Redistribution of nutrient elements of gray forestal soil under grain crops in short-rotation crop rotations under different fertilization systems
The influence of fertilization system and precursor on the nutrient regime of gray forest soil under winter wheat and spring barley under short-rotational crop rotation conditions. Restoration of crop vegetation on unfertilized options in crop rotation.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | статья |
Язык | английский |
Дата добавления | 18.12.2023 |
Размер файла | 37,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Redistribution of nutrient elements of gray forestal soil under grain crops in short-rotation crop rotations under different fertilization systems
О.Y. Kachmar, А.О. Dubytska, candidates of agricultural sciences
М.М. Shcherba, І.V. Savеryn, researchers
О.V. Тaravska, senior specialist
А.І. Vоvk, Z.О. Kотyk, candidates of technical sciences
Abstract
In the conditions of short-rotation crop rotations, the influence of fertilization systems and precursors on the nutrient regime of grey forestal soil under winter wheat and spring barley was investigated.
It was established that the highest content of nutrients under winter wheat and spring barley is formed in the conditions of the traditional fertilization system. During the direct application of 40 t/ha of manure to winter wheat in combination with mineral fertilizers in a dose of N.,0 lAnK".::, in the phase of vegetation recovery of the crop in the arable layer of the grain crop rotation, the concentration of alkaline hydrolyzable nitrogen compounds was 13.51 mg kg-1 of soil, mobile forms of phosphorus and potassium were 14.20 and 12.00 mg kg-1 of soil. By the application under spring barley of the complex Ні1оРі>оКі,о + byproducts of the precursor of winter wheat in the grain-forage and N60?60R60 in the crop rotation in the seedling phase, 12.34-12.40 mg kg-1 of soil alkaline hydrolysis nitrogen was formed, 12.7212.81 and 11 .28-11.44 mg kg-1 of the soil of mobile forms of phosphorus and potassium
Higher values of mobile compounds of the main nutrients of plants under winter wheat are formed after the precursors meadow clover and peas. The lowest values are observed in repeated sowings: in the phase of recovery of crop vegetation on unfertilized variants in crop rotation with the predecessor of meadow clover the content of mobile forms of nitrogen, phosphorus and potassium amounted to 10.81, 10.93 and 9.71 mg kg-1 of soil, in grain with a predecessor of peas it was 10.72, 11.11 and 10.19 mg kg-1 of soil, in repeated sowings of winter wheat in grain rotation 10.19, 10.86 and 9.79 mg kg-1 of soil.
Before the end of the vegetation season of winter wheat and spring barley, the content of nutrients decreased and equalized by the absolute intervariant values due to their use by plants for growth, development and crop formation.
The use of organo-mineral fertilization systems ensured an increase in the level of provision of the soil environment with organic substances. Under the alternative fertilization system, the amount of by-products after meadow clover was 8.20-9.00 t/ha, corn for grain - 6.74 t/ha, winter wheat - 4.63-5.25 t/ha, and with growing it in repeated crops - 5.06-5.27 t/ha. Potatoes grown under an alternative fertilization system in crop rotation formed 2.43-2.56 t/ha, and buckwheat - 2.86 t/ha of by-products. Under the traditional fertilization system, this indicator was the highest among all cultivated crops.
Keywords: short-rotation crop rotations, winter wheat, spring barley, fertilization systems, nutrients, plant residues.
Анотація
Перерозподіл елементів живлення сірого лісового Грунту під зерновими культурами в короткоротаційних сівозмінах за різних систем удобрення
В умовах короткоротаційних сівозмін досліджено вплив систем удобрення та попередників на поживний режим сірого лісового ґрунту під пшеницею озимою та ячменем ярим.
Встановлено, що найвищий вміст елементів живлення під пшеницею озимою та ячменем ярим формується в умовах традиційної системи удобрення. За безпосереднього внесення під пшеницю озиму 40 т/га гною в поєднанні мінеральними добривами в дозі N60P90K90 у фазі відновлення вегетації культури в орному шарі зернової сівозміни концентрація сполук легкогідролізного азоту становила 13,51 мг кг-1 ґрунту, рухомих форм фосфору й калію - 14,20 й 12,00 мг кг-1 ґрунту; від застосування під ячмінь ярий комплексу N60P60K60 + побічна продукція попередника пшениці озимої в зерно- кормовій та N60P60K60 у плодозмінній сівозмінах у фазі сходів формувалося 12,34-12,40 мг кг'1 ґрунту легкогідролізного азоту, 12,72-12,81 й 11,2811,44 мг кг-1 ґрунту рухомих форм фосфору й калію.
Вищі значення рухомих сполук основних елементів живлення рослин під пшеницею озимою формуються після попередників конюшина лучна й горох, найнижчі показники спостерігаються в повторних посівах: у фазі відновлення вегетації культури на неудобрених варіантах у плодозмінній сівозміні з попередником культури конюшина лучна вміст рухомих форм азоту, фосфору й калію становив 10,81; 10,93 й 9,71 мг кг-1 ґрунту, у зерновій з попередником горох - 10,72; 11,11 й 10,19 мг кг-1 ґрунту, у повторних посівах пшениці озимої в зерновій сівозміні - 10,19; 10,86 й 9,79 мг кг-1 ґрунту.
До закінчення вегетації пшениці озимої та ячменю ярого вміст елементів живлення знижувався і вирівнювався за абсолютними міжваріантними значеннями внаслідок використання їх рослинами для росту, розвитку й формування врожаю.
Застосування органо-мінеральних систем удобрення збільшувало рівень забезпеченості ґрунтового середовища органічними речовинами. За альтернативної системи удобрення кількість побічної продукції після конюшини лучної була 8,20-9,00 т/га, кукурудзи на зерно - 6,74 т/га, пшениці озимої - 4,63-5,25 т/га, а при її вирощуванні в повторних посівах - 5,065,27 т/га. Картопля, вирощена за альтернативної системи удобрення у сівозміні, формувала 2,43-2,56 т/га, а гречка - 2,86 т/га побічної продукції. За традиційної системи удобрення цей показник був найвищим за всіма вирощуваними культурами.
Ключові слова: короткоротаційні сівозміни, пшениця озима, ячмінь ярий, системи удобрення, елементи живлення, рослинні рештки.
Introduction
An important condition for the efficient management of agricultural production, the achievement of the highest possible level of realization of the productive potential of agricultural crops and the obtaining of significant values of ecologically and economically reasonable yields is the provision of high soil fertility during the entire vegetation period of plants, which is determined by a complex of water-physical, agrochemical and microbiological properties [2, 8, 17, 18, 26]. Agrochemical
characteristics depend on the intensity of the soil processes of accumulation, destruction, synthesis and transformation of substances and determine the nutrient regime of the soil environment, the main management measures of which are the implementation of scientifically based crop rotations and the use of organo-mineral fertilization systems [3, 10, 14, 30, 33].
