Развитие рынка криптовалют: метод Херста
Изучение ценообразования на рынке криптовалют и возможностей их применения Банком РФ при осуществлении своей монетарной политики. Изучение степени сформированности рынка и потенциальных рисков, имеющих долгосрочную связь с финансовой стабильностью рынка.
Рубрика | Банковское, биржевое дело и страхование |
Вид | статья |
Язык | русский |
Дата добавления | 12.02.2021 |
Размер файла | 378,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Финансовый университет
Развитие рынка криптовалют: метод Херста
А.Ю. Михайлов
АННОТАЦИЯ
рынок криптовалюта монетарный
Целью данной работы является изучение ценообразования на рынке криптовалют и возможностей их применения Банком России при осуществлении своей монетарной политики. Задачи исследования: выявление цикличности динамики цен, изучение степени сформированности рынка и потенциальных рисков, имеющих долгосрочную положительную связь с финансовой стабильностью рынка криптовалют. Автор использует методы Херста с коэффициентом неликвидности Амихуда, чтобы изучить степень стойкости четырех криптовалют (BitCoin, LiteCoin, Ripple и Dash) и их эволюцию в течение последних пяти лет. В результате исследования автор выяснил, что рынок криптовалют вышел на новую стадию развития, что означает снижение возможности получения сверхнормальных доходов при инвестировании в наиболее ликвидные криптовалюты в будущем. Однако остаются возможности для получения спекулятивного дохода при покупке новых высокорискованных инструментов. Сделан вывод, что неликвидные криптовалюты проявляют сильную обратную антиперсистентность в виде низкого коэффициента Херста. Для получения аномальной прибыли на крипторынке может быть использована трендовая инвестиционная стратегия. Банк России мог бы частично применять цифровую валюту при осуществлении денежно-кредитной политики, что позволило бы смягчить деловой цикл и контролировать уровень инфляции. В случае принятия закона «О цифровых финансовых активах» и легализации криптовалют в России после экономического кризиса, вызванного пандемией Covid-19, Банк России мог бы действовать как кредитор последней инстанции, предлагая кредиты в криптовалюте.
Ключевые слова: биткойн; лайткойн; даш; риппл; денежно-кредитная политика; ликвидность; волатильность; доходность; метод Херста; кредиты в криптовалюте
Cryptocurrency Market Development: Hurst Method
A. Yu. Mikhailov
Financial University, Moscow, Russia
ABSTRACT
The aim of this work is to study the pricing in the cryptocurrency market and applying cryptocurrencies by the Bank of Russia for its monetary policy. The research objectives are to identify the cyclical nature of price dynamics, to study market maturity and potential risks that have a long-term positive relationship with the financial stability of the cryptocurrency market. The author uses the Hurst method with the Amihud illiquidity measure to study the resistance of four cryptocurrencies (Bitcoin, Litecoin, Ripple and Dash) and their evolution over the past five years. The study results in the author's conclusion that the cryptocurrency market has entered a new stage of development, which means a reduced possibility to have excess profits when investing in the most liquid cryptocurrencies in the future. However, buying new high-risk tools provides opportunities for speculative income. The author concludes that illiquid cryptocurrencies exhibit strong inverse anti-persistence in the form of a low Hurst exponent. A trend investing strategy may help obtain abnormal profits in the cryptocurrency market. The Bank of Russia could partially apply digital currency to implement monetary policy, which would soften the business cycle and control the inflation. If Russia accepts the law `'On Digital Financial Assets'' and legalizes cryptocurrencies after the economic crisis caused by the COVID-19 pandemic, the Bank of Russia might act as a lender of last resort and offer crypto loans.
Keywords: Bitcoin; Litecoin; Dash; Ripple; monetary policy; liquidity; volatility; profitability; Hurst method; crypto loans
ВВЕДЕНИЕ
Изучение и анализ рынка криптовалют является относительно новой областью. В последние годы опубликовано несколько работ на эту тему, учитывающих потенциальный интерес к ней.
С тех пор, как появился биткойн, многие ученые изучают его с разных точек зрения. В России на данный момент не решена проблема правового статуса цифровых финансовых активов (криптоактивов), поскольку законопроект «О цифровых финансовых активах» был принят Государственной Думой, но в дальнейшем вызвал много вопросов в Правительстве РФ URL: http://duma.gov.ru/news/27027/..
В связи с молодым возрастом технологии блок- чейн академическая литература по этой теме все еще находится в зачаточном состоянии. Существует множество исследований, посвященных безопасности и технологическим аспектам криптовалют, которые не будут здесь обсуждаться.
Одним из недостатков разработанности данного вопроса является то, что большинство статей содержат информацию только о самой популярной из криптовалют -- биткойне.
Криптовалюта -- это разновидность цифровой валюты, создание и контроль за которой базируются на криптографических методах. Как правило, учет криптовалют децентрализован.
Некоторые исследователи утверждают, что биткойн -- это просто пузырь. Выяснить фундаментальную ценность биткойна -- трудная задача, и история показала, что инновационные активы действительно более подвержены пузырям.
