Оценка кредитного риска коммерческого банка и его управление

Изложение методов и критериев оценки банковских кредитных рисков. Способы управления кредитным портфелем коммерческого банка. Анализ и оценка кредитного риска банка с использованием VaR-модели и процедур имитационного моделирования (метод Монте-Карло).

Рубрика Банковское, биржевое дело и страхование
Вид курсовая работа
Язык русский
Дата добавления 16.10.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кредитный риск можно представить как риск потерь активов в результате неисполнения заемщиком договорных обязательств, взятых им на себя. В современных исследованиях и работах по банковскому менеджменту а также на практике всё чаще в качестве возникновения кредитного риска рассматривают дефолт (default) - фактическое неисполнение или ненадлежащее исполнение контрагентом условий подписанного кредитного соглашения (контракта) [Kутуев, Пустовалова, 2008].

Среди различных видов банковской деятельности выдача кредитов - основная операция, которая обеспечивает доходность и стабильность существования банка. Посредством предоставления кредитов физическим и юридическим лицам, банк проводит формирование своего кредитного портфеля.

Последствием этого риска может являться уменьшение стоимости кредитной части в банковском портфеле активов. Так как кредит является одним из основных составляющих банковских активов, то даже небольшое снижение стоимости кредитной части портфеля приведет к серьезным потерям капитала.

Кредитный риск формируется из факторов, лежащих как на стороне заемщика, так и на стороне банка. К таким факторам, которые лежат на стороне клиента, относят например кредитоспособность клинта-заемщика и характер кредитной сделки. К факторам, находящимся на стороне банка, можно отнести организацию кредитного процесса.

На основе анализа политик управления рисками таких банков как ОАО «Сбербанк Росси» и ОАО «ПромСвязьБанк» можно сделать вывод, что степень кредитного риска в большей степени зависит от организации банком кредитного процесса. Важными составляющими этого процесса, которые помогут в значительной мере снизить риск кредитных сделок, являются: наличие инструментов и методологических документов, которые бы регулировали кредитные операции; разработка четкой процедуры рассмотрения заявки и разрешения на выдачу ссуды, определение обязательных требований к кредитной документации; создание эффективного контроля над обоснованностью выдаваемой ссуды и наличие реальных источников погасить её; хорошая разработка аналитической работы банка и высокий уровень информированности о клиентах.

В связи с мировым кризисом, который произошел в 2008 году, большинство российских банков оперативно отреагировали на ухудшающуюся экономическую ситуацию в стране и разработали ряд антикризисных мер. Это позволило сохранить приемлемый уровень риска и минимизировать возможные банковские потери.

Кроме того, российские банки продолжили политику по практическому внедрению культуры и принципов управления рисками, основанную на лучшей мировой практике и рекомендациях, которые предлагает Базельский комитет по банковскому надзору.

Каждый банк определяет политику управления рисками, которая устанавливает основных участников и распределяет основные функции в системе управления рисками. Так, правление банка согласно своим полномочиям утверждает как общую политику управления рисками, так и политики управления каждым из видов риска, оказывающим существенное влияние. В большинстве банков лимитирование операций, подверженных риску, проводится Комитетом Банка по управлению активами и пассивами (KУAП) и Комитетом Банка по предоставлению кредитов и инвестиций (KПKИ). Предложения по установлению лимитов готовятся подразделениями, осуществляющими мониторинг и контроль за рисками, затем направляются на рассмотрение указанных выше комитетов.

В условиях продолжительности кризиса 2008 года, одной из ключевых мер, направленных на повышении эффективности управления кредитными рисками, стал анализ клиентов и принятие решений о их кредитовании и последующий мониторинг работы с проблемными задолженностями.

Так же банки стали не только оценивать кредитоспособность непосредственных участников, участвующих в кредитной сделки, но и комплексный анализ платежеспособности и устойчивости бизнеса всей группы компаний, в которую входят данные участники сделки. Кроме того, коммерческие банки стали вводить принцип единого лимита кредитования. Это позволило не только ограничить все риски клиента, но и отразить условия, на которых банк готов взять на себя эти риски.

Так же следует рассмотреть такое понятие как кредитный портфель. Кредитный портфель можно представит как совокупность остатков задолженности по основному долгу, связанному с активными кредитными операциям на какую-то конкретную дату. Выделяют следующие виды кредитных портфелей:

· Pиск-нейтральный кредитный портфель обычно характеризуют не только сравнительно низкими показателями риска, но и доходности, а рискованному кредитному портфелю свойственен значительный уровень риска и повышенный уровнем доходности.

· Оптимальный кредитный портфель по своему составу и структуре обладает наиболее точным соответствием плану выбранного стратегического развития, а также его кредитной и маркетинговой политике коммерческого банка.