In crop rotation, the genetically determined productive capacity of soils and the yield potential of agricultural plants are most fully implemented, it determines the systems of fertilization, mechanical tillage and protection of crops from weeds, pests and pathogens, ensures the natural supply of plant residues, which contribute to the return to the soil environment of significant parts of macro- and microelements, serve as energy material for soil microflora, determine the biogenicity of soils and their humus content [1, 6, 13, 15, 16, 25, 36].
Organo-mineral fertilizer complexes based on both traditional (cattle manure) and alternative (plant by-products, post-harvest siderates) components have the highest effect on optimizing the nutrient regime of soils, the accumulation of water-soluble and exchangeable forms of the main nutrients, and the transformation of the biological substrate [4, 5, 7, 28, 37].
With their use, a special trophic environment is formed in the soil, which stabilizes the organic colloidal complex, and increases the proportion of its saturation with exchangeable forms of nutrients. Mineralization of organic matter introduced into the soil environment by microbial cenosis, and involvement of its decay products in the biological cycles of the circulation of substances contributes to the improvement of agrochemical indicators, as well as a higher level of supply of plants with nutrients [12, 24, 29, 31, 34, 35].
This is extremely important in the development of fertilization systems, since in conditions of high anthropogenic loads on the soil, with the harvest occurs a significant alienation of part of the created organic matter, and therefore of the nutrients and energy contained in it, which, in turn, leads to less bioproductivity of agrocenosis [27, 32].
Therefore, the management of the nutritional regime of plants involves the introduction of rational, balanced fertilization systems that would meet the needs of crops in nutrients throughout the growing season, contribute to their return to the soil with plant residues, restore soil reserves and ecological balance in agricultural landscapes [9, 11, 18, 19].
Materials and methods
The research was conducted during 20162020 at the experimental ground of the Institute of Agriculture of the Carpathian Region, which is located in the village Stavchany of Lviv district, Lviv region. The study was carried out in the conditions of a two - factor stationary experiment, which has the status of long-term and entered into the Register of stationary experiments of Ukraine (certificate number - 053). The experiment was established in 2001 on grey forestal surface- gleyed soil. The number of researched factors is 2 (areas of the first order - systems of short-rotation crop rotations, second - fertilization systems).
The experiment studies 9 different field crop rotations (3-4-5-field) with saturation with grain crops (s.g.c.) from 50% to 100%, on the options of using traditional (combination of mineral fertilizers and manure) and alternative (combination of mineral fertilizers, straw, harvest siderates) organo-mineral fertilization systems and without fertilization (control). The experimental data covered in this article were obtained from seven crop rotations of the experiment: 1) peas - winter wheat - winter wheat - oats (four-field grain, 100% s.g.c.); 2) peas - winter wheat - corn (grain) - oats (four-field grain, 100% s.g.c.); 3) meadow clover - winter wheat - winter wheat - spring barley + meadow clover (four-field grass-grain, 75% s.g.c.); 4) meadow clover - winter wheat - potato - spring barley + meadow clover (four-field crop rotation, 50% s.g.c.); 5) buckwheat - winter wheat - potato - spring barley (four-field grain-weed removing, 75% s.g.c.); 6) corn (green mass) - winter wheat - buckwheat - soybean - winter wheat (five-field grain-weed removing, 80% s.g.c.); 9) winter wheat - winter wheat - fodder beans (triple-field, 66% s.g.c.). In the traditional system of fertilization on the background of manure (40 tons once per crop rotation under weed removing crops, and in the 1st and 3rd crop rotations - under winter wheat in repeated sowings), mineral fertilizers were applied in the dose: under winter wheat N60P90K90, spring barley - N P.. K., oats - N40P40K40, buckwheat - NeoPeoKeo, peas - N45P45K45, soy - N45P45K45, potatoes - N90P90K90, corn - N120P100K100. In an alternative system with half doses of mineral fertilizers on the background of ploughing all the by-products (bp.) of the cultivated crops once per rotation, oil radish was sown post-harvest as siderate (under the same crops where manure was applied in the traditional system, at the same time, full doses of mineral nutrition were applied). In the three-field crop rotation, one (mineral) fertilizer system was applied with N6oP9oK90for winter wheat, and N45P45K45 for fodder beans. The options were repeated three times, the location was consecutive. The total area of the site according to the crop rotation factor was 864 m2 (72 m x 12 m), by fertilizer: total area 96 m2 (12 m x 8 m), accounting area - 60 m2 (10 m x 6 m). The introduction of crops into the crop rotation was carried out simultaneously on all fields.
The influence of fertilization systems on changes in the nutritional regime was studied under winter wheat of the Poliska 90 variety, spring barley of the Kniazhyi variety.
The soil of the experimental plots - gray forestal surface-gleyed coarse dusty light-loamy with the following agrochemical properties (before the experiment): humus content 1.67-1.71%, the number of absorbed bases 4.4-5.0 mg-eq kg-1 of soil, easily hydrolyzable nitrogen 9.2-9.9, mobile phosphorus and exchangeable potassium 10.8-11.13 and 9.3-9.5 mg kg-1 soil, respectively. The reaction of the soil solution is рНкcl 4.70-4.84, hydrolytic acidity 2.26 mg-eq kg-1 of soil.
The selection of soil samples of experimental variants and their preparation for laboratory and analytical work was carried out in accordance with DSTU 4287:2004 [22] and DSTU ISO 11464-2001 [23]. The following soil samples were determined: easily hydrolyzable nitrogen - according to Kornfield (DSTU 7863:2015) [20]; mobile phosphorus and exchangeable potassium according to Kirsanov (DSTU 4405:2005) [21].
The values of the listed indicators were determined from the arable (0-20 cm) and sub-arable (20-40 cm) layers for five years (2016-2020) in 3 repetitions and in 2 analytical parallels (in general for each of the layers, n = 30).
In the conducted research, general scientific and special research methods were used. With the help of a field experiment, data on the variability of nutrients under the influence of agrotechnological factors were obtained; by the laboratory-analytical methods - quantitative characteristics of the redistribution of mobile compounds of nitrogen, phosphorus and potassium in the soil environment were established; by the calculationcomparative methods - the number of changes in the studied indicators was substantiated. fertilization forest soil wheat
Results and discussion
The nutritional regime is an important factor in increasing the production process of agricultural crops and an ecological indicator of maintaining soil fertility [3, 8, 25]. In order to ensure high yields of agricultural crops, it is extremely important to provide them with a sufficient amount of nutrients during the entire growing season. In different periods of life and development, plants need different amounts of them. Conditionally, this need can be represented parabolically: in the initial phenological phases and during ripening, it is smaller, and during the time interval of active growth and development of the plant, it gradually increases, approaching the peak during the formation of fruits, and then gradually decreases as they ripen.