На цену биткойна могут влиять макроэкономический индекс и индекс цен на активы. Криптовалюта может получить некоторую ценность и от сетевых эффектов из-за размера сети, в которой она используется. Поскольку соотношение между стоимостью сети и ее размером является суперлинейным, это означает, что стоимость самой популярной криптовалюты (биткойн) намного выше, чем у других криптовалют с меньшим количеством пользователей, и это отражается в рыночной капитализации. По мере роста вычислительной мощности должна повышаться и ценность криптовалюты.
Активная торговля на крипторынке началась только в 2013 г. Один из ключевых вопросов, который еще предстоит проанализировать: предсказуемо ли поведение криптоактивов? Прогнозы параметров крипторынка можно было бы использовать в качестве основы для торговых стратегий, направленных на получение прибыли на криптовалютном рынке.
ОБЗОР ЛИТЕРАТУРЫ
Гетерогенная агентская модель рынка биткойна относительно точно моделирует многие характеристики реального рынка. Она включает в себя различные торговые стратегии, начальное распределение богатства по закону Парето, реалистичный механизм торговли и выравнивания цен на основе книги заказов, увеличение со временем общего количества биткойнов из- за майнинга.
Автокорреляция необработанных доходностей очень низкая для всех временных периодов, тогда как автокорреляция абсолютных доходов намного выше, что подтверждает наличие кластеризации волатильности [1].
В работах R. Bцhme, N. Christin, B. Edelman,T. Moore и A. M. Antonopoulos изучена прибыльность производства биткойнов, его слабые стороны и долгосрочная финансовая устойчивость [2, 3].
Предложены модели стоимости с точки зрения затрат на создание (с технической стороны). В ходе расчетов и экспериментов обнаружено, что стоимость выполнения бизнес-процессов в Ethereum может быть на два порядка выше, чем в Amazon SWF [4, 5]. Учитывая высокую волатильность обменного курса, важна модель оценки стоимости [6, 7].
Блокчейн преследует децентрализованный подход для укрепления доверия. Это фундаментальная технология и платформа для инноваций, ее ценность в будущем будет расти [8].
Подавляющее большинство экономической литературы, касающейся биткойнов и криптовалют, посвящено изучению различных факторов, которые могли бы объяснить развитие цен. Ценовые детерминанты могут быть сгруппированы и сведены в следующие группы:
рыночные силы, т.е. факторы спроса и предложения;
макрофинансовые факторы;
интерес общественности и инвесторов;
освещение в новостях.
Основными факторами являются привлекательность для инвесторов, а также общественный интерес в СМИ. Примеры исследований, рассматривающих эти факторы, а также другие ценовые детерминанты биткойна, приведены ниже.
Изучены показатели объемов торгов и волатильности криптовалют, которые прошли ряд тестов, таких как Dicky-Fuller (ADF) и CGCD [9, 10].
Рис. 1 /Fig. 1. Динамика Bitcoin (BTC), доллар США/ Bitcoin dynamics (BTC), US dollar
Источник/Source: Thomson Reuters Datastream.
Puc.2/Fig. 2. Динамика Ripple (XRP), доллар США / Ripple (XRP) dynamics, US dollar
Источник/Source: Thomson Reuters Datastream.Инвестиции в биткойн демонстрируют очень высокую волатильность, но также и очень высокую доходность. Кроме того, для держателей хорошо диверсифицированных портфелей большой риск компенсируется низкой корреляцией с другими активами [11-13].
Финансовым посредникам необходимо модернизировать и оптимизировать свою деятельность, основываясь на результатах изучения криптовалют [14,15].
Результаты исследования крипторынка подтверждают гипотезы переговоров и стратегической торговли [16].
Было обнаружено, что постоянство цен имеет большое значение для будущей волатильности двух криптовалют (рис. 1-4). Условная ковариация двух криптовалют значительно зависит от предыдущих новостей, что подтверждает выводы о взаимосвязанности криптовалют [17].
Исследователи выделяют конкретный механизм ценообразования: максимизацию прибыли предпринимателей, которые играют координирующую роль в создании возможностей для использования новой валюты (при небольшом размере сети) [18]. Но нельзя забывать об отличиях между виртуальными (централизованными) и крипто
(децентрализованными) валютами [19]. Биткойн коррелирует с различными финансовыми и процентными драйверами, тем не менее ни один из внутренних факторов не оказывает существенного влияния на цену [20, 21].
Контроль за денежной массой и процентными ставками становится все более сложным. Роль центральных банков придется адаптировать к этой новой денежной системе, если криптовалюты будут приняты в качестве эквивалентных платежных средств и финансовых активов со значительной рыночной капитализацией [22, 23].
Были озвучены юридические и экономические сложности реализации использования криптовалют для межгосударственных переводов [24, 25].
Более высокие транзакционные издержки на рынках с низким оборотом влияют на способность трейдеров действовать быстро [26, 27].
В основном зарубежные исследователи рассматривают биткойн не как денежное средство, а как актив. Эмпирические исследования показывают, что экономические факторы, такие как CPI, DJIA, USDI и ставка ФРС, оказывают долгосрочное негативное влияние на цену биткойна. Это подразумевает, что биткойн может быть инструментом хеджирования против снижения доллара США [28, 29].
