Assessment of the connection between the bank's capitalization level and the country's macroeconomic stability
The article presents one fixed-effect and two random-effect regression models detailing the directions and strength of influence of independent variables on dependent variables (INFLATION, UN- EMPL, GINI - indicators of macroeconomic stability).
Рубрика | Банковское, биржевое дело и страхование |
Вид | статья |
Язык | английский |
Дата добавления | 03.09.2024 |
Размер файла | 621,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Assessment of the connection between the bank's capitalization level and the country's macroeconomic stability
Iryna Pozovna
PhD in Economics, Senior Lecturer, Sumy State University, Sumy, Ukraine;
Natalia Arkhireiska
PhD in Economics, Associate Professor of the Department of Banking and Financial Services, University of Customs and Finance, Dnipro, Ukraine;
Iryna Panaseyko
PhD in Economics, Associate Professor of the Department of Finance, Banking and Insurance, University of Customs and Finance, Dnipro, Ukraine;
Serhiy Panaseyko
PhD in Economics, Associate Professor, Head of the Internal Audit Department, "ALAN" LLC, Dnipro, Ukraine;
Kostyantyn Serdyukov
D.Sc. in Economics, Professor of the Department of International Economic Relations and Regional Studies, University of Customs and Finance, Dnipro, Ukraine;
Alina Yefimenko
PhD Student of the Department of Economic Cybernetics, Sumy State University, Sumy, Ukraine
ABSTRACT
A well-capitalized banking system is crucial for maintaining macroeconomic stability, preventing financial crises, and bolstering the economy's resilience to shocks. Governments often strive to ensure adequate bank capitalization to foster stable economic growth. This article aims to assess the relationship between bank capitalization and macroeconomic stability in 34 European countries from 2010 to 2021, based on World Bank statistics.
The study utilizes the principal components method to identify relevant indicators of bank capitalization and macroeconomic stability, canonical analysis and regression analyses to detail the interconnections between these blocks. The canonical analysis confirms a link between bank capitalization and macroeconomic stability indicators with a coefficient of determination of 0.617 signifying that 61.8% of the variance in macroeconomic stability is explained by fluctuations in bank capitalization.
The article presents one fixed-effect and two random-effect regression models detailing the directions and strength of influence of independent variables (NPL, ROA, ROE - indicators of the bank capitalization level) on dependent variables (INFLATION, UN- EMPL, GINI - indicators of macroeconomic stability). The Wald criteria and a p-value less than 0.05 indicated that the models with random effects (UNEMPL, GINI) were statistically significant.
The results reveal that a 1% increase in non-performing loans correlates with a 0.25% rise in the unemployment rate, and a 1% increase in return on assets leads to a 0.08% increase in the unemployment rate. Additionally, a 1% increase in non-performing loans raises the Gini index by 0.05%, while a 1% increase in return on equity decreases the Gini index by 0.03%. Notably, the impact of return on assets on the unemployment rate and the Gini coefficient is not statistically significant (p-value greater than 0.05).
These results can inform the forecasting of national indicators, the development of tools to ensure sufficient bank capitalization, and the formulation of effective macroeconomic policies, taking into account fluctuations in banks' capitalization levels as key financial intermediaries.
Keywords: apitalization, bank, macroeconomic stability, inflation rate, return on equity, canonical analysis, panel regression
Позовна І., Архірейська Н, Панасейко І., Панасейко С, Сердюков К., Єфіменко А.
ОЦІНКА ЗВ'ЯЗКУ РІВНЯ КАПІТАЛІЗАЦІЇ БАНКІВ ТА МАКРОЕКОНОМІЧНОЇ СТАБІЛЬНОСТІ КРАЇНИ
Добре капіталізована банківська система є ключовим елементом підтримки макроекономічної стабільності. Вона допомагає запобігати фінансовим кризам, підтримує доступність кредитів і підвищує стійкість економіки до кризових зрушень. Уряди країн часто працюють над забезпеченням достатнього рівня капіталізації банків, щоб сприяти стабільному економічному розвиткові. Метою дослідження є оцінка зв'язку рівня капіталізації банків із макроекономіч- ною стабільністю на прикладі 34 європейських країн протягом 2010-2021 років на основі статистичних даних Світового банку. Мета досягається шляхом визначення релевантних показників капіталізації банків та макроекономічної стабільності на основі використання методу головних компонент, проведення канонічного й регресійного аналізів.