Therefore, it is important to study the impact of agrotechnological factors on the dynamics of mobile compounds of nitrogen, phosphorus and potassium as the main elements of plant nutrition.
The studies conducted under the conditions of a stationary experiment under winter wheat established (Table 1) that at the time of sowing the crop in the arable layer on the control variants, the highest values of easily hydrolyzable nitrogen were in the crop rotation with the predecessor meadow clover (10.38 mg kg-1 soil) and in grain rotation after the predecessor of peas (10.31 mg kg-1 soil). The maximum availability of mobile forms of phosphorus on unfertilized variants was observed in grainweed removing crop rotations: after buckwheat (10.89 mg kg-1 of soil) and after soybeans (10.72 mg kg-1 of soil). Without the use of fertilizers, a higher level of plant-available forms of potassium was noted in the grainweed removing rotation after the predecessor of soybeans (9.88 mg kg-1 of soil) and in the grain rotation after peas (9.80 mg kg-1 of soil). In the phase of recovery of winter wheat vegetation on the background (unfertilized) variants, the best nutritional regime was formed in the crop rotation with the precursor of meadow clover culture (the content of mobile forms of nitrogen, phosphorus and potassium was 10.81, 10.93 and 9.71 mg kg-1 of soil) and in grain rotation with a predecessor of peas (by the nutrients, 10.72, 11.11 and 10.19 mg kg-1 of soil). The lowest values of the nutritional regime (10.19, 10.86 and 9.79 mg kg-1 of soil) were in grain rotation in repeated sowings of winter wheat.
1. Dynamics of the nutrient regime of the soil under winter wheat by the phases of vegetation, mg. 100 g of soil, 2016-2020.
Winter wheat fertilizer |
Soil layer, cm |
Time of soil sampling |
|||||||||
Before sowing |
Vegetation recoven7 |
Complete maturity' |
|||||||||
N |
P,O, |
K,0 |
N |
P,O, |
K,0 |
N |
PA |
K,0 |
|||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|
Grains, the predecessor - peas (100%s.g.c.) |
|||||||||||
control |
0-20 |
10.31 |
10.65 |
9.80 |
10.72 |
11.11 |
10.19 |
9.47 |
10.25 |
9.22 |
|
20-40 |
9.23 |
9.90 |
8.72 |
9.60 |
10.29 |
8.98 |
8.44 |
9.54 |
8.22 |
||
NMPpoK90 |
0-20 |
11.81 |
12.49 |
11.31 |
12.79 |
13.42 |
11.71 |
10.76 |
11.55 |
10.13 |
|
20-40 |
10.16 |
11.41 |
9.93 |
11.01 |
11.95 |
10.36 |
9.27 |
10.54 |
8.97 |
||
N30P45K45 + bp. |
0-20 |
11.05 |
11.45 |
10.49 |
11.87 |
12.37 |
10.72 |
9.90 |
10.51 |
9.46 |
|
20-40 |
9.89 |
10.41 |
9.64 |
10.61 |
11.04 |
10.06 |
9.05 |
9.67 |
8.72 |
||
Crains. the predecessor - winter wheat (100%s.g.c.) |
|||||||||||
control |
0-20 |
9.67 |
10.56 |
9.51 |
10.19 |
10.86 |
9.79 |
8.88 |
10.12 |
8.92 |
|
20-40 |
8.56 |
9.80 |
8.36 |
9.30 |
10.22 |
8.60 |
7.76 |
9.44 |
7.85 |
||
Manure, 40 tha +NjoPjcJC^o |
0-20 |
12.58 |
13.09 |
11.73 |
13.51 |
14.20 |
12.00 |
11.25 |
12.29 |
10.58 |
|
20-40 |
10.69 |
11.74 |
10.36 |
11.49 |
12.73 |
10.60 |
9.52 |
11.13 |
9.38 |
||
Siderate + NisnPonKjn + bp. |
0-20 |
11.87 |
12.04 |
11.30 |
12.96 |
13.28 |
11.65 |
10.59 |
11.27 |
10.31 |
|
20-40 |
10.41 |
11.22 |
10.24 |
11.28 |
12.20 |
10.41 |
9.45 |
10.58 |
9.30 |
||
Drop rotation, the predecessor - clover (50 % s.g.c.) |
|||||||||||
control |
0-20 |
10.38 |
10.49 |
9.38 |
10.81 |
10.93 |
9.71 |
9.74 |
10.05 |
8.78 |
|
20-40 |
9.27 |
9.76 |
8.27 |
9.67 |
10.15 |
8.47 |
8.48 |
9.39 |
7.77 |
||
NfflPsoKso |
0-20 |
11.93 |
12.39 |
11.12 |
13.09 |
13.31 |
11.34 |
10.88 |
11.45 |
9.90 |
|
20-40 |
10.25 |
11.26 |
9.74 |
11.12 |
11.87 |
10.11 |
9.34 |
10.47 |
8.79 |
||
0-20 |
11.09 |
11.38 |
10.40 |
12.13 |
12.29 |
10.55 |
10.00 |
10.43 |
9.33 |
||
20-40 |
9.95 |
10.33 |
9.50 |
10.66 |
11.00 |
9.71 |
9.07 |
9.58 |
8.61 |
||
Grain-weed removing, the predecessor - buckwheat (75 % s.g.c.) |
|||||||||||
control |
0-20 |
9.95 |
10.89 |
9.67 |
10.51 |
11.40 |
9.98 |
9.18 |
10.42 |
9.13 |
|
2040 |
8.83 |
10.08 |
8.55 |
9.43 |
10.47 |
8.79 |
8.09 |
9.76 |
8.07 |
||
NhjPsjKjo |
0-20 |
11.27 |
12.71 |
11.21 |
12.27 |
13.70 |
11.51 |
10.29 |
11.84 |
10.06 |
|
2040 |
9.89 |
11.45 |
9.85 |
10.68 |
12.10 |
10.19 |
9.12 |
10.77 |
8.90 |
||
NJ0P45K43 + bp. |
0-20 |
10.51 |
11.62 |
10.46 |
11.44 |
12.58 |
10.62 |
9.52 |
10.77 |
9.42 |
|
20-40 |
9.60 |
10.53 |
9.56 |
10.39 |
11.25 |
9.80 |
8.83 |
9.91 |
8.70 |
||
Grain-weed removing, the predecessor - com (80 % s.g.c.) |
|||||||||||
control |
0-20 |
9.83 |
10.38 |
9.28 |
1040 |
10.92 |
9.63 |
9.06 |
10.05 |
8.67 |
|
2040 |
8.69 |
9.64 |
8.19 |
9.36 |
10.15 |
8.40 |
7.97 |
9.43 |
7.70 |
||
N60Ps()Km |
0-20 |
11.26 |
12.30 |
10.97 |
12.17 |
13.17 |
11.25 |
10.16 |
11.47 |
9.80 |
|
2040 |
9.91 |
11.15 |
9.63 |
10.57 |
11.83 |
10.00 |
9.01 |
10.49 |
8.70 |
||
N30P45K45 |
0-20 |
10.59 |
11.28 |
10.30 |
11.35 |
12.25 |
10.45 |
9.42 |
10.44 |
9.26 |
|
20-40 |
9.64 |
10.29 |
9.40 |
10.30 |
10.89 |
9.64 |
8.73 |
9.58 |
8.48 |
||
Grain-weed removing, the predecessor - soy (80 % s.g.c.) |
|||||||||||
control |
0-20 |
10.18 |
10.72 |
9.88 |
10.60 |
11.25 |
10.34 |
9.35 |
10.32 |
9.36 |
|
2040 |
9.15 |
9.90 |
9.10 |
9.53 |
10.38 |
9.30 |
8.36 |
9.64 |
8.63 |
||
NsoPsoKffl; |
0-20 |
11.51 |
12.58 |
11.35 |
12.47 |
13.51 |
11.78 |
10.46 |
11.71 |
10.25 |
|
20-40 |
10.01 |
11.37 |
10.00 |
10.79 |
11.98 |
10.44 |
9.19 |
10.68 |
9.06 |
||
N30P45K45 “ bp |
0-20 |
10.67 |
11.54 |
10.58 |
11.72 |
12.48 |
10.83 |
9.77 |
10.67 |
9.54 |
|
20-40 |
9.69 |
10.47 |
9.69 |
10.49 |
11.17 |
10.15 |
8.94 |