ДАННЫЕ И МЕТОДЫ
Методологической основой исследования стал анализ доходности различных криптовалют, отсортированных по рыночной ликвидности. Для изучения рынка автор использовал тесты, основанные на применении коэффициента неликвидности Амихуда [30, 31].
Данный подход выбран исходя из его надежности и простоты. Он требует только ежедневных рыночных данных, что удобно, когда информация о микроструктуре рынка недоступна. В то же время не требуется полных данных о капитализации рынка, которые необходимы для показателей, основанных на обороте, что может быть проблематичным для альткоинов.,33] и тест BDS на последовательную зависимость со средними значениями p в разных спецификациях.
Экспонента R/S показателя Херста помогает исследовать длинную память доходности. Импульсы проявляются во временных рядах доходности, если показатель Херста больше 0,65, а средняя реверсия временного ряда (или антиперсистентность) проявляется, когда значение показателя Херста меньше 0,45.
В табл. 1 представлены средние значения для каждой из пяти групп криптовалют. Заметна взаимосвязь между их ликвидностью и волатильностью. Наиболее ликвидными являются криптовалюты группы 1, наименее ликвидными -- группы 5. При этом мы не наблюдаем признаков премии за ликвидность в криптовалютах. Это интересно и противоречит характеристикам традиционных классов активов.
Мы также отмечаем сильные положительные перекосы и высокие уровни эксцессов в доходах. Положительные перекосы ценовых рядов могут характеризовать значительный уровень оптимизма среди инвесторов во время нестабильности.
В табл. 2 указаны средние значения p со средним коэффициентом Херста.
Криптовалюты с самой низкой ликвидностью отклоняют нулевую гипотезу случайности во всех тестах. Средние значения p повышаются в более высоких квантилях ликвидности.
Кроме того, показатель Херста доказывает стойкость на неликвидных рынках (<0,5), что подтверждает результаты C. Carrere, J. S. Silva и S. Tenreyro [34, 35].
Показатель Херста лежит в интервале [0,1] и рассчитывается по формулe
На основе значений H могут быть идентифицированы три категории серий данных:
серия антиперсистентна, результаты отрицательно коррелированы (0 < H < 0,5);
серия случайна, возврат не коррелирован, в серии нет памяти (H = 0,5);
серия устойчива, результаты сильно коррелированы, динамика памяти (0,5 < H < 1).
РЕЗУЛЬТАТЫ
В результате исследования выявлено, что альт- койны демонстрируют цикличность, поскольку спекулянты влияют на уровень пессимизма.
Таблица 1 / Table 1
Доходность криптовалют, отсортированных по коэффициенту неликвидности Амихуда / Profitability of cryptocurrencies sorted by the Amihud illiquidity measure
Ликвидность |
Статистика доходности |
||||||
Группа |
Коэф. Амихуда |
Среднее |
Стандартное отклонение |
Скос |
Куртозис |
||
Высокая |
1 |
< 0,00001 |
0,010 |
0,106 |
0,92S |
11,422 |
|
2 |
0,00011 |
0,010 |
0,160 |
1,167 |
13,162 |
||
3 |
0,00101 |
0,009 |
0,234 |
0,90 |
17,409 |
||
4 |
0,00900 |
0,009 |
0,22 |
0,742 |
20,276 |
||
Низкая |
5 |
0,02581 |
0,010 |
0,366 |
0,101 |
10,829 |
Источник / Source: Thomson Reuters Datastream, расчеты автора / Thomson Reuters Datastream, calculated by the author.
Таблица 2/ Table 2
Коэффициент Херста для криптовалют, отсортированных по коэффициенту неликвидности Амихуда: средние значения p / The Hurst exponent for cryptocurrencies sorted by the Amihud
Ликвидность |
Средние p |
Коэф. Херста |
|||||||
Группа |
Коэф. Амихуда |
Лджун-Бокс |
Коэф. Ранса |
Коэф. Бартела |
AVR |
BDS |
|||
Высокая |
1 |
<0,00001 |
0,35 |
0,44 |
0,40 |
0,41 |
0,02 |
0,53 |
|
2 |
0,00011 |
0,11 |
0,27 |
0,19 |
GL25 |
0,01 |
0,50 |
||
3 |
0,00191 |
0,05 |
0,12 |
0,04 |
0LQ9 |
0,01 |
0,46 |
||
4 |
0,00960 |
0,02 |
0,09 |
0,02 |
0103 |
0,02 |
0,44 |
||
Низкая |
5 |
0,03531 |
0,01 |
0,04 |
0,01 |
OL02 |
0,01 |
0,41 |
Источник / Source: Thomson Reuters Datastream, расчеты автора / Thomson Reuters Datastream, calculated by the author.