Проведений канонічний аналіз підтвердив наявність зв'язку між рівнем капіталізації банків та індикаторами макроекономічної стабільності. Коефіцієнт детермінації становив 0,617, тобто зміна індикаторів макроекономічної стабільності на 61,77% пояснюється коливаннями рівня капіталізації банків.
У статті представлені 1 регресійна модель із фіксованим ефектом та 2 - з випадковими, які деталізують напрями та силу впливу незалежних змінних (NPL, ROA, ROE - індикатори рівня капіталізації банків) на залежні (INFLATION, UNEMPL, GINI - індикатори макроекономічної стабільності). З огляду на отриманий результат критеріїв Wald та р- value (менше ніж 0,05) побудовані моделі з випадковими ефектами (залежні змінні - UNEMPL, GINI) є статистично значущими.
Визначено, що при збільшенні рівня непрацюючих кредитів на 1% рівень безробіття збільшується на 0,25% та при збільшенні рівня рентабельності активів рівень безробіття збільшується на 0,08%. Також при збільшенні рівня непрацюючих кредитів на 1% індекс Джині збільшується на 0,05%, а при збільшенні рівня рентабельності власного капіталу банків - зменшується на 0,03%. Вплив рентабельності активів на рівень безробіття та коефіцієнт Джині не є статистично значущим (p-value більше за 0,05).
Результати дослідження можуть бути використані при прогнозуванні національних показників, розробці інструментів забезпечення достатнього рівня капіталізації банків та забезпечення ефективної макроекономічної політики, оскільки вони враховують коливання рівня капіталізації банків як головних фінансових посередників країни.
Ключові слова: капіталізація, банк, макроекономічна стабільність, рівень інфляції, рентабельність власного капіталу, канонічний аналіз, панельна регресія
INTRODUCTION
bank capitalization macroeconomic stability
A crucial task for banks is to ensure their financial stability, achieved by maintaining an adequate level of capitalization. Bank capitalization is the proportion of capital held by banks as a percentage of their total assets. Capital serves as a buffer, absorbing losses and thereby reducing the risk of insolvency during financial stress. Consequently, the relationship between the bank capitalization level and macroeconomic stability is complex and multifaceted.
Inadequate capital can trigger a downward spiral where bank failures erode confidence, limit credit availability, decrease economic activity, and elevate unemployment. Conversely, a well-capitalized bank can mitigate systemic risk by absorbing losses and maintaining confidence in the financial system. It's noteworthy that well-capitalized banks possess a greater capacity to extend loans to businesses and households, stimulating economic growth by facilitating easier access to credit services.
As of the end of 2020, the average ratio of regulatory capital to risk-weighted assets in 107 countries was 19.63%. Notably high values were observed in Maldives (46.35%), Moldova (27.07%), Latvia (26.82%), Estonia (26.53%), and Ireland (25.47%). Conversely, lower values were noted in Chad (5.97%), Cameroon (11.23%), and Bangladesh (11.64%). Since the beginning of 2021, this indicator has been declining due to global economic adaptations to the COVID-19 pandemic and Russia's full-scale invasion of Ukraine in early 2022.
In 2022, the capital adequacy ratio of the International Bank for Reconstruction and Development, the largest lender of development projects worldwide, was 22.0%, a 0.6% decrease from 2021. This decline is attributed to increased overall risks compared to the rise in available capital (World Bank, 2022). Given the predominance of European countries in regulatory capital adequacy, the analysis focuses on data from 34 European countries with varying levels of socioeconomic development.
Thus, studying the relationship between bank capitalization and macroeconomic stability is relevant and holds significant practical importance.
LITERATURE REVIEW
The scientific literature actively explores not only individual aspects of the "bank capitalization level - macroeconomic stability" relationship but also their interconnectedness.