9.82 |
8.80 |
||
Grains, the predecessor - winter wheat (100 % s.g.c.) |
|||||||||||
NsqPsjKm |
0-20 |
11.17 |
12.38 |
11.11 |
12.07 |
13.32 |
11.71 |
9.76 |
11.31 |
9.65 |
|
20-40 |
9.73 |
11.20 |
9.76 |
10.42 |
11.86 |
10.23 |
8.65 |
10.39 |
8.48 |
Thus, without the imposition of fertilization systems, the highest values of the main indicators of effective fertility are provided by the predecessor of meadow clover in the crop rotation and peas in the grain crop rotation.
The use of fertilization systems ensured a significant increase in the values of the nutritional regime. The highest content of nutrients in the phase of crop vegetation recovery was observed under the conditions of the traditional system when 40 t/ha of manure and mineral fertilizers in a dose of N60P90K90 were directly applied under winter wheat. In the arable layer in the grain crop rotation, the concentration of easily hydrolyzable nitrogen compounds was 13.51 mg kg-1 of soil, mobile forms of phosphorus and potassium - 14.20 and 12.00 mg kg-1 of soil. When combining a complex alternative organic component (green mass of oil radish on the background of by-products of winter wheat) and N60P90K90, the content of nutrients available to plants in the soil environment was lower and amounted to 12.96, 13.28 and 11.65 mg kg-1 of the soil, respectively, mobile compounds of nitrogen, phosphorus and potassium (alternative fertilization system).
Applying mineral fertilizers directly under winter wheat, and the organic component under another crop of the crop rotation, i. e. at a distance in time, formed a nutritional regime at a lower concentration level in all studied crop rotations. The range of variability of the content of easily hydrolyzable nitrogen was 12.17-13.09 mg kg-1 of soil, mobile forms of phosphorus and potassium - 13.17-13.70 and 11.25-11.78 mg kg-1 of soil, respectively.
Before the end of the vegetation season of winter wheat, the content of nutrients decreased and leveled off in terms of absolute intervariant values due to their use by plants for growth, development and crop formation, and in the phase of full maturity of the crop in the control variants of crop rotation, it was 8.88-9.74 mg kg-1 of easily hydrolyzable soil of nitrogen, 10.05-10.42 and 8.67-9.36 mg kg-1 of soil mobile compounds of phosphorus and potassium, respectively 10.16-11.25, 11.4512.29 and 9.80 on fertilized - 10.58 mg kg-1 soil (traditional fertilization system) and 9.42-10.59, 10.43-11.27 and 9.26-10.31 mg kg-1 soil (alternative fertilization system).
Observations of the dynamics of the nutritional regime during the growing season of spring barley grown in two crop rotations showed that the highest content of plant nutrients was at the time of crop emergence (Table 2). On unfertilized variants, the following concentration levels were observed: 9.70 mg kg-1 soil of easily hydrolyzable nitrogen, 10.79 mg kg-1 mobile forms of phosphorus and 9.81 mg kg-1 soil mobile compounds of potassium in the grain-forage crop rotation and, respectively, 9.76, 10. and 9.64 mg kg-1 of soil in the crop rotation. On variants of the traditional fertilization system, when N60P60K60 was applied to the crop during two crop rotations, 12.34-12.40 mg kg-1 of easily hydrolyzable nitrogen was formed, 12.72-12.81 and 11.28-11.44 mg kg-1 of mobile soil forms of phosphorus and potassium. Under the conditions of an alternative fertilization system, when N30P30K30 was applied on the background of by-products of winter wheat in the grain-forage crop rotation and N30P30K30 in the crop rotation, 11.27-11.31 mg kg-1 of easily hydrolyzable nitrogen accumulated in the soil, 11.47-11.64 and 10, 86-11.03 mg kg-1 of the soil of mobile compounds of phosphorus and potassium.
During the vegetation season of spring barley, the content of nutrients in the soil decreased as a result of their use by plants for growth, development and crop formation. The lowest values of plant nutrients were observed in the phase of full maturity of the crop and amounted to 8.83-8.89 mg kg-1 of easily hydrolyzable nitrogen soil, 9.65-9.78 and 8.96-9.06 mg kg- 1 of phosphorus and potassium compounds available to plants in the soil on unfertilized backgrounds. In the variants of application of organo-mineral fertilization systems, their amount was 10.04-10.7 mg kg-1, 11.16-11.25 mg kg-1 and 9.59-9.70 mg kg-1 and 9.27-9.40, 10.10-10.18 and 9.27-9.38 mg kg- 1 of soil.
Scientific studies have proven that plant residues of agricultural crops are an important factor influencing the nutrient regime and redistribution of organic substances in the soil [29, 27]. During their mineralization, a significant part of nitrogen, phosphorus and potassium, used by plants from fertilizers and soil, is returned to the soil. The amount of plant residues that accumulate in the soil depends on the range of crops grown in crop rotations, their productivity, biological and morphological features, weather conditions and nutrition levels.
As the results of our research showed (Table 3), in the variants without fertilizer application, the highest amount of plant residues accumulated in the soil after meadow clover (7.60-8.00 t/ha), corn for grain (5.15 t/ha) and winter wheat (3.97-4.45 t/ha). When sowing winter wheat in repeated sowings, this indicator was lower - 3.82-3.91 t/ha. The least amount of organic matter entered the soil after potatoes (1.41-1.46 t/ha) and buckwheat (2.55 t/ha).
