Y., Lim T.S., Abdullah W.N., Liong M.T. Application of Probiotics for the Production of Safe and High-quality Poultry Meat // Korean J Food Sci Anim Resour. 2016. Vol. 36. № 5. P. 567--576. doi: 10.5851/kosfa.2016.36.5.567
Малик Е.В., Козак С.С., Адамов А.Н. Использование пробиотической добавки «Биокорм Пионер» для повышения микробиологической безопасности птицеводческой продукции // Новые мировые тенденции в производстве продуктов из мяса птицы и яиц. М. : ВНИИПП, 2006. С. 205--209.
Панин А.Н., Малик И.Н. Пробиотики в системе рационального кормления животных // Клиническое питание. 2007. № 1--2. С. 59--60.
Самбуров Н.В., Трубников Д.В., Попов В.С., Бабаскин Р.Н. Пробиотические кормовые добавки в технологии выращивания поросят-отъемышей // Вестник Курской государственной сельскохозяйственной академии. 2017. № 2. С. 29--34.
Степанова А.М., Тарабукина Н.П., Неустроев М.П., Неустроев Д.Д., Парникова С.И., Скрябина М.П. Кормовая добавка, полученная путем микробиологического синтеза из отходов птицеводства // Труды ВИЭВ. 2016. Т. 79. С. 289--296.
Фисинин В.И., Егоров И.А., Околелова Т.М., Имангулов Ш.А. Научные основы кормления сельскохозяйственной птицы // Переработанное и дополненное издание. Сергиев Посад: ВНИТИП, 2009. 352 c.
Ноздрин Г.А., Иванова А.Б., Шевченко А.И., Шевченко С.А. Пробиотики и микронутриенты при интенсивном выращивании цыплят кросса Смена. Новосибирск: Орнамент, 2009. 197 с.
Размещено на Allbest.ru
...Подобные документы
The biosynthesis of 2H-labeled phenylalanine was done by converse of low molecular weight substrates in a new RuMP facultative methylotrophic mutant Brevibacterium methylicum. Isotope components of growth media and characteristics of bacterial growth.
статья [1,3 M], добавлен 23.10.2006Example of "simple linear progression". Additive. adversative. temporal textual connector. Anaphoric relations and their use in fairy tales. Major types of deictic markers: person deixis, place deixis, time deixis, textual deixis, social deixis.
творческая работа [300,8 K], добавлен 05.07.2011Principles of green analytical metrics. National environment method index. Application of GAC metrics. Complementary green analytical procedure index. Additive color model to analytical method evaluation. Examples of analytical eco-scale calculation.
дипломная работа [2,0 M], добавлен 27.11.2022Chemistry and thermodynamics of process. Reforming catalysts. Raw materials. Process parameters. Reforming industrial devices. Criteria of an assessment of catalysts. Catalyst promoters. Temperature influence The volumetric feed rate. Rigidity of process.
презентация [193,6 K], добавлен 29.04.2016The origin history of fast food and features of his development in China, India, Europe, Russia and America. General description of negative influence of fast food on organism and health of the human. Fast food like a variety of chemical food additives.
презентация [942,1 K], добавлен 12.03.2010The term food preservation, historical methods of preservation. The process of smoking, salting, freezing, fermentation, thermal process, enclosing foods in a sterile container, chemical additive to reduce spoilage, using radiation for food preservation.
контрольная работа [27,4 K], добавлен 08.05.2009Create a source of light in Earth orbit. Energy source for the artificial sun. Development of light during nucleosynthesis. Using fusion reactors. Application lamp in the center of a parabolic mirror. Application of solar panels and nuclear reactors.
презентация [2,7 M], добавлен 26.05.2014The birth of Apple IPod as the first portable music player was an idea of Jobs that reshuffled the Market cards into new worlds of users needs. Adapting to change and reaction is not sufficient. Change and experimenting new things and renewal synthesis.
эссе [758,5 K], добавлен 01.04.2012Defining cognitive linguistics. The main descriptive devices of frame analysis are the notions of frame and perspective. Frame is an assemblage of the knowledge we have about a certain situation, e.g., buying and selling. Application of frame analysis.
реферат [324,4 K], добавлен 07.04.2012The use of digital technology in analyzing the properties of cells and their substructures. Modeling of synthetic images, allowing to determine the properties of objects and the measuring system. Creation of luminescent images of microbiological objects.
реферат [684,6 K], добавлен 19.04.2017This method is based on the growth of the strain of halophilic bacteria Halobacterium halobium on a synthetic medium containing 2H-labeled aromatic ammo acids and fractionation of solubilized protein by methanol, including purification of carotenoids.
статья [2,0 M], добавлен 23.10.2006The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.
реферат [26,5 K], добавлен 31.07.2008Protein and energy storage. Fatty acid biosynthesis. Formation of malonyl-CoA. The pantothenate group of ACP. Two-step sequence of the oxaloacetate. Synthesis of triacylglycerols. Cholesterol biosynthesis and its control. The alcohol groups of mevalonate.
лекция [15,3 K], добавлен 08.05.2010А complex comparison of morphological characteristics of English and Ukrainian verbs. Typological characteristics, classes and morphological categories of the English and Ukrainian verbs. The categories of person and number, tenses, aspect, voice, mood.
дипломная работа [162,2 K], добавлен 05.07.2011Getting to know the sources of competitive advantage. Consideration of the characteristics of the implementation of the marketing strategy. Characteristics of branding forms: corporate, emotional, digital. Analysis of the online advertising functions.
курсовая работа [66,3 K], добавлен 09.02.2016Types of microorganisms. Viruses consist of genetic materials. Bacteria are organisms made up of just one cell. Algae are a type of living thing. Fungi are like plants that are not "green", they do not have the photosynthetic pigment chlorophyll.
презентация [188,3 K], добавлен 16.03.2014Proclaiming and asserting the principles of democracy, democratic norms of formation of the self-management Kabardin-Balkar Republic. Application and synthesis of regional experiences as a problem to be solved in the process of administrative reforms.
реферат [19,0 K], добавлен 07.01.2015General characteristic of the LLC DTEK Zuevskaya TPP and its main function. The history of appearance and development of the company. Characteristics of the organizational management structure. Analysis of financial and economic performance indicators.
отчет по практике [4,2 M], добавлен 22.05.2015Nottingham as a city located in the heart of the country; acquainted with the culture and life of the city. Attractions Nottingham: Nottinghamshire, The Royal Concert Hall, Castle houses. The transport system of the city. Feeding habits of citizens.
презентация [908,6 K], добавлен 06.11.2014The application of microwaves in the organic synthesis community. Microwaves are a form of electromagnetic energy. Two Principal Mechanisms for Interaction With Matter. Conventional Heating Methods, The Microwave Heating and The Microwave Effect.
контрольная работа [32,0 K], добавлен 13.12.2010