Researchers such as Rusmanto et al. (2020), Gambacorta & Shin (2018), and Buriak et al. (2015) have delved into the level of capitalization of the banking sector, defining it as a guarantee of bank sustainability during financial crises. Patel et al. (2023) characterize the level of capitalization as a tool for mitigating financial risks in developed countries, while Shair et al. (2019) regard it as the foundation of institutional performance. Kryklii & Jayasundera (2023) conducted studies assessing approaches to managing liquidity, non-performing loans, and bank profitability. Tam Phan Thanh (2023) examined the level of capitalization through the lens of ensuring a sufficient level of equity capital, measured by the minimum ratio that safeguards risky assets. In contrast, Conti & Signoretti (2023) presented new estimates of the impact of shocks on bank capital requirements. Habiba (2023) views the Basel Accords as regulatory instruments ensuring bank performance. Kuznichenko et al. (2018), and Lutsyk et al. (2022) considered methodological approaches to assessing the market risk of banks (in particular, SA, IMA, and R-SbM approaches) recommended by the Basel Committee on Banking Supervision in terms of standardization and unification of the regulatory framework for capital requirements for Ukrainian banks. In the area of monetary policy, Calmfors (2015), Kuznyetsova et al. (2020), The Economist (2022) identified the following effective tools: the introduction of inflation targeting and greater independence for the central bank. IMF (2016) described a resilient banking system with low levels and high capital ratios.
Macroeconomic stability has been considered by various entities. The United Nations (2022) viewed it through the prism of the state's ability to ensure the protection and defence of its citizens, and Madhuri Thakur (2020) considered human resource management through the prism of human resource management. Banca D'Italia (2022) recognised the following indicators of macroeconomic stability: household consumption, consumer prices, employment and unemployment rates, and others. The Bank of England (2022) equated "financial security" and "financial stability" as the ability of the financial system to fully and efficiently perform its functions: accumulation, distribution, and redistribution of funds. Oliynyk et al. (2017) viewed the insurance sector as a key element of the financial system. The World Bank (2022) identified it with financial stability, characterized by the absence of system-wide episodes of crisis shocks. Oe et al. (2022) emphasized that focusing on innovation, sustainability, and leadership is key to supporting businesses in the post-COVID-19 crisis environment. Loucanova & Olsiakova (2022), focused on comparing the use of innovative and digital technologies in banking, and Hakobyan et al. (2022) noted social interaction between banks and businesses.
Examining the relationship between the banking system and the real sector, Olajide et al. (2023) explored the interaction of exchange rates, interest rates, and economic development indicators in Nigeria. Khan et al. (2011) identified the main determinants of bank profitability, taking into account bank-specific variables in Pakistan. Swiety et al. (2023) and Kuz- nyetsova et al. (2020) identified an approach to assessing the relationship between bank resilience indicators, including capital adequacy ratio, going concern ratio, NPL ratio, and liquidity coverage ratio, and macroeconomic stability indicators, such as GDP growth, GDP growth rate, interest rates, and unemployment rate. Neogi and Behera (2020), and Blankson et al. (2022) studied the role of regulatory bank capital in influencing credit flows and GDP growth. Vasylyeva et al. (2014) scrutinized more detailed interrelationships between the level of capitalization of the banking system and the macroeconomic stability of the state through the study of the countercyclical capital buffer as a macroprudential tool for regulating the banking sector, and Le et al. 2023 noted that the macroeconomic outlook affects bank performance. Simon (2021) defined the impact of capital requirements as a trade-off between financial intermediation and financial stability in a macroeconomic model. In contrast, Pozo (2023) notes that the stricter the fixed leverage requirements, the better banks are able to cope with a financial crisis, which reduces long-term consumption and welfare. FIN-FSA (2019) states that the regulatory framework aims to improve banks' risk-bearing capacity by strengthening their solvency and liquidity, as well as their risk management. In contrast, Feinstein and Halaj (2023) examined the impact of external shocks on bank capitalization. Messaoudi et al. (2023) studied the impact of public administration on the independence of banks, Bilan et al. (2019) considered the synchronization of the financial, business, and trust cycles, and Stolz and Wedow (2011) found that undercapitalised banks do not reduce risk-weighted assets during business cycle downturns. Aryati et al. (2023) noted that macroeconomic stability can be improved by increasing capital inflows and investment in profitable sectors.
AIMS AND OBJECTIVES
Well-capitalized banks can more effectively withstand economic shocks, thereby decreasing the risk of financial crises and promoting overall economic stability. Accordingly, this paper aims to assess the relationship between bank capitalization level and a country's macroeconomic stability, utilizing a sample of 34 European countries for canonical and regression analyses. Beyond this overarching aim, the study encompasses a set of specific objectives:
¦ Identification of macroeconomic stability indicators and bank capitalization;
¦ Conducting canonical modelling to explore the interaction between a bank's capitalization level and macroeconomic stability. An essential aim of this research task is to examine and unveil the intricate interrelationships between these components;
¦ Conducting regression modelling to analyze the functional relationships of the bank capitalization impact on the country's macroeconomic stability.