The use of organo-mineral fertilization systems ensured an increase in the provision of the soil environment with organic substances. Under the alternative fertilization system, the number of by-products after meadow clover was 8.20-9.00 t/ha, corn for grain - 6.74 t/ha, winter wheat - 4.635.25 t/ha, and with growing it in repeated crops - 5.06-5.27 t/ha.
2. Dynamics of the nutritional regime under spring barley by the phases of vegetation, mg.TOO g of soil, average for 2016-2020.
Spring barley fertilizer |
Soil layer, cm |
Time of soil sampling |
|||||||||
Shoots |
Earing |
Full ripeness |
|||||||||
N |
PA |
K,o |
N |
PA |
ECO |
N |
PA |
EGO |
|||
Grain-fodder, the predecessor - winter wheat (75%s.g.c.) |
|||||||||||
control |
0-20 |
9.70 |
10.79 |
9.81 |
9.18 |
10.14 |
9.29 |
8.89 |
9.78 |
9.06 |
|
20-40 |
8.76 |
9.77 |
8.64 |
8.20 |
9.45 |
8.13 |
7.72 |
9.10 |
7.77 |
||
NeoPffiiKfici |
0-20 |
12.34 |
12.81 |
11.44 |
10.81 |
11.64 |
10.21 |
10.04 |
11.25 |
9.70 |
|
20-40 |
11.38 |
11.66 |
10.47 |
9.65 |
10.68 |
9.24 |
8.96 |
10.31 |
8.65 |
||
N30P30K30 + bp. |
0-20 |
11.27 |
11.64 |
11.03 |
9.77 |
10.42 |
9.73 |
9.40 |
10.18 |
9.38 |
|
20-40 |
10.60 |
10.80 |
10.19 |
8.93 |
9.65 |
9.02 |
8.77 |
9.34 |
8.54 |
||
Crop rotation, the predecessor - potato (50% s.g.c.) |
|||||||||||
control |
0-20 |
9.76 |
10.63 |
9.64 |
9.27 |
10.00 |
9.22 |
8.83 |
9.65 |
8.96 |
|
20-40 |
8.81 |
9.69 |
8.54 |
8.05 |
9.38 |
8.07 |
7.58 |
8.09 |
7.64 |
||
N(oPSoKfii) |
0-20 |
12.40 |
12.72 |
11.28 |
10.90 |
11.55 |
10.07 |
10.07 |
11.16 |
9.59 |
|
20-40 |
11.42 |
11.50 |
10.36 |
9.61 |
10.59 |
9.10 |
8.91 |
10.24 |
8.56 |
||
NjijPsoKso |
0-20 |
11.31 |
11 47 |
10.86 |
9.94 |
10.33 |
9.60 |
9.27 |
10.10 |
9.27 |
|
20-40 |
10.65 |
10.67 |
10.07 |
9.18 |
9.57 |
8.90 |
8.64 |
9.24 |
8.42 |
3. Accumulation of crop residues by crop rotation, t/ha
Crop rotation.' fertilizer per 1 ha of crop rotation area |
Cultures |
Total per rotation, c'ha |
Per 1 ha of arable crop rotation |
||||
Grains 100% s.g.c. |
Peas |
Winter wheat |
Winter wheat |
Oat |
|||
- |
2.81 |
425 |
3.82 |
3.66 |
14.54 |
3.64 |
|
Nsi ?P«6 ?KM 2 + manure |
3.14 |
5.71 |
5.90 |
4.41 |
19.15 |
4.80 |
|
N,, ,Р44 4K44 4 + bp.-- siderate |
2.80 |
4.70 |
506 |
3.92 |
16.47 |
4 12 |
|
Grains, 100 % s.g.c. |
Peas |
Winter wheat |
Com for gram |
Oat |
Total per rotation, c'ha |
Per 1 ha of crop rotation |
|
- |
2.58 |
4.10 |
5.15 |
3.61 |
15.44 |
3.86 |
|
N66 2Peg , + manure |
3.12 |
5.78 |
7.77 |
460 |
21.30 |
5.33 |
|
N4, ,P4« оК4Я ? + bp.-- siderate |
2.80 |
490 |
6.74 |
4.14 |
18.58 |
4.64 |
|
Grain-fodder 75 % s.g.c. |
Clover |
Winter wheat |
Winter wheat |
Spring barley |
Total per rotation, c ha |
Pet 1 ha of crop rotation |
|
- |
7.60 |
4.45 |
3.91 |
3.40 |
19.36 |
4.84 |
|
N4S oPm oKfio о + manure |
9.85 |
5.80 |
6.27 |
5.50 |
27.41 |
6.85 |
|
Nio 0P41 iKn 2 + bp.-- siderate |
8.20 |
4.90 |
5.27 |
4.15 |
22.52 |
5.63 |
|
Crop rotation, 50 % s.g.c. |
Clover |
Winter wheat |
Potatoes |
Spring barlev |
Total per rotation, c'ha |
Per 1 ha of crop rotation |
|
- |
8.00 |
4.34 |
1.46 |
3.51 |
17.31 |
4.33 |
|
N„ ,PM rKm n + manure |
11.34 |
5.97 |
3.00 |
4.74 |
25.05 |
6.26 |
|
N17 ,P4 17K0 7 + bp.-- siderate |
9.00 |
5.25 |
2.56 |
4.30 |
21.11 |
5.30 |
|
Grain-weed removing. 75 % s.g_c. |
Buckwheat |
Winter wheat |
Potatoes |
Spring barlev |
Total per rotation, c'ha |
Per 1 ha of crop rotation |
|
- |
2.55 |
3.97 |
141 |
3.88 |
11.81 |
2.95 |
|
NSt 5P7S 0K.75 n + manure |
3.40 |
5.65 |
2.88 |
5.07 |
17.00 |
4.25 |
|
N41 nP48 -KM 7 + bp -- siderate |
2.86 |
4.63 |
2.43 |
4.60 |
14.52 |
3.63 |
Potatoes grown under an alternative fertilization system in crop rotation formed 2.43-2.56 t/ha, and buckwheat - 2.86 t/ha of by-products. Under the traditional fertilization system, this indicator was the highest among all cultivated crops. In particular, after meadow clover remained 9.85-11.34 t/ha, corn for grain - 7.77 t/ha, winter wheat - 5.65-5.97 t/ha, winter wheat in repeated sowings - 5.90-6.27 t/ha of organic substances. On the background of this fertilization system, the number of by-products in potatoes and buckwheat increased to 2.88-3.00 t/ha and 3.40 t/ha.
The analysis of the accumulation of plant residues by crop rotation showed that, in general, during the rotation, the largest amount of them entered the soil environment in the grain-forage (19.36-27.41 t/ha) and crop (17.31-25.05 t/ha) rotations, the smallest - in grain-weed removing with 75% saturation with grain crops (11.81-17.00 t/ha). Accordingly, based on the calculation per hectare of crop rotation, this indicator was: 4.84-6.85, 4.33-6.26 and 2.95-4.25 t/ha. The amount of accumulation of plant residues in other crop rotations acquired intermediate values.