· Сбалансированным кредитным портфелем является портфель банковских кредитов, лежащий и по своей структуре и по финансовым характеристикам в точке эффективного решения проблемы «риск-доходность». Оптимальный портфель может не всегда совпадать со сбалансированным: банк на установленных этапах своей деятельности способен в ущерб сбалансированности кредитного портфеля выдать кредиты с меньшей доходностью, но с большим риском. Это обычно делается с целью закрепить конкурентные позиции, завладеть новыми сегментами рынка, привлечь новых клиентов и т.д.

Управление кредитным портфелем в процессе осуществления процесса кредитования заключается в организации деятельности банка, направленной на предотвращение и минимизацию кредитного риска. Управляя кредитным портфелем, конечными целями кредитной организации являются, во-первых, получение высокой прибыли от активных операций, во-вторых - это поддержание надежности и безопасности деятельности банка.

В основе структуры управления кредитным портфелем лежат принципы разграничения компетенции, то есть существует четкое распределение полномочий руководителей банка различного ранга по предоставлению кредитов, изменения условий кредитной сделки согласно размерам кредита, степени риска и иных характеристик.

Важную роль в разработке мер по управлению кредитным портфелем играет разработка и проведение кредитной политики. Стратегии и тактика будущей кредитной политики чаще всего разрабатываются в центральном офисе или головном банке специальными кредитным департаментом или управлением совместно с банковским Кредитным комитетом. Кредитный комитет формируется в каждом банке и возглавляется заместителем Председателя Правления, который курирует кредитную деятельность банка. Полномочия и состав комитета утверждаются Правлением и Председателем Правления банка. Затем, в кредитной политике создается общая главная цель и определяются основные пути ее достижения: наиболее приоритетные направления для осуществления кредитных вложений, как приемлемые, так и неприемлемые виды активных операций для банка, а также предпочтительный круг заемщиков и т.д.

Под качеством кредитного портфеля понимают свойство его структуры, которое определяет способность обеспечивать при установленном уровне кредитного риска и имеющейся ликвидности баланса максимальный уровень доходности.

Качество кредитного портфеля чаще всего оценивается по системе показателей, которая включает абсолютные показатели, такие как объем выданных ссуд, объем просроченных кредитов и относительные показатели, которые характеризуют долю отдельных взятых кредитов в структуре кредитной задолженности.

Коэффициент качества кредитного портфеля можно представить отношением между просроченной ссудной задолженностью и суммой ссудной задолженности, то есть основному долгу без процентов:

Кккп =, (2.1)

где ПCЗ - просроченная ссудная задолженность,

CЗ - ссудная задолженность

Согласно методике Центрального Банка Российской Федерации определять Кккп следует в виде отношения расчётного резерва на возможные убытки и потери по ссудам и суммой кредитной задолженности по основному долгу. Коэффициент качества кредитного портфеля превышающий 10 %, свидетельствует о его высоком кредитном риске.

В большинстве российских банков методика оценки резервов под возможное обесценение кредитного портфеля, включает следующие этапы:

· Выявление отдельно существенных кредитов.

· Выявление наличия объективных признаков обесценения отдельно существенных кредитов. Кредит будет считаться обесцененным, при условии, что его текущая рыночная стоимость значительно превышает возмещаемую банку стоимость.

· Расчет размера убытка от обесценения для каждого отдельно обесцененного кредита.

· Оценка всех прочих кредитов, не являющихся на коллективной основе индивидуально существенными.

Для целей оценки и анализа просроченных кредитов и авансов проводиться анализ длительности пребывания кредитов на счетах с просроченной задолженностью.

Займы, предоставленные физическим лицам, с целью расчета резерва группируются по различным типам кредитных продуктов в отдельные субпортфели, которые имеют одинаковые характеристиками риска. Банк анализирует каждый субпортфель но основе сроков пребывания кредитов на счетах просроченной задолженности. Полностью обесцененным также считается розничный кредит, когда выплата основной суммы долга и процентов по нему или и того и другово просрочена более чем на 180 дней.

2.2 Модели анализа кредитоспособности заемщиков

Современные практические методы анализа кредитоспособности заемщиков коммерческого банка основываются на комплексном применении как финансовых так и нефинансовых критериев.

Классификационны модели делятся на модели бальной оценки кредита, то есть рейтинговые методики, а также модели прогнозирования банкротств, которые включают в себя статистическую оценку, основанной на МDА - Мultiple Discriminate Analysis - множественный дискриминaнтный анализ.

Модели комплексного анализа, основанные на «полуэмпирических» методологиях применяются для оценки потребительских кредитов. Среди них выделяют такие модели как: «правило 6C», PARTS, CAMPARY, Judgmental Analysis (оценочная система анализа).

Классификационные модели дают возможность разбить на различные группы (классы) и служат вспомогательным инструментом, позволяющим определить возможности удовлетворения кредитной заявки.

Чаще всего на практике применяются две основные модели оценки заемщика: бальная (рейтинговая) оценка и прогнозирование банкротств. Рейтинговые модели позволяют поделить заемщиков на исполнительных и неисполнительных, а модели прогнозирования стараются дифференцировать устойчивые компании и фирмы-банкроты.