This research article seeks not only to evaluate the relationship between the level of bank capitalization and the country's macroeconomic stability but also to contribute to a broader understanding of how capitalization and economic development intersect.
METHODS
In the first stage of the research, we compile an array of input data, which includes statistical annual reports on banking activities and macroeconomic stability. The selected countries for analysis encompass Austria, Albania, Bulgaria, Belgium, Estonia, France, Finland, Germany, Iceland, Ireland, Cyprus, Czech Republic, Croatia, Denmark, Latvia, Italy, Lithuania, Malta, Luxembourg, the Netherlands, Moldova, Poland, Norway, Romania, Slovakia, Portugal, Spain, Serbia, Slovenia, Switzerland, United Kingdom, Sweden, and Ukraine for the years 2010-2021. The indicators for analysis are sourced from the World Bank databases (Table 1).
Table 1. Input indicators for assessing the relationship between bank capitalization level and macroeconomic stability. (Source: authors development based on World Bank, 2022; Didenko and Yefimenko, 2023)
Bank capitalization level |
Macroeconomic stability indicators |
|||
Indicator |
Designation |
Indicator |
Designation |
|
Return on assets |
ROA |
Gross domestic product volume |
GDP |
|
Return on equity |
ROE |
Inflation rate |
INFLATION |
|
Non -- performing loans level |
NPL |
Unemployment rate |
UNEMPL |
|
Capital to assets ratio |
BOAR |
Gini index |
GINI |
|
Bank branches number |
CBB |
Gross national income growth rate |
GNI |
|
The ratio of regulatory capital to risk -- weighted assets |
BRC |
|||
Cost to income rate |
CIR |
|||
Depth of financial services penetration |
BDtGDP |
The 'Bank Capitalization Level' block comprises indicators directly influencing the bank's capitalization level, such as the assets-to-capital ratio, the regulatory capital-to-risk-weighted assets ratio, and the return on equity ratio. Additionally, it includes other indicators indirectly impacting the formation of sufficient capitalization.
The 'Macroeconomic Stability' block encompasses indicators characterizing economic growth (GDP,GNI,GINI), employment (UNEMPL), and price levels (INFLATION) as the main indicators of the country's economic stability.
In the second stage, we conduct standard normalization of the input data, considering the average value of the indicator and the standard deviation.
The third step involves the identification of statistically significant indicators using factor analysis in Statistica. This analysis, utilizing the principal component method, allows for the extraction of factors equal to the number of variables, where each factor corresponds to the explained variance.
Subsequently, we perform canonical analysis to assess the relationship between the bank's capitalization level and the country's economic stability. Canonical correlation is commonly used to examine commonalities between two sets of variables in an experimental context. The primary objective of the canonical analysis is to find the maximum correlation between a group of capitalization indicators and a group of macroeconomic stability indicators. Key elements of the canonical analysis include the formation of canonical variables as weighted sums of the original variables in two groups.
Eigenvalues in the canonical analysis represent values of the correlation matrix, indicating the proportion of the variance explained by the correlation between the respective canonical variables. These values are calculated in descending order of magnitude. Canonical correlations (canonical roots) are correlation coefficients between canonical variables, calculated as the square root of their values. The number of canonical roots is equal to the number of variables in the smallest set.
Canonical weights are coefficients in the weighted sum corresponding to the canonical root. These weights are determined for standardized variables. Canonical values represent the values of the canonical variables, which are weighted sums of the values of the original variables.
RESULTS
After normalizing the indicators of banks' capitalization level, identify the ones that exert the most significant impact. The principal components method is employed for this purpose. Table 2 shows the results of selecting the main indicators of bank capitalization.
Table 2. Eigenvalues and total variance share for the factors formed by the banks' capitalization level indicators.
Factors |
Eigenvalues |
% of total variance (TV) |
Cumulative % of TV |
|
Factor 1 |
2,366 |
29,581 |
29,581 |
|
Factor 2 |
1,522 |
19,028 |
70,419 |
Referring to Table 1, the cumulative percentage of the total variance explained by the factors is 70.419%. At the same time, the first factor accounts for 29.58% of the total variance, and the second factor explains 19.02%. This implies that the variables within the first factor (ROA, ROE) exert a more pronounced impact on the level of banks' capitalization. Both factors exhibit eigenvalues exceeding one. The next step involves identifying the factor loadings (Table 3).