Таблица 3/ Table 3
Результаты динамического анализа R/S, (шаг = 50, окно данных = 300) / Results of R/S dynamic analysis (step = 50, data window = 300)
Логдоходность |
Без условий |
Перехват |
Время |
|
BITCOIN |
0,992 (0,961, 1,040) |
1,009 (0,983, 1,039) |
1,009 (0,983, 1,039) |
|
LITECOIN |
1,005 (0,977, 1,038) |
1,021 (0,994, 1,053) |
1,021 (0,994, 1,053) |
|
RIPPLE |
1,028 (0,997, 1,064) |
1,053 (1,023, 1,086) |
1,053 (1,023, 1,087) |
|
DASH |
0,966 (0,933, 1,005) |
0,985 (0,954, 1,022) |
0,986 (0,954, 1,022) |
Источник / Source: Thomson Reuters Datastream, расчеты автора / Thomson Reuters Datastream, calculated by the author.
Таблица 4/ Table 4
Первые 10 криптовалют по капитализации по состоянию на 01.02.2019 / Top 10 cryptocurrencies by
capitalization as of 02.01.2019
№ |
Название |
Капитализация |
Цена |
|
1 |
Bitcoin |
60958002560 |
3 480,60 |
|
2 |
XRP |
12605993911 |
0,306 242 |
|
3 |
Ethereum |
11147795484 |
106,51 |
|
4 |
EOS |
2 112 336 072 |
2,33 |
|
5 |
Bitcoin Cash |
2045890560 |
116,26 |
|
6 |
Tether |
2 030 218 013 |
1 |
|
7 |
Litecoin |
1957580695 |
32,48 |
|
8 |
TRON |
1 739 274 086 |
0,026 089 |
|
9 |
Stellar |
1 582069187 |
0,082 539 |
|
10 |
Bitcoin |
1 130006345 |
64,21 |
Источник / Source: Thomson Reuters Datastream / Thomson Reuters Datastream, calculated by the author.
Однако в более высоких квинтилях ликвидности показатель Херста близок к случайному блужданию (0,5) [36].
Большая часть исследований финансовой стабильности фокусируется на криптовалютах как на инвестиционном активе. Большинство биткойнов принадлежат инвесторам и не рассматриваются как средство оплаты. После бурного роста цены на них в 2017-2018 гг. стало понятно, что существует пузырь на рынке криптовалют. В 2018 г. он стал активно сдуваться, и биткойн потерял около 85% от своей максимальной исторической стоимости.
Как правило, пузырь определяется как положительный отход от фундаментальной ценности актива. Вопрос сводится к тому, что недавние ценовые выгоды были обусловлены ожиданиями будущей ценовой прибыли и, следовательно, могут быть подвергнуты внезапному развороту. Пузыри цен на активы часто привязаны к технологическим изменениям и неопределенному будущему. Но сдувание этих пузырей не обязательно приводит к проблемам финансовой стабильности. Например, крах пузыря доткомов в 2000 г. имел ограниченные последствия.
На рынке криптовалют также наблюдается сдувание пузыря, что подтверждается результатами динамического анализа Я/Б (табл. 3) и снижением общей капитализации рынка (табл. 4).
Класс активов, составляющий всего около 60 млрд долл. (на 01.02.2019), вероятно, слишком мал, чтобы быть существенным для финансовых рынков. Риски для финансовой стабильности криптоактивов в настоящее время или в ближайшем будущем, вероятно, будут сосредоточены в странах, где они пользуются большим спросом. В тех случаях, когда значительное и быстрое снижение стоимости валюты может привести к повсеместным потерям и даже панике, трудно понять, как эти потери будут переданы основным финансовым посредникам в экономике.
Аналогичные проблемы возникают, когда центральный банк должен предоставить кредитору последнюю помощь в иностранной валюте. В этой ситуации основные центральные банки могли бы создать механизмы валютного свопа для облегчения таких операций. В случае с цифровой валютой, однако, нет контрагента, с которым центральный банк мог бы создать своп-линию.
Центральный банк мог бы иметь хорошие возможности выступать в качестве кредитора последней инстанции для банков, хотя это ограничено его необходимостью поддерживать достаточный запас цифровой валюты для возврата полученных им банковских депозитов.
Полный переход на цифровую валюту является удобным, хотя, по общему мнению, неправдоподобным. Ситуация в какой-то мере будет похожа на ту, как если бы вся глобальная экономика полностью конвертировалась в доллары.
Центральный банк в этом случае не смог бы стабилизировать макроэкономику. Более того, поскольку предложение цифровой валюты является фиксированным, могла бы усилиться экономическая и финансовая волатильность.
Если количество цифровой валюты будет зафиксировано, то по мере роста экономики реальная стоимость каждой единицы валюты будет расти.
Если бы монетарная политика могла полностью перейти на цифровую валюту, можно было бы отменить нулевую нижнюю границу по номинальным процентным ставкам.
Иными словами, если цены на товары в валюте падают -- возникает дефляция, которая, как правило, связана с неэффективной экономикой. Предприятия и домашние хозяйства в этой ситуации, как правило, откладывают расходы, поскольку в будущем цены будут меньше, чем в настоящее время.
Сдерживающие последствия дефляции обусловлены, прежде всего, тем, что номинальные процентные ставки обычно не могут быть отрицательными. Их нулевая граница объясняется тем, что валюта всегда обеспечивает нулевую норму прибыли. В мире цифровой валюты ограничение по процентным ставкам может быть отменено.