Conclusions
The formation of the nutrient regime of the soil under grain crops in short-rotation crop rotations is influenced by the fertilization system and precursors.
Without the introduction of fertilizers during the recovery of winter wheat vegetation, the higher values of the indicators of the nutritional regime are formed in the crop rotation with the precursor of the meadow clover culture (the content of mobile forms of nitrogen, phosphorus and potassium was 10.81, 10.93 and 9.71 mg kg-1 of soil) and in grain with a predecessor of peas (according by nutrients, 10.72, 11.11 and 10.19 mg kg-1 of soil); the lowest (10.19, 10.86 and 9.79 mg kg-1 soil) - in grain rotation in repeated sowings of winter wheat.
Accumulation of the highest content of nutrients in the soil takes place on variants of the traditional fertilization system with the application of a fertilized complex with 40 t/ha of manure and mineral fertilizers in a dose of N60P90K90 directly under winter wheat, and N60P60K60 under spring barley.
The largest amount of plant residues accumulate in the soil under the traditional fertilization system after meadow clover (9.85-11.34 t/ha), corn for grain (7.77 t/ha), winter wheat - (5.65-5.97 t/ha), the lowest - after potatoes (2.88-3.00 t/ha) and buckwheat (3.40 t/ha).
The highest level of accumulation of plant residues by crop rotations in the soil environment occurs in grain-fodder (19.36-27.41 t/ha) and (17.31-25.05 t/ha) rotations, the lowest - in grain-weed removing crop with 75% saturation with grain crops (11.81-17.00 t/ha).
Список використаної літератури
1. Бойко П. І. Ефективні різноротаційні сівозміни у сучасному землеробстві. Вісник Полтавської державної аграрної академії. 2014. № 3. С. 20-32.
2. Гамаюнова В. В., Касаткіна Т. О. Вплив оптимізації живлення ячменю ярого на формування якості зерна в умовах Південного Степу України. Наукові горизонти. 2019. № 10 (83). С. 3-12.
3. Екологічні аспекти удобрення сільськогосподарських культур / за ред. В. В. Волкогона. Київ : Аграр. наука, 2019. 264 с.
4. Господаренко Г. М. Система застосування добрив. Київ : ТОВ «СІК ГРУП УКРАЇНА», 2018. 376 с.
5. Ефективність застосування побічної продукції зернових культур на добриво за різних способів обробітку сірого лісового ґрунту / Н. М. Тараріко та ін. Землеробство. 2012. Вип. 84. С. 56-62.
6. Єщенко В. О. Роль сівозмін у сучасному землеробстві. Землеробство. Вип. 1. С. 23-27.
7. Заришняк А. С., Цвей Я. П., Іваніна В. В. Оптимізація удобрення та родючості ґрунту в сівозмінах. Київ : Аграрна наука, 208 с.
8. Камінський В. Ф. Наукові основи оптимізації живлення рослин в сучасних системах землеробства. Землеробство. Вип. 2 (95). С. 3-6.
9. Кірілеско О. Л., Корнійчук О. В. Вплив насичення сівозмін багаторічними травами, заорювання соломи та сидератів на баланс гумусу в ґрунтах. Землеробство. 2015. Вип. 1. С. 77-81.
10. Літвінов Д. В., Борис Н. Є. Зміна органічної речовини та біогенних елементів під культурами у сівозмінах. Землеробство. 2018. Вип. 2 (95). С. 14-19.
11. Boiko P. I. Effective multi-rotation crop rotations in modern agriculture. Visnyk poltavskoi derzhavnoi akademii. 2014. No. 3. P. 20-32.
12. Gamaiunova V. V., Kasatkina T. O. The effect of optimization of spring barley nutrition on the formation of grain quality in the conditions of the Southern Steppe of Ukraine. Scientific horizons. 2019. No. 10 (83). P. 3-12.
13. Ecological aspects of fertilization of agricultural crops / under the editorship V. V. Volkogon. K.: Agrarian. Science. 2019. 264 p.
14. Hospodarenko H.M. Fertilizer application system. Kyiv: LLC "SIK GRUP UKRAINA". 2018. 376 p.
15. Effectiveness of the use of byproducts of grain crops as fertilizer by different methods of processing gray forestal soil / N. M. Tarariko., et al. «Zemlerobstvo». 2012. Issue 84. P. 56-62.
16. Yeshchenko V.O. The role of crop rotation in modern agriculture. Zemlerobstvo. 2015. Issue 1. P. 23-27.
17. Zaryshniak A. S., Tsvei Y. P., Ivanina V. V. Optimization of fertilization and soil fertility in crop rotations. K.: Agrarian science. 2015. 208 p.
18. Kaminskyi V. F. Scientific basis of optimization of plant nutrition in modern agricultural systems. Zemlerobstvo. 2018. Issue 2 (95). P. 3-6.
19. Kirilesko O. L., Korniichuk O. V. The influence of saturation of crop rotations with perennial grasses, plowing of straw and siderates on the balance of humus in soils. Zemlerobstvo. 2015. Issue 1. P. 77-81.
20. Litvinov D. V., Borys N. E. Changes in organic matter and biogenic elements under crops in crop rotations. Zemlerobstvo. 2018. Issue 2 (95). P. 14-19.
21. Мирошниченко М. С. Продуктивність коротко ротаційних сівозмін за системи удобрення та обробітку ґрунту. Збірник наукових праць ННЦ «Інститут землеробства НААН». Вип. 3/4. С. 3-14.
22. Надточій П. П., Ратошнюк В. І., Ратошнюк Т. М. Вплив добрив і обробітку на якісний стан дерново-підзолистого ґрунту та продуктивність польових культур сівозміни в умовах Житомирського Полісся. Вісник аграрної науки. 2021. № 5 (818). С. 5-15.
23. Польовий В. М. Оптимізація систем удобрення у сучасному землеробстві. Рівне : Волинські обереги, 2007. 320 с.
24. Потапенко Л. В., Горбаченко Н. І. Вплив систем удобрення та мікробних препаратів на формування поживного режиму дерново-підзолистого ґрунту. Сільськогосподарська мікробіологія. 2021. Т. 34. С. 53-60.
25. Продуктивність пшениці озимої в короткоротаційній сівозміні Лівобережного Лісостепу на різних рівнях інтенсифікації / Я. С. Цимбал та ін. Збірник наукових праць ННЦ «Інститут землеробства НААН». 2020. Вип. 1/2. С. 32-41.
26. Продуктивність агрофітоценозів різноротаційних сівозмін у Лівобережному Лісостепу / П. І. Бойко та ін. Землеробство. 2015. Вип. 1. С. 32-37.