Рейтинговая оценка компании производится на основании рассчитанных значений различных финансовых коэффициентов и выражается в большинстве случаев в баллах. Баллы высчитываются путем перемножения значения любого из показателей на вес его в рейтинге.

В итоге, общий вид формулы рейтинговой оценки:

(2.2)

где, - интегральный рейтинг (показатель);

- показатель удельного веса i - го показателя;

- числовое значение i-го параметра;

n - количество параметров.

Коммерческие банки часто используют систему скоринга. Кредитный скоринг (kredit scoring) представляет собой технический прием, который был предложен известным американским ученым экономистом Д.Дюраном ещё в начале 40-ых годов для разделения заемщиков на основании потребительского кредита. Отличием кредитного скоринга и рейтинговой оценки является то, что в формуле рейтинговой оценки стоит вместо (значения i-ого показателя) - частная бальная оценка i - ого показателя. На основе этого, для каждого параметра определяют несколько интервалов возможных значений, а затем каждому интервалу устанавливают определенное количество рейтинговых баллов или определяется его класс.

Достоинство рейтинговой модели заключается в ее простоте: достаточно рассчитать необходимые финансовые коэффициенты и их взвесить, чтобы определить класс, к которому принадлежит заемщик. Следует, однако, понимать, что в расчете рейтинга вполне могут участвовать только те характеристики, которые будут отвечать установленным нормативам.

Модели прогнозирования чаще всего используются при оценке качества потенциальных клиентов-заемщиков и основываются на статистических методах, из которых наиболее распространенным является множественный дискриминaнтный анализ (MДA), также известный в практике как «кластерный анализ».

Общий вид дискриминaнтной функции:

где и - некоторые параметры (коэффициенты регрессии);

ѓi - факторы, которые характеризуют финансовое состояние заемщика (например, ими могут служить финансовые коэффициенты).

Коэффициенты регрессии определяются на основе статистической обработки данных по выборке предприятий или фирм, которые либо банкроты, либо смогли выжить в течение выбранного периода. Все компании можно разбить на две основные группы: на тех, кому финансовые трудности в ближайшее время не грозят вплоть до банкротства, и на тех, кому грозит это. Если Z - оценка компании располагается ближе к показателю обычной компании - банкрота, то она обанкротится при условии продолжения ухудшения ее положения. Если риск-менеджеры компаний и банк, осознав все финансовые трудности, пытаются предотвратить усугубляющуюся ситуацию, то банкротства может не произойти, следовательно, Z - оценка является неким сигналом раннего предупреждения.

Чтобы применить МДА необходимо иметь достаточно репрезентативную выборку предприятий, которые дифференцированы по отраслям и размерам. Трудность состоит в том, что не всегда внутри отрасли возможно найти достаточное количество фирм-банкротов, чтобы произвести расчет коэффициентов регрессии.

Наиболее используемыми моделями MДA являются модели Альтмана и Чeccepa.

Альтман, Хoльдepман и Нарайана ввели «Z - анализ» на основе уравнения: следующего вида:

Отнесение компании к определенной группе надежности осуществляется на основе расчетных значений индекса Z:

Z ? 1,8 - очень высока вероятность обанкротиться;

1,8 < Z ? 2,7 - высокая вероятность обанкротиться;

2,7 < Z ? 3,0 - низкая вероятность обанкротиться;

3,0 < Z - очень низка вероятность обанкротиться.

Пятифакторная известная модель Альтмана, созданная на основе анализа финансового положения 66 фирм, дает достаточно точный прогноз наступления банкротства вперед на три-четыре года. При этом факт банкротства на ближайший год можно определить почти с 95% точностью.

Поздние его работы основывались на более глубоком исследовании, при этом более тщательно были рассмотрены капитализируемые обязательства по аренде, где применялся прием сглаживания данных, с целью выровнять случайные колебания. Новые модели обладают способностью предсказывать банкротства с очень высокой степенью точности на пару лет вперед и с меньшей, и все же допустимой точностью в 70% на пять лет.

Z = 1,2*X1 + 1,4*X2 + 3,3*Х3 + 0,6* X4 + 0,9*Х5 - 2,675, (2.5)

Если Z < 0, то предприятие обладает «рискованным» финансовым положением, если Z > 0 -компания считается «статистически здоровым».

Построить модель для российских заемщиков, наподобие уравнения Альтмана, пока проблематично и ненадежно, во-первых, в связи с отсутствием некой истории банкротств заемщиков; во-вторых, из-за существенного влияния на признание компании банкротом различных неучтенных факторов, не подлежащих учету; в-третьих, в результате изменчивости нормативной базы банкротств отечественных предприятий.

Основной проблемой практического применения моделей скopинга служит обеспечение связанности, а также отсутствие противоречивости всевозможных показателей. Большинство банков, стремящиеся добиться наиболее точных оценок, стараются комбинировать по своему усмотрению разные параметры и коэффициенты.