В любом случае проблема дефляции, по-видимому, частично устраняется, позволяя количеству цифровой валюты расти вместе с экономикой. Несмотря на это, количество цифровой валюты не сможет двигаться вверх и вниз с сезонным спросом, а также частично реагировать на другие внешние потрясения для экономики.
Более реалистичным было бы частичное использование экономикой цифровой валюты. Центральный банк тогда мог бы смягчить деловой цикл и контролировать уровень инфляции в валюте, но с меньшей точностью.
Некоторые из недавних дискуссий по вопросам денежно-кредитной политики касаются цифровых валют центрального банка. Единая цифровая валюта центрального банка может принимать форму токена, подобного цифровым наличным деньгам.
Если бы монетарная политика могла полностью перейти на цифровую валюту, можно было бы отменить нулевую нижнюю границу по номинальным процентным ставкам. Центральный банк мог бы выплачивать отрицательную процентную ставку банкам, делая свой политический курс настолько низким, насколько это необходимо для достижения экономического стимулирования.
Экономические кризисы XX в. были связаны с искажающим эффектом монетарной политики, проводимой правительствами, а не с так называемыми провалами рынка.
Тем не менее центральный банк не обязательно должен был бы немедленно прекратить свою деятельность. В конкуренции с коммерческими банками и другими частными производителями денег он будет иметь сильный стимул обеспечивать граждан стабильной валютой.
Мониторинг криптовалют в значительной степени опирается на общедоступные агрегированные данные третьих сторон. Большая часть агрегированной информации размещена на общедоступных веб-сайтах. Например, показатели для сетей блокчейна, оценки рыночной капитализации, цены и объемы торговли, а также средства, собранные в первоначальных предложениях монет (ЮТ). Эти источники различаются в зависимости от используемых методологий, полноты охвата и доступа к базовой исходной информации.
Обработка исходной информации (когда она доступна) также окружена неопределенностью, связанной с отсутствием (только частичным) регулирования, относящегося к различным участникам цепочки создания стоимости криптоактивов, которые работают в среде без границ.
Тем не менее обработка данных позволяет осуществлять некоторый контроль качества данных. Помимо общедоступных источников, статистические и контрольные механизмы отчетности обычно не охватывают криптовалюты.
Для построения структуры мониторинга криптовалют на этой основе требуется осторожность при обработке доступных данных и поэтапный подход к заполнению текущих пробелов.
Потребности в мониторинге будут периодически пересматриваться, чтобы гарантировать, что структура мониторинга по-прежнему актуальна и усилия по мониторингу остаются пропорциональными потенциальным рискам, связанным с изменяющимися размерами рынка и ценовыми изменениями отдельных криптовалют, а также связями между криптовалютами и финансовой системой.
После рекордного максимума капитализации в 650 млрд евро в январе 2018 г. и последующей резкой коррекции рыночная капитализация криптовалют снизилась до 96 млрд евро в январе 2019 г. Она двигалась в тандеме с ценами на активы, о чем свидетельствует цена биткойна, чья корреляция с общей рыночной капитализацией составляет 95%. В относительном выражении рыночная капитализация криптовалют составляет 4% от рыночной капитализации акции и 1% -- ВВП еврозоны.
Этот пузырь криптовалют меньше по размеру, чем пик двух основных прошлых пузырей -- доткомов и субстандартных ипотечных ценных бумаг. По сравнению с денежными агрегатами стоимость криптовалют составляет 1,2% от еврозоны М1 и 0,8% -- от денежных агрегатов М3. Биткойн продолжает лидировать в сфере криптоактивов с точки зрения рыночной капитализации, пользовательской базы и популярности.
Хотя биткойн потерял некоторые позиции по сравнению с другими криптовалютами за последние два года из-за усиления конкуренции и неопределенности относительно успеха различных бизнес-моделей, лежащих в их основе, его рыночная доля восстановилась в течение 2018 г. и в настоящее время составляет 54%.
Для сравнения, на пике пузыря доткомов индекс NASDAO был в четыре раза выше, чем три года назад. За последние два года историческая волатильность криптовалют затмила не только волатильность диверсифицированных европейских рынков акций и облигаций, но и волатильность цен на нефть и золото, подчеркивая рыночный риск, которому подвержены инвесторы в криптовалюты.
По сравнению с началом 2018 г., когда несколько криптовалют испытали пик цен, волатильность стала меньше. Интересно отметить, что биткойн не так изменчив, как другие криптовалюты, что потенциально отражает более широкую базу инвесторов и относительно более высокий срок существования в качестве актива.
ВЫВОДЫ
Как видно, степень настойчивости меняется со временем и колеблется вокруг среднего. Временная вариация особенно очевидна в случае с Litecoin, показатель которого значительно снизился: с 0,70 в 2015 г. до 0,40 в 2018 г. Это свидетельствует об адаптивности рынка: через 2-3 года он стал более ликвидным, а количество участников и объемы торговли выросли.
Денежная система на основе цифровой валюты может показаться привлекательной, так как она предоставляет возможность ограничить роль центрального банка. Более высокие транзакционные издержки на рынках влияют на способность трейдеров действовать быстро, что приводит к неэффективности рынка.