27. Системи удобрення сільськогосподарських культур у землеробстві початку ХХІ століття / за ред. С. А. Балюка і М. М. Мірошниченка. Київ : Альфа-стевія, 2016. 400 с.
28. Тараріко О. Г. Охорона родючості ґрунтів у контексті продовольчої безпеки. Вісник аграрної науки. 2003. № 2. С. 5-9.
29. Цвей Я. П. Родючість ґрунтів і продуктивність сівозмін. Київ : КОМПРИНТ, 2014. 416 с.
30. Якість ґрунту. Визначення легкогідролізного азоту методом Корнфілда: ДСТУ 7863:2015. [Чинний від 2016-07-01]. Київ : УкрНДНЦ, 2016. 9 с. Якість ґрунту. Визначання
31. Myroshnychenko M. S. Productivity of short-rotational crop rotations under fertilization and tillage systems. Collection of scientific works of the NSC "Institute of Agriculture of the National Academy of Sciences". 2019. Issue 3-4. P. 32-14.
32. Nadtochiy V.R., Ratoshnyuk V.I., Ratoshnyuk T.M. The influence of fertilizers and tillage on the quality of sod-podzolic soil and the productivity of field crops of crop rotation in the conditions of Zhytomyr Polissia. Visnyk ahrarnoi nauky. 2021. No 5 (818). P. 5-15.
33. Polovyi V. M. Optimization of fertilization systems in modern agriculture. Rivne: Volynski oberehy. 2007. 320 p.
34. Potapenko L. V., Horbachenko N. I. (2021). The influence of fertilization systems and microbial preparations on the formation of the nutritional regime of sod-podzolic soil. Silskohospodarska mikrobiolohiia. 2021. T. 34, P. 53-60.
35. Productivity of winter wheat in shortrotation crop rotation of the Left-Bank Forest-Steppe at different levels of intensification / Ya.S. Tsymbal, et al. Zbirnyk naukovykh prats NNTs «Instytut zemlerobstva CAA'A». 2020. Issue 1/2. P. 32-41.
36. Productivity of agrophytocenoses of different rotational crop rotations in the LeftBank Forest-Steppe / P. I. Boiko et al.. Zemlerobstvo. 2015. Issue 1. P. 32-37.
37. Fertilization systems of agricultural crops in agriculture at the beginning of the 21st century / Ed. S. A. Baliuk and M. M. Miroshnychenko. K.: Alpha-stevia, 2016.400 p.
38. Tarariko O. H. Protection of soil fertility in the context of food security. Visnyk ahrarnoi nauky. No. 2. 2003. P. 5-9.
39. Tsvei Ya.P. Soil fertility and crop rotation productivity. K.: "COMPRYNT". 2014. 416 p.
40. Soil quality. Determination of easily hydrolyzable nitrogen by the Kornfield method: DSTU 7863:2015. [Valid from 2016-07-01]. Kyiv: UkrNDNC, 2016. 9 p.
41. Soil quality. Determination of mobile compounds of phosphorus and potassium by the Kirsanov method in the modification of рухомих сполук фосфору і калію за методом Кірсанова в модифікації ННЦ ІГА: ДСТУ 4405:2005. [Чинний від 200505-30]. Київ : Держспоживстандарт України, 2006. 18 с.
42. Якість ґрунту. Відбирання проб: ДСТУ 4287:2004. [Чинний від 2005-07-01]. Київ : Держспоживстандарт України, 2005. 9 с. (Національні стандарти України).
43. Якість ґрунту. Попереднє обробляння зразків: ДСТУ ISO 114642001. [Чинний від 2002-04-02]. Київ : Держспоживстандарт України, 2003. 19 с. (Національні стандарти України).
44. Do cover crops benefit soil microbiome? A meta-analysis of current research / Kim N. et al. Soil. Biol. Biochem. № 142. Р. 1-14.
45. Effect of fertiliser on changes in labile and water-soluble forms of humus in short-term rotations / Stasiv, O. et al. Scientific Horizons. 2022. 25(4). P. 9-17.
46. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat / Li, C.X. et al. Journal of Integrative Agriculture. 2018. 17. P. 210-219.
47. Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma. 2019. 337. P. 927-934.
48. Long-Term Effects of the Use of Organic Amendments and Crop Rotation on Soil Properties in Southeast Spain / Sanchez- Navarro, A. et al. Agronomy. 2021. 11. P. 2363.
49. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China. / He, P. et al. Agron. J. 2009. 101. P. 1489-1496.
50. Rotation and Fertilization Effects on Soil Quality and Yields in a Long Term Field Experiment. / Giacometti, C. Agronomy. the National Center of IGA: DSTU 4405: 2005. [Valid from 2005-05-30]. Kyiv: Derzhspozhyvstandart of Ukraine. 2006. 18 p.
51. Soil quality. Sampling: DSTU 4287:2004. - [Valid from 2005-07-01]. K.: Derzhspozhyvstandart of Ukraine, 2005. 9 p. (National standards of Ukraine).
52. Soil quality. Preliminary processing of samples: DSTU ISO 11464-2001. [Valid from 2002-04-02]. K.: Derzhspozhyvstandart of Ukraine, 2003. 19 p. (National standards of Ukraine).
53. Do cover crops benefit soil microbiome? A meta-analysis of current research / Kim N. et al. Soil. Biol. Biochem. № 142. Р. 1-14.
54. Effect of fertiliser on changes in labile and water-soluble forms of humus in short-term rotations / Stasiv, O. et al. Scientific Horizons. 2022. 25(4). P. 9-17.
55. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat / Li, C.X. et al. Journal of Integrative Agriculture. 2018. 17. P. 210-219.
56. Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma. 2019. 337. P. 927-934.
57. Long-Term Effects of the Use of Organic Amendments and Crop Rotation on Soil Properties in Southeast Spain / Sanchez- Navarro, A. et al. Agronomy. 2021. 11. P. 2363.
58. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China. / He, P. et al. Agron. J. 2009. 101. P. 1489-1496.
59. Rotation and Fertilization Effects on Soil Quality and Yields in a Long Term Field Experiment. / Giacometti, C. Agronomy. 11. P. 636. 11. P. 636.
60. The benefits of crop rotation including cereals and green manures on potato yield and nitrogen nutrition and soil properties / N'Dayegamiye, A. et al. Adv. Crop Sci. Technol. 2017. 5. P. 279.
61. The effect of mineral fertilisers and farmyard manure on grain and straw yield, quality and economical parameters of winter wheat / Hlisnikovsky L. et al. Plant, Soil and Environment. 2020. 66. P. 249-256
62. The influence of AKM Growth Regulator on Photosynthetic Activity of Oilseed Flax Plants in the Conditions of Insufficient Humidification of the Southern Steppe of Ukraine / Eremenko O. et al. Modern Development Paths of agricultural production. Ed. V. Nadykto. 2019. P. 703807.