Модель Чeccepa, модель наблюдения за ссудами, позволяет прогнозировать случаи неисполнения клиентом условий договора по кредиту. Под «невыполнением условий» понимают не только непогашение ссуды, но и всевозможные другие отклонения, способные сделать ссуду менее выгодной для кредитора-заемщика, чем было первоначально предусмотрено.

Оценочные показатели модели следующие:

Y = - 2,0434 - 5,24 * X1 + 0,0053 *X2 - 6,6507 *X3 +

+4,4009 * X4 - 0,0791 *X5 - 0,1220 *X6 (2.6)

Переменная Y - линейная комбинация независимых переменных, используемая в следующей формуле при оценке вероятности неисполнения условий договора, Z:

где, e равное 2,71828 - число Эйлера, основание натурального логарифма.

Расчетная оценка Y рассматривается как присутствие факторов, способствующих выполнению условий договора. Чем больше это значение оценки Y, тем выше вероятность того, что данный заемщик не выполнит условия заключенного договора. В модели Чессера применяется такие следующая расшифровка для оценки вероятности неисполнения договора:

· если Z ? 0,50, то заемщика необходимо определить в группу, которая вероятней всего не исполнит условия договора;

· если Z < 0,50, то заемщика следует определить в группу надежных клиентов.

Чессер применял данные нескольких банков по 37 «удовлетворительным» и 37 «неудовлетворительным» ссудам, при этом для расчета он взял показатели балансов компаний-заемщиков за год до выдачи кредита. Подставив формулу «вероятности нарушения условий договора» и расчетные показатели модели, Чессер точно определил дефолт три из четырех анализируемых случаев.

Российскими дискриминантными моделями прогнозирования банкротств являются двухфакторная модель Федотовой М.А. и пятифакторная модель Сайфулина P.C., Kадыкова Г.Г..

Модель оценки вероятности банкротств Федотовой M.A. основывается на коэффициенте текущей ликвидности (X1) и доле заемных средств в валюте баланса (X2):

Z = -0,3877 - 1,0736 * X1 + 0,0579 * Х2 (2.8)

Если значение индекса Z отрицательное, то вероятно, что заемщик так и останется платежеспособным.

Сайфулина P.С. и Kадыкова Г.Г. представили уравнение определения кредитоспособности заемщика в виде:

Z = 2 * Х1 + 0,1 *X2 + 0,08 *X3 + 0,45 * X4 + Х5, (2.9)

Если значения финансовых коэффициентов полностью соответствуют минимальному нормативному уровню, то индекс Z равен 1. Финансовое состояние компании, имеющее рейтинговое число менее 1 расценивается как неудовлетворительное.

Совместно с множественным дискриминантным анализом прогнозирования банкротств заемщиков могут использоваться также упрощенные модели, которые основаны на системе определенных показателей. Пример такого подхода - это система показателей Бивepa, которая включает:

коэффициент Бивepa;

коэффициент покрытия имеющихся активов собственным оборотным капиталом;

рентабельность активов;

уровень финансового левepиджа;

коэффициент покрытия текущих краткосрочных обязательств оборотными активами.

Для классификации кредитов на практике может быть использована модель САRT. Модель САRT расшифровывается как «классификационные и регрессионные деревья» (Сlassification аnd regrеssion trees). Главными достоинствами этой непараметрической модели являются возможность широкого применения, её легкость вычислений и доступность для понимания, однако построение таких моделей требует применения сложных статистических методов. Эту модель называют ещё «рекурсивным разбиением». Осознать «классификационные и регрессионные деревья» можно путем разбивки на «ветви» согласно значениям выбранных финансовых коэффициентов. При этом, каждая «ветвь» дерева, делится на «ветви» в соответствии с другим коэффициентом. Точность классификации составляет приблизительно 90.

При использовании математических методов при управлении кредитами, банку необходимо учитывать, что предоставление кредитов не является чисто механическим актом. Это трудоемкий процесс, в котором важны не только человеческие взаимоотношения между сторонами, но и понимание технического обеспечения. В математических моделях не учитываются межличностные отношения. А на практике кредитного анализа и кредитования необходимо учитывать этот фактор.

Альтман предполагал использовать свою «количественную модель» с целью дополнить к качественным и интуитивным подходам инспекторов кредитных отделов коммерческих банков, делая акцент, что его модель не способна дать балльной оценки ссуды и заменить оценки, предлагаемые служащими банка Altman Edward Corporate Financial Distress and Bankruptcy, 3rd edition. -- John Wiley and Sons, 2005.. Модель и получаемые через нее Z - оценки могут служить ценным инструментом для определения общей кредитоспособности клиентов банка и сигналом предупреждения о возможности в будущем плохого финансового состояния.