В результате исследования обнаружено, что неликвидные криптовалюты проявляют сильную обратную антиперсистентность в виде низкого коэффициента Херста.
Исследование выявило цикличность динамики цен криптовалют. Изучена степень сформирован- ности рынка: доказано, что рынок криптовалют перешел в новую стадию развития, что подтверждено снижением волатильности всех ликвидных криптовалют. Выявлены потенциальные риски, имеющие долгосрочную положительную связь с финансовой стабильностью рынка криптовалют.
Сделан вывод, что вполне реалистичным было бы частичное использование цифровой валюты при осуществлении денежно-кредитной политики Банком России, который мог бы таким образом смягчить деловой цикл и контролировать уровень инфляции.
В случае принятия закона «О цифровых финансовых активах» и легализации криптовалют в России после экономического кризиса, вызванного пандемией Covid-19, Банк России мог бы действовать как кредитор последней инстанции, предлагая кредиты в криптовалюте.REFERENCES
Henry C. S., Huynh K. P., Nicholls G. Bitcoin awareness and usage in Canada. Journal of Digital Banking. 2018;2(4):311-337.
Bцhme R., Christin N., Edelman B., Moore T. Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives. 2015;29(2):213-238. DOI: 10.1257/jep.29.2.213
Antonopoulos A. M. Mastering Bitcoin: Unlocking digital cryptocurrencies. Sebastopol, CA: O'Reilly Media, Inc.; 2014.
Kroll J. A., Davey I. C., Felten E. W. The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: 12th Workshop on the economics of information security -- WEIS2013 (Washington, DC, June 11-12, 2013). Washington, DC: Georgetown University; 2013. URL: https://www.econinfosec.org/ archive/weis2013/papers/KrollDaveyFeltenWEIS2013.pdf
Javarone M. A., Wright C. S. From Bitcoin to Bitcoin cash: A network analysis. In: CryBlock'18: Proc. 1st Workshop on cryptocurrencies and Blockchains for distributed systems (Munich, June 15, 2018). New York: Association for Computing Machinery; 2018:77-81. DOI: 10.1145/3211933.3211947
Swan M. Blockchain: Blueprint for a new economy. Sebastopol, CA: O'Reilly Media, Inc.; 2015.
Kristoufek L. What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE. 2015;10(4). DOI: 10.1371/journal.pone.0123923
Ciaian P., Rajcaniova M, Kancs D. The economics of BitCoin price formation. Applied Economics. 2016;48(19):1799-1815. DOI: 10.1080/00036846.2015.1109038
ElBahrawy A., Alessandretti L., Kandler A., Pastor-Satorras R., Baronchelli A. Evolutionary dynamics of the cryptocurrency market. Royal Society Open Science. 2017;4(11). DOI: 10.1098/rsos.170623
Guo T., Antulov-Fantulin N. Predicting short-term Bitcoin price fluctuations from buy and sell orders. 2018. URL: https://www.researchgate.net/publication/323141771_Predicting_short-term_Bitcoin_price_ fluctuations_from_buy_and_sell_orders
Evans D. Economic aspects of Bitcoin and other decentralized public-ledger currency platforms. Coase- Sandor Institute for Law & Economics Working Paper. 2014;(685). URL: https://chicagounbound. uchicago.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2349&context=law_and_economics
Krause M. Bitcoin: Implications for the developing world. CMC Senior Theses Paper. 2016;(1261). URL: https://pdfs.semanticscholar.org/95b1/b3059752517e0da4ff82b1777707b8bb4f67.pdf
Reid F., Harrigan M. An analysis of anonymity in the Bitcoin system. In: Altshuler Y., Elovici Y. et al., eds. Security and privacy in social networks. New York: Springer-Verlag; 2013:197-223.