63. The influence of ecologised fertiliser systems on the elements of fertility and productivity of winter wheat. / Dubytska, A. Scientific Horizons. 2021. 24(9). P. 44-54.
64. Triberti, L.; Nastri, A.; Baldoni, G. Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur. J. Agron. 74. P. 47-55
65. Wozniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture. 2019. 9. P. 262.
66. Yield and quality of winter durum wheat grain depending on the fertiliser system / Hospodarenko, H. et al. Scientific Horizons. 2022. 25(3). P. 16-25.
67. The benefits of crop rotation including cereals and green manures on potato yield and nitrogen nutrition and soil properties / N'Dayegamiye, A. et al. Adv. Crop Sci. Technol. 2017. 5. P. 279.
68. The effect of mineral fertilisers and farmyard manure on grain and straw yield, quality and economical parameters of winter wheat / Hlisnikovsky L. et al. Plant, Soil and Environment. 2020. 66. P. 249-256.
a. The influence of AKM Growth Regulator on Photosynthetic Activity of Oilseed Flax Plants in the Conditions of Insufficient Humidification of the Southern Steppe of Ukraine / Eremenko O. et al. Modern Development Paths of agricultural production. Ed. V. Nadykto. 2019. P. 703807.
69. The influence of ecologised fertiliser systems on the elements of fertility and productivity of winter wheat. / Dubytska, A. Scientific Horizons. 2021. 24(9). P. 44-54.
70. Triberti, L.; Nastri, A.; Baldoni, G. Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur. J. Agron. 74. P. 47-55.
71. Wozniak, A. Chemical properties and enzyme activity of soil as affected by til...
Подобные документы
World forest region map. Deforestation as the conversion of forest land to non-forest land for use (arable land, pasture). Effect of destruction of large areas of forest cover on the environment and reduce biodiversity. The methods of forest management.
презентация [1,4 M], добавлен 06.05.2012The nature and terms of the specialization of agricultural enterprises. The dynamics of the production of corn for grain. Deepening of specialization and improve production efficiency. The introduction of mechanization and advanced technologies.
курсовая работа [67,7 K], добавлен 13.05.2015Oscar Wilde as an Irish playwright, poet, author of numerous short stories, the one of the most successful playwrights of the late Victorian era in London. The novels by Oscar Wilde: "Picture of Dorian Gray", "Plot". The main characters of Oscar Wilde.
реферат [26,7 K], добавлен 23.10.2009Russian Icons - A Short History. Schools of Icons. Kiev school, Novgorod school, Moscow school, Pskov school. Russian Icons Restoration and Conservation. The icon Restoration Process. Increased complexity in compositions and theological symbolism.
реферат [3,4 M], добавлен 03.11.2014Program automatic system on visual basic for graiting 3D-Graphics. Text of source code for program functions. Setting the angle and draw the rotation. There are functions for choose the color, finds the normal of each plane, draw lines and other.
лабораторная работа [352,4 K], добавлен 05.07.2009National Beginning in American literature and Edgar Poe as one of its beginners. Characteristics of his short stories. Edgar Poe is the creator of wonderful satirical grotesque in which he laughed at unchangeable and impatient for him human defects.
дипломная работа [51,0 K], добавлен 21.07.2009Among the most urgent problems are the ozone layer, acid rains, global warming, toxic pollution of atmosphere, disappearance of forests, contamination of underground waters by chemical elements, destruction of soil in some areas.
топик [5,9 K], добавлен 13.05.2002The essence of economic efficiency and its features determination in grain farming. Methodology basis of analysis and efficiency of grain. Production resources management and use. Dynamics of grain production. The financial condition of the enterprise.
курсовая работа [70,0 K], добавлен 02.07.2011The Arab Spring - a wave of demonstrations and coups that began in the Arab world December, 2010. Revolutions in Tunisia, Egypt and Yemen; civil wars in Libya and Syria; fall of the regime; mass protests in Algeria. The main slogan of the demonstrators.
презентация [3,0 M], добавлен 17.11.2014The popular explanation of lift The wing as a pump. Lift as a function of angle of attack. The wing as air "scoop". Axis of Rotation Forces. Flight Control Surfaces. History of Laminar Flow. The B-24 bomber's "Davis" airfoil was a laminar flow airfoil.
курсовая работа [3,4 M], добавлен 08.07.2009Consideration of the need to apply nanotechnology in agriculture to improve nutrition in the soil, management of toxic elements in the hydrosphere, monitoring the ecological state of land, spraying of mineral substances, purifying water surfaces.
реферат [12,3 M], добавлен 25.06.2010Air, water and soil as necessity for existence of all living things. Importance of solving the environmental problems that endanger people's lives. Water and air pollution. Pesticides, rubbish and poison-beware. Reduction of pollution. Drainage systems.
доклад [27,1 K], добавлен 08.01.2011The Voroninsky reserve as a protection of the remained forest-steppe ecosystems of the Central Russia. Animals of the red book: the dozorshchik-emperor, lampreys, mnemozina, a bee-carpenter, a changeable bumblebee, nikolsky's viper, short-toed eagle.
презентация [4,9 M], добавлен 18.04.2011Mark Twain - a great American writer - made an enormous contribution to literature of his country. Backgrounds and themes of short stories. Humor and satire in Mark Twain‘s works. Analysis of story "The Celebrated Jumping Frog of Calaveras Country".
курсовая работа [260,9 K], добавлен 25.05.2014The term "political system". The theory of social system. Classification of social system. Organizational and institutional subsystem. Sociology of political systems. The creators of the theory of political systems. Cultural and ideological subsystem.
реферат [18,8 K], добавлен 29.04.2016The political regime: concept, signs, main approaches to the study. The social conditionality and functions of the political system in society. Characteristic of authoritarian, totalitarian, democratic regimes. Features of the political regime in Ukraine.
курсовая работа [30,7 K], добавлен 08.10.2012I like my school very much because I have spent the best years of my short life there. But in spite of it I dislike the whole system of education. What concerns my school the pupils are not free in their choice of the subjects.
топик [4,7 K], добавлен 29.09.2006History of the online payment systems. Payment service providers. Online bill payments and bank transefrs. Pros and cons for using online payment systems. Card Holder Based On Biometrics. Theft in online payment system. Online banking services, risk.
реферат [37,2 K], добавлен 26.05.2014Memory, Teaching and his types. Why we need teaching of memory. Short-term and protracted memory: oppositions and coincidences. Short-term memory and methods of his improvement. Listening of methods is in translation. Scholars of research of listening.
дипломная работа [45,4 K], добавлен 10.07.2009Short-story description of public holidays of Great Britain: Christmas, New Year, Easter, spring and summer Bank holidays. Conservative character of Britannic festive traditions. Tradition and organization of celebration of New Year and Christmas.
реферат [21,1 K], добавлен 05.02.2011