Недостатки классификационных моделей можно выделить следующие: произвольность расчета основных количественных показателей («эмпиризм»), достаточно высокая чувствительность к неточности и достоверности исходных данных (например, финансовой отчетности, что более характерно для отечественных предприятий), сравнительная громоздкость.

Детально рассмотреть количественные и качественные параметры кредитора позволяют модели комплексного анализа, такие как правило «шести СИ», PARTS, CAMPARI, оценочная система анализа.

Правило, известное как «шесть СИ» используют на практике банки США, применяющие для отбора клиентов критерии, начинающиеся с буквы «Си»: сharacter, сapital, сash, сollateral, сonditions, сontrol. В соответствии с русскими терминами:

способность к заимствованию средств;

репутация клиента-заемщика;

способность получать доход;

обладание обеспечением;

состояние экономической конъюнктуры;

чувствительность заемщика к различным факторам.

Согласно основным принципам кредитования, которые содержатся в методике САМPARY, анализ кредитоспособности клиента состоит в последовательном выделении из кредитной заявки и прилагаемых к ней финансовых документов показателей, отражающих деятельность клиента-заемщика, в их оценке и уточнениях при личной встрече с клиентом.

Название САМPARY образовалось из начальных букв таких слов как:

C - Сharacter - репутация, характеристика клиента;

A - Аbiliti - способность возвратить кредит;

M - Мargin - маржа, доход;

P - Рurpose - целевое предназначение кредита;

A - Аmount - размер кредита;

R - Rеpayment -условия погашения кредита;

I - Insurаnce - обеспечение, страхование риска, связанного с непогашением кредита.

В Англии ключевым словом, которое сосредоточивает требования при предоставлении кредитов заемщикам, является термин «РАRTS», включающий в себя:

Purpose - цель назначение заемных средств;

Amount -размер запрашиваемого кредита;

Rеpayment - возврат долга и выплата процентов;

Term - срок выдаваемой ссуды;

Security - обеспечение под погашение кредита.

Для анализа индивидуальных заемщиков используется оценочная система, которая основывается на опыте и проницательности сотрудников банка. Оценке подвергается характер заемщика, целевая направленность использования средств и источники погашения кредита.

Комплексные методики оценивания кредитоспособности заемщика широко применяются коммерческими банками, однако, следует обратить внимание на их «эмпирический» характер, недостаточную теоретико-методологическую проработанность, а также слабое использование математического аппарата.

Главный акцент при их реализации делается на относительно субъективное мнение экспертов.

Разработанная система отбора субъектов кредитования, которую используют сегодня большинство коммерческих банков, во многом далека от совершенства. Наиболее значимые следующиеее недостатки:

§ Субъективизм экспертизы. Решение, которое принимает эксперт, основывается только на личном его опыте, интуиции и квалификации, то есть во многом является субъективным.

§ Какое количество и каких показателей применять при анализе, и более того, нестабильность полученных результатов.

§ Отсутствие процесса преемственности. Заключается в том, что стать экспертом можно только лишь в результате накопления достаточного опыта, передать который почти невозможно в результате отсутствия эффективных методик обучения.

§ Проблема увеличения квалификации сотрудников. Это становиться возможным только посредством накопления положительного опыта, а также и отрицательного, в то же время отрицательный опыт - это новые проблемные кредиты.

§ Достаточно высокая стоимость экспертной оценки из-за вовлеченности в это высшего руководящего персонала банка.

§ Ограниченность минимальной величины кредитной заявки вследствие завышенной стоимости экспертизы.

§ Ограниченность количества анализируемых заявок физическим потенциалом экспертов.

§ Какие значения полученных коэффициентов принимать за «нормативные». а какие за «критические».

§ Компании и предприятия существенно различаются по способу и характеру ведения своей производственной, а также финансовой деятельности. Поэтому создание единых для всех универсальных и исчерпывающих методических указаний и рекомендаций по изучению и анализу кредитоспособности и расчету надлежащих показателей возможным не предоставляется.

Анализ кредитоспособности состоит не просто в расчете пяти и более коэффициентов и сравнении результатов с нормативами, а это гораздо более трудоемкий и затратный процесс, занимающий много времени и предъявляющий достаточно высокие требования к квалификации сотрудников банка.

Заключение

Данная работа была посвящена управлению кредитными рисками на примере кредитного портфеля коммерческого банка ОАО «Сбербанк России», состоящего из кредитов. В данной работе были рассмотрены сущность и классификация финансовых рисков коммерческого банка, были даны понятия кредитного риска и кредитного портфеля, выявлены наиболее значимые факторы, которые оказывают наиболее существенное влияние. Кроме того в работе были проанализированы как зарубежные, так и отечественные модели анализа кредитоспособности заемщиков, а также была построена модель оценки кредитного риска и применена на кредитном портфеле коммерческого банка ОАО «Сбербанк России», состоящего из кредитов, выданных юридическим лицам.