Tasca P., Hayes A., Liu S. The evolution of the Bitcoin economy: Extracting and analyzing the network of payment relationships. Journal of Risk Finance. 2018;19(2):94-126. DOI: 10.1108/JRF-03-2017-0059
Foley S., Karlsen J., Putnin T. J. Sex, drugs, and Bitcoin: How much illegal activity is financed through cryptocurrencies? Review of Financial Studies. 2019;32(5):1798-1853. DOI: 10.1093/rfs/hhz015
Lischke M., Fabian B. Analyzing the Bitcoin network: The first four years. Future Internet. 2016;8(1). DOI: 10.3390/fi8010007
Androulaki E., Karame G. O., Roeschlin M., Scherer T., Capkun S. Evaluating user privacy in Bitcoin. In: Sadeghi A. R., ed. International conference on financial cryptography and data security -- FC2013 (Okinawa, Apr. 1-5, 2013). Berlin, Heidelberg: Springer-Verlag; 2013:34-51. URL: https://eprint.iacr. org/2012/596.pdf
Nyangarika A., Mikhaylov A., Richter U. Influence oil price towards economic indicators in Russia. International Journal of Energy Economics and Policy. 2019;9(1):123-129. DOI: 10.32479/ijeep.6807
Nyangarika A., Mikhaylov A., Richter U. Oil price factors: Forecasting on the base of modified autoregressive integrated moving average model. International Journal of Energy Economics and Policy. 2019;9(1):149-159. DOI: 10.32479/ijeep.6812
Mikhaylov A. Volatility spillover effect between stock and exchange rate in oil exporting countries. International Journal of Energy Economics and Policy. 2018;8(3):321-326. URL: http://zbw.eu/econis- archiv/bitstream/handle/11159/2130/1028136102.pdf?sequence=1&isAllowed=y
Koshy P., Koshy D., McDaniel P. An analysis of anonymity in Bitcoin using P2P network traffic. In: Christin N., Safavi-Naini R., eds. International conference on financial cryptography and data security -- FC2014 (Christ Church, Barbados, Mar. 3-7, 2014). Berlin, Heidelberg: Springer-Verlag; 2014:469-485. URL: https://www.freehaven.net/anonbib/cache/bitcoin-p2p-anon.pdf
Biryukov A., Khovratovich D., Pustogarov I. Deanonymisation of clients in Bitcoin P2P network. In: Proc. 2014 ACM SIGSAC conference on computer and communications security. New York: Association for Computing Machinery; 2014:15-29. DOI: 10.1145/2660267.2660379
Decker C., Wattenhofer R. Bitcoin transaction malleability and MtGox. In: Kutylowski M., Vaidya J., eds. 19th European symposium on research in computer security -- ESORICS2014 (Wroclaw, Sept. 7-11, 2014). Cham: Springer-Verlag; 2014:313-326. DOI: 10.1007/978-3-319-11212-1_18
Nick J. D. Data-driven de-anonymization in Bitcoin. Master's thesis. 2015. URL: https://jonasnick. github.io/papers/thesis.pdf
Puri V. Decrypting Bitcoin prices and adoption rates using Google search. CMC Senior Theses Paper. 2016;(1418). URL: https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=2379&context=cmc_ theses
Neudecker T., Hartenstein H. Could network information facilitate address clustering in Bitcoin? In: Brenner M., Rohloff K. et al., eds. International conference on financial cryptography and data security -- FC2017 (Sliema, Malta, Apr. 3-7, 2017). Cham: Springer-Verlag; 2017:155-169. URL: https://fc17.ifca.ai/ bitcoin/papers/bitcoin17-final11.pdf
Doll A., Chagani S., Kranch M., Murti, V. btctrackr: Finding and displaying clusters in Bitcoin. 2014. URL: https://www.cs.princeton.edu/~arvindn/teaching/spring-2014-privacy-technologies/btctrackr.pdf
Remy C., Rym B., Matthieu L. Tracking Bitcoin users activity using community detection on a network of weak signals. In: Cherifi C., Cherifi H. et al., eds. 6th International conference on complex networks and their applications -- COMPLEX NETWORKS2017 (Lyon, Nov. 29. Dec. 01, 2017). Cham: SpringerVerlag; 2017:166-177. DOI: 10.1007/978-3-319-72150-7_14
Manning C. D., Raghavan P., Schьtze H. Introduction to information retrieval. New York: Cambridge University Press; 2008.
Tinbergen J. Shaping the world economy: Suggestions for an international economic policy. New York: The Twentieth Century Fund; 1962.
Goldberger A. S. The interpretation and estimation of Cobb-Douglas functions. Econometrica. 1968;36(3/4):464-472. DOI: 10.2307/1909517
Bergstrand J. H. The gravity equation in international trade: Some microeconomic foundations and empirical evidence. The Review of Economics and Statistics. 1985;67(3):474-481. DOI: 10.2307/1925976
Lewer J. J., Van den Berg H. A gravity model of immigration. Economics Letters. 2008;99(1):164-167. DOI: 10.1016/j.econlet.2007.06.019
Carrиre C. Revisiting the effects of regional trade agreements on trade flows with proper specification of the gravity model. European Economic Review. 2006;50(2):223-247. DOI: 10.1016/j. euroecorev.2004.06.001
Silva J. S., Tenreyro S. The log of gravity. The Review of Economics and Statistics. 2006;88(4):641-658. DOI: 10.1162/rest.88.4.641
Hasti T., Tibshirani R., Friedman J. The elements of statistical learning: Data mining, inference, and prediction. 1st ed. New York: Springer-Verlag; 2001.
Размещено на Allbest.ru
...Подобные документы
Выбор целевого рынка. Критерии и принципы его сегментации. Стратегии позиционирования товара. Изучение уровня спроса на банковские услуги. Факторы, влияющие на его состояние. Признаки выделения сегментов для определения рынка, обслуживаемого банком.
контрольная работа [42,5 K], добавлен 24.02.2015Изучение показателей конкурентоспособности страхового рынка. Установление границ рынка для определенных услуг и товаров в географическом аспекте. Расчет степени открытости и монополизации страхового рынка Украины; критерии барьеров входа и выхода на него.
контрольная работа [332,7 K], добавлен 19.09.2011Мировой опыт развития рынка ипотечного кредитования. Становление и развитие российского рынка ипотеки. Объем, динамика рынка ипотечного кредитования. Конкуренция на ипотечном рынке. Меры по обеспечению сбалансированного роста ипотечного и жилищного рынка.