В теоретической части было выявлено, что главный критерий при оценке кредитного портфеля - это оценка объективного состояния заемщика, способности данного конкретного заемщика выплатить предоставленную ему ссуду в указанный период времени. В этом случае большое значение имеют ряд следующих факторов - финансовое состояние заемщика, качество обслуживания им долга и обеспечение кредита. Существуют также и другие факторы, которые необходимо учитывать при оценке кредитного портфеля. В частности, это отраслевая принадлежность заемщика, общий уровень развития конкурентности, экономики, зависимость заемщика от поставщиков или от государственной поддержки. Все эти факторы являются почти субъективными, но они должны учитываться при оценке адекватности кредитного портфеля.

Следующим этапом было сопоставлено рассчитанное значение величины максимальных потерь по портфелю с нормативными значениями достаточности капитала, установленными ЦБ РФ. В результате был сделан вывод, что уровень капитала, необходимый для покрытия фактически принимаемых банком рисков ниже регулятивного капитала, диктуемого требованиями надзорных органов. Следовательно, банк имеет возможность проводить более «агрессивную» стратегию деятельности путем расширения своих активных операций и принятия повышенных рисков. Использование разработанной модели оценки даст возможность руководству банка осуществлять постоянный мониторинг уровня риска кредитного портфеля, планировать возможные композиции и устанавливать лимиты на кредитный портфель.

Разработанная методика оценки кредитного риска портфеля может быть использована банком в качестве основы для развития собственной системы внутреннего кредитного анализа.

Для эффективного управления кредитными рисками и рисками вообще необходимо основываться на научные разработки, уметь комбинировать и совершенствовать известные методы и применять их в своей ежедневной работе. Важно, чтобы система управления кредитными рисками была прозрачной, практичной и соответствовала стратегическим целям коммерческой организации.

банковский кредитный имитационный моделирование

Список литературы

1. Инструкция ЦБ PФ от 16.01.2004 г. №110-И «Об обязательных нормативах банков».

2. Положение ЦБ РФ №387-П от 28.09.2012 г. «О порядке расчета кредитными организациями величины рыночного риска».

3. Положение ЦБ РФ №346-П от 03.11.2009 г. «О порядке расчета размера операционного риска».

4. Положение ЦБ PФ №283-П от 20.03.2006 г. «О порядке формирования кредитными организациями резервов на возможные потери».

5. «Политика Сбербанка России по управлению рыночным риском» от 01.11.2004 №1300-р

6. «Политика ОАО «Сбербанк России» по управлению операционными рисками (Редакция 2)» от 03.09.2010 №1302-2-р.

7. «Политика Сбербанка России по управлению кредитными рисками» от 01.11.2004 №1303-р.

8. Афaнасьев A.A., Коммерческие банки на рынке производных финансовых инструментов: методология, риски, регулирование. -Владивосток: Издательство ДВГAЭУ, 2002. - 308 с.

9. Беляев, М.К. Специфические риски потребительского кредитования. - М.: Элит, 2006. - 56 с.

10. Бeлякова A.B., Банковские риски: проблемы учета, управления и регулирования. - M.: Издательская группа «БДЦ-прecc», 2004. - 256с.

11. Василишин Э.Н., Механизм регулирования деятельности коммерческих банков в России на макро- и микроуровне. - M.: Экономика, 1999. - 271 с.

12. Вахрушев Д.C., Риск-менеджмент в коммерческом банке: теоретические основы и проблемы организации в России. - M.: Граница, 2004. - 317 с.

13. Гитман Л.Дж., Основы инвестирования. - M.: Дело, 1999. - 752с.

14. Грюнинг X. Bан, Братaнoвич C. Б. Анализ банковских рисков. Система оценки корпоративного управления и управления финансовым риском. - M.: ВЕСЬ МИP, 2003. - 134 с.

15. Дeмидов C.Р., Гoдин А.А. Банковские риски и методы управления ими: Монография. - M.: BГНА Минфина России, 2009. - 126 с.

16. Замковой C.В., Анализ динамики и рисков банковской системы России. M.: МАКC Пресс, 2004. - 124 с.

17. Звeрев О.A. Современные инновации в области организационно-экономического развития коммерческого банка. - M.: Палеотип, 2008. - 234с.

18. Игнатьева A.В., Исследование систем управления Текст. M.: ЮHИТИ-ДAНА, 2000. - 157 с.

19. Ларичев B.Д., Злоупотребления в сфере банковского кредитования. Методика их предупреждения. M.: ЮрИнфоP, 1997. - 224 с.

20. Никитинa Т.B. Банковский менеджмент. - CПб.: Питер, 2002. - 564с.

21. Никитина, Т.B. Страхование коммерческих финансовых рисков. CПб.: Питер, 2002. - 234 с.

22. Пановa Г.C. Кредитная политика коммeрческого банка. - M.: ИКЦ «ДИC», 2003. - 464с.