дипломная работа [2,7 M], добавлен 26.05.2015Краткая характеристика и правовые основы рынка страхования в Российской Федерации. Конъюнктура рынка страхования финансовых рисков. Спрос и предложение данных услуг. Проблемы развития рынка детского медицинского страхования в Российской Федерации.
контрольная работа [26,0 K], добавлен 01.05.2015Сущность рынка капитала и рынка ценных бумаг. Кредит как движение ссудных капиталов. Банки и банковская система на фондовом рынке. Этапы становления и развития рынка ценных бумаг РФ: состояние и перспективы. Прогноз рынка акционерного капитала для РФ.
курсовая работа [35,3 K], добавлен 10.01.2017Понятие фондового рынка, его функции, структура и участники. Основные модели регулирования фондового рынка. История развития фондового рынка в Украине. Основные проблемы рынка ценных бумаг. Перспективы дальнейшего развития фондового рынка Украины.
курсовая работа [88,7 K], добавлен 10.12.2010Место страхового рынка в финансовой системе, характеристика его функций, структуры и организации. Основные субъекты страхового рынка. Понятие страховой услуги как товара, предлагаемого на страховом рынке. Особенности страхового рынка Российской Федерации.
реферат [384,0 K], добавлен 04.11.2015Сущность страхового рынка. Понятие, место, функции страхового рынка. Организационная структура страхового рынка. Анализ современного состояния страхового рынка Украины и Крыма. Проблемы и перспективы развития страхового рынка Украины и Крыма.
курсовая работа [2,1 M], добавлен 02.06.2007Проблемы и организация депозитного рынка в коммерческих банках Республики Казахстан. Анализ депозитных операций ОАО "Народный банк РК", особенности проведения процентной политики по вкладам. Методы минимизации рисков в сфере страхования депозитов.
курсовая работа [26,5 K], добавлен 25.11.2010Изучение сути, функций рынка ценных бумаг (части финансового рынка, где осуществляется эмиссия и купля-продажа ценных бумаг) и его места в системе рынка капиталов. Отличительные черты первичного, вторичного, биржевого, внебиржевого рынка ценных бумаг.
курсовая работа [482,7 K], добавлен 22.09.2011Фиктивный капитал и рынок ценных бумаг. Функции и структура рынка ценных бумаг. Субъекты рынка ценных бумаг. Виды операций, совершаемых на рынке ценных бумаг. Купля-продажа ценных бумаг. Создание и развитие российского фондового рынка ценных бумаг.
курсовая работа [33,4 K], добавлен 01.06.2010Развитие рынка ценных бумаг Великобритании. Модель фондового рынка и его особенности. Долги правительства Великобритании. Финансовые инструменты рынка ценных бумаг. Участники и регуляторы рынка ценных бумаг. Информация по оборотам на рынке ценных бумаг.
реферат [94,7 K], добавлен 13.11.2008Сущность рынка ценных бумаг. Значение и показатели фондового рынка. Основы биржевой торговли. Фьючерсы и опционы, специфика спекуляции на фондовом рынке, сущность хеджирования. Участники фондового рынка. Современное состояние фондового рынка в России.
курсовая работа [40,7 K], добавлен 26.05.2012Сущность и приемы эмиссионной политики корпорации. Определение уровня чувствительности реагирования фондового рынка на появление новой эмиссии. Порядок выпуска акций банком. Привлечение с рынка ценных бумаг дополнительного объема денежных ресурсов.
курсовая работа [428,2 K], добавлен 14.04.2019Общая характеристика субъектов фондового рынка. Потребители услуг фондового рынка. Эмитенты. Инвесторы. Профессиональная деятельность участников фондового рынка. Инвестиционные институты. Инфраструктура фондового рынка.
реферат [29,3 K], добавлен 13.04.2004Понятие страхования и страхового рынка, его субъекты и инфраструктура. Место и роль страхового рынка в финансовой системе. Становление, развитие и конъюнктура страхового рынка Украины на данном этапе. Основные характеристики страховых посредников.
курсовая работа [199,4 K], добавлен 10.02.2009Основные понятия, виды, участники рынка ценных бумаг. Информационная асимметрия на внутреннем рынке корпоративных облигаций РФ. Роль фондового рынка в жизни российских банков. Депозитарные расписки как способ ликвидности российского рынка ценных бумаг.
курсовая работа [49,8 K], добавлен 02.08.2011История возникновения векселя. Классификация векселей по различным признакам. Этапы и особенности развития вексельного рынка в России. Основные проблемы вексельного рынка, роль расширения конкурирующего сектора (облигационного рынка) в его развитии.
реферат [58,0 K], добавлен 02.08.2011Маркетинг как метод управления коммерческой деятельностью страховых компаний и метод исследования рынка страховых услуг. Изучение основных понятий и функций маркетинга страхования. Описания ценообразования, организации сети продвижения страховых полисов.
контрольная работа [28,8 K], добавлен 09.06.2013Место страхового рынка в финансовой системе. Анализ состояния российского страхового рынка. Государственное регулирование страхового рынка России в условиях вступления в ВТО. Совершенствование налогового законодательства в сфере страховых операций.
курсовая работа [426,9 K], добавлен 20.12.2013