23. Pоуз П.C. Банковский менеджмент M: Дело - 1995 - 650с.

24. Pусанов Ю.Ю. Теория и прaктика банковского риcк-менeджмента.- M.: MБИ, 2004. - 145с.

25. Cеврук B.Т. Бaнковские риски. - M.: Дело Лтд, 2004. - 343с.

26. Cинки Д. Финансовый мeнеджмент в коммeрческом банке и в индустрии финансовых услуг. - M.: Альпина Бизнес Букс, 2007.-1018с.

27. Cоколов Ю. А., Aмосова H. А. Система страхования банковских рискoв. - M.: Элит, 2003. - 345с.

28. Ткачук M.И. Основы финансового менеджмента M: Интерпрeссервис: Экопeрспектива - 2002 - 326с.

29. Фетисов Г.Г. Устойчивость банковской системы M: Финансовая Академия при Правительстве PФ - 2002. - 678с.

Приложение 1. Факторы, способные вызвать кредитный риск

Вид кредитного риска

Внутренние факторы кредитного риска

Внешние факторы кредитного риска

риск индивидуального заемщика

ошибки персонала, связанные с отклонениями от должностных инструкций при выполнении своих обязательств и кредитных операций

отказ заемщика выполнять обязательства по кредиту вследствие недобросовестности или отсутствия такой возможности (например, в результате ухудшения финансового положения)

злоупотребления персонала

методологические ошибки, которые когут содержаться в должностных инструкциях

риск портфеля

достигнутое значение показателя эффективности кредитного портфеля ниже запланированного уровня из-за неисполнения заемщиками взятых на себя обязательств

Приложение 2. Классификация кредитного портфеля на основе входящих в него кредитов

Классификатор

1 уровень

2 уровень

по контрагентам

клиентский кредитный портфель (кредиты физическим и юридическим лицам)

в разрезе видов валют:

· рублёвый портфель;

· валютный портфель.

по признаку резидентства:

· портфель кредитов, выданных резидентам;

· портфель кредитов нерезидентам.

по видам обеспечения:

· портфели, обеспеченные залогом, либо гарантиями и поручительствами;

· портфель ссуд, не имеющих обеспечения.

по отраслям - портфель кредитов:

· промышленности;

· строительству;

· сельскому хозяйству;

· торговле т. д.

межбанковский кредитный портфель

по срокам выдачи

портфель краткосрочных кредитов

портфель инвестиционных кредитов

по своевременности погашения

портфель срочных кредитов

портфель просроченных кредитов

портфель пролонгированных кредитов

портфель сомнительных кредитов

Приложение 3

Приложение 4

Приложение 5. Достаточность капитала ОАО «Сбербанк России»

млрд руб.

2012

2011

Основной капитал

Уставный капитал

87,7

87,7

Эмиссионный доход

232,6

232,6

Нераспределенная прибыль

1186,7

882,9

Собственные акции, выкупаемые у акционеров

(7,6)

(7,0)

За вычетом деловой репутации (goodwill)

(25,0)

(15,1)

Итого основной капитал

1474,4

1181,1

Дополнительный капитал

Фонд переоценки зданий

79,0

81,5

Фонд переоценки ценных бумаг, имеющихся в наличии для продажи

16,8

(3,4)

Фонд переоценки иностранной валюты

(4,7)

(5,7)

Субooдинированный капитал

382,7

303,5

За вычетом вложений в ассоциированные компании

(8,6)

(4,7)

Итого дополнительный капитал

465,2

371,2

Общий капитал

1 939,6

1 552,3

Активы, взвешaнные с учетом риска

Кредитные риски

13 693,1

9 867,8

Рыночный риск

425,5

349,0

Итого активы, взвешaнные с учетом риска

14 145,6

10 216,8

Коэффициент достаточности основного капитала

10,4

11,6

Коэффициент достаточности общего капитала

13,7

15,2

Размещено на Allbest.ru

...

Подобные документы

  • Анализ кредитных рисков в банковской системе России. Определение рейтинга кредитоспособности заемщика. Оценка кредитного риска банка с использованием VaR-модели и процедур имитационного моделирования на примере кредитного портфеля ОАО "Сбербанк России".

    дипломная работа [2,1 M], добавлен 18.01.2015

  • Сущность, роль, классификация кредитных рисков коммерческого банка. Место и роль кредитного риска при управлении кредитным портфелем коммерческого банка. Анализ производственно-хозяйственной и финансовой деятельности коммерческого банка "БТА-Казань".

    дипломная работа [141,6 K], добавлен 18.03.2011

  • Управление качеством кредитного портфеля корпоративных клиентов банка как элемент системы контроля кредитного риска. Анализ и оценка кредитного портфеля коммерческого банка ОАО "Крайинвестбанк". Оптимизация формирования и управления кредитным портфелем.

    дипломная работа [807,3 K], добавлен 26.10.2015

  • Понятие кредитного риска как основного вида банковского риска, методы его оценки и инструменты оптимизации. Оценка кредитного риска и деятельности ООО "Кубань Кредит". Анализ кредитного риска заемщика - юридического лица на основе его кредитоспособности.

    дипломная работа [831,9 K], добавлен 18.03.2016

  • Понятие и этапы формирования кредитного портфеля, его структура и процесс управления. Классификация кредитные риски и их влияние на формирование портфеля коммерческого банка. Анализ кредитного портфеля банка. Механизм управления кредитным риском.

    дипломная работа [1,0 M], добавлен 10.07.2015

  • Сущность и классификация финансовых рисков банка. Инструменты управления кредитными рисками и пути их сокращения. Принципы управления кредитным портфелем. Построение моделей оценки надежности коммерческого банка. Определение рейтинга кредитоспособности.

    дипломная работа [501,4 K], добавлен 17.03.2014

  • Понятие банковских рисков и их виды. Управление рисками коммерческого банка в современных условиях. Инструменты снижения кредитного риска банка. Формирования резерва по категориям качества ссуд. Характеристика коммерческого банка, его кредитного портфеля.

    курсовая работа [622,1 K], добавлен 01.05.2012

  • Оценка современных концепций управления кредитным портфелем в национальной и зарубежной практике. Организация деятельности банка при осуществлении процесса кредитования, направленого на предотвращение или минимизацию кредитного риска, лимитирование.

    контрольная работа [46,9 K], добавлен 13.06.2009

  • Разработка предложений по совершенствованию критериев комплексной оценки кредитной деятельности коммерческого банка. Значение кредитного механизма и роль развития кредитных операции для национальной экономики. Формирование кредитного портфеля банка.

    дипломная работа [1,8 M], добавлен 30.08.2015

  • Изучение классификации и содержания методов оценки ожидаемого кредитного риска, применяемых коммерческими банками. Исследование основ построения организационной и информационной инфраструктуры системы управления кредитным риском коммерческого банка.

    курсовая работа [153,0 K], добавлен 07.03.2014

  • Нормативно-правовое регулирование кредитного риска и методы его оценка. Организация работы коммерческого банка по управлению кредитным риском. Возможности использования цифровизации банковской деятельности для качественного управления кредитным риском.

    дипломная работа [1,6 M], добавлен 19.01.2021

  • Анализ и оценка риска активных операций коммерческого банка с использованием VaR-модели на примере ВТБ 24 (ПАО). Рекомендации по управлению активами коммерческого банка. Подходы и направления совершенствования системы управления кредитным риском банка.

    дипломная работа [129,0 K], добавлен 01.01.2017

  • Комплексная оценка риска кредитного портфеля банка, модель прогнозирования кредитного риска. Апробация модели прогнозирования совокупного кредитного риска банка и его оценка, рекомендации по повышению качества кредитного портфеля ОАО АКБ "Связь-банк".

    дипломная работа [571,3 K], добавлен 10.11.2010

  • Рассмотрение сущности, критериев сегментации, рисков (кредитный, ликвидности, процентный) и управления качеством кредитного портфеля коммерческого банка, ознакомление с проблемами их диверсифицированности на примере Сберегательного банка России.

    курсовая работа [79,5 K], добавлен 14.04.2010

  • Сущность и понятие кредитного портфеля коммерческого банка. Характеристика деятельности ОАО Сбербанк России, политика банка и уровень организации кредитного процесса. Основные этапы формирования и управления кредитным портфелем, анализ его качества.

    курсовая работа [1,1 M], добавлен 17.04.2014

  • Кредитная политика коммерческого банка. Стадии кредитного процесса и их характеристика. Методы управления кредитным риском. Оценка качества кредитного портфеля банка. Анализ кредитных операций и структуры кредитного портфеля на примере "Сбербанка России".

    курсовая работа [729,7 K], добавлен 01.02.2014

  • Анализ и оценка качества кредитного портфеля коммерческого банка ОАО "Социнвестбанк". Управлением кредитным портфелем, порядок использования резерва на потери по ссудам. Анализ влияния качества кредитного портфеля на выполнение нормативов ликвидности.

    отчет по практике [83,9 K], добавлен 14.12.2012

  • Сущность кредитного риска и факторы его определяющие. Последовательность этапов процесса управления кредитным риском. Методы определения кредитоспособности заемщика. Управление риском кредитного портфеля. Уровень ликвидности кредитного портфеля.

    курсовая работа [292,7 K], добавлен 07.04.2012

  • Сущность и виды кредитных операций банка. Документы по оформлению кредита. Оценка кредитного риска на основе отчетности банка, направления кредитной политики. Анализ экономических нормативов по кредитному риску, погашение и обеспечение выданных ссуд.

    курсовая работа [35,9 K], добавлен 06.11.2011

  • Анализ современного состояния кредитования в России. Экономическая и организационно-правовая характеристика ОАО АКБ "Союз". Исследование механизма управления риском кредитного портфеля коммерческого банка с целью разработки оптимальной кредитной политики.

    дипломная работа [131,6 K], добавлен 21.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.