Table 3. Results of the principal components method.
Indicator |
Factor 1 |
Factor 2 |
|
В CAR |
-0.485 |
0.381 |
|
NPL |
-0.143 |
-0.749 |
|
CBB |
0.428 |
-0.469 |
|
BDtGDP |
0.377 |
0.692 |
|
ROA |
0.794 |
0.318 |
|
BRC |
-0.585 |
-0.080 |
|
ROE |
0.740 |
0.397 |
|
CIR |
0.463 |
0.076 |
|
TV |
2.337 |
1.519 |
|
Percentage of total |
0.292 |
0.189 |
The first factor includes indicators with a more pronounced impact on the bank's capitalization level. As seen in the second column (Table 3), cells with statistically significant factor loadings for variables within the first factor are shaded in grey. Notable indicators in this regard include ROA (0.794) and ROE (0.740). In the second selected factor, the NPL indicator shows a statistically significant impact, as indicated by the obtained factor loading value of -0.749. It is noteworthy that all the mentioned indicators have absolute factor loadings exceeding 0.7. Thus, these indicators of bank capitalization level hold significance and are suitable for canonical analysis and constructing panel regression models.
The subsequent step involves identifying statistically significant macroeconomic stability indicators. The results of the factor analysis are presented in Table 4.
Table 4. Results of the principal components method using.
Indicator |
Factor 1 |
Factor 2 |
|
ЄОР |
-0.491 |
0.660 |
|
INFLATTON |
0.755 |
0.017 |
|
UNЕМPL |
-0.808 |
-0.074 |
|
GM |
-0.448 |
-0.743 |
|
GNf |
0.244 |
-0.333 |
|
Total variance |
1.726 |
1.105 |
|
Percentage of total |
0.345 |
0.221 |
The variables found to be statistically significant are INFLATION (0.755), UNEMPL (-0.808), and GINI (-0.743). Therefore, these indicators of a country's macroeconomic stability are deemed significant and suitable for use in canonical analysis and panel regression.
The next step involves conducting a canonical analysis to explore the relationship between the level of bank capitalization and the country's macroeconomic stability. Firstly, it is imperative to examine the correlation matrix (Table 5).
Table 5. Correlation matrix between bank capitalization ratios and country's macroeconomic stability.
Index |
INFLATION |
UNEMPL |
GINI |
NPL |
ROA |
ROE |
|
INFLATION |
1.000 |
-0.416 |
-0.191 |
0.181 |
0.013 |
-0.005 |
|
UNEMPL |
-0.416 |
1.000 |
0.273 |
-0.206 |
-0.168 |
-0.170 |
|
GINI |
-0.191 |
0.273 |
1.000 |
0.093 |
-0.132 |
-0.191 |
|
NPL |
0.181 |
-0.206 |
0.093 |
1.000 |
-0.149 |
-0.247 |
|
ROA |
0.013 |
-0.168 |
-0.132 |
-0.149 |
1.000 |
0.685 |
|
ROE |
-0.05 |
-0.170 |
-0.191 |
-0.247 |
0.685 |
1.000 |
Thus, a weak inverse relationship exists between the inflation rate (INFLATION) and the unemployment rate (UNEMPL), with a correlation coefficient of -0.416. In other words, as the inflation rate increases, the unemployment rate decreases. Additionally, there is a moderate direct correlation of 0.685 between return on assets (ROA) and return on equity (ROE). These correlations are visually depicted in Figure 1, illustrating the relationships between the bank's capitalization and the country's macroeconomic indicators.
There is a trend indicating that the strength of the relationship between indicators is proportional to the proximity of points to the line. Notably, return on assets, return on equity, and inflation exhibit a strong correlation, as evidenced by their close alignment with the line. In contrast, the unemployment rate, Gini index, and NPL ratio display a considerable dispersion of points from the line, suggesting a weaker relationship between these indicators.
Figure 2 depicts a scatter plot of bank capitalization and the country's macroeconomic stability indicators, presenting the data distribution through quartiles and highlighting the mean and standard deviations.
Figure 1. Matrix graphs of correlation between bank's capitalization level and macroeconomic stability in 34 European countries
Figure 2. Scope diagrams.
Figure 2 presents deviations in mean values and variations, especially in inflation and return оп assets. Return on equity exhibits the widest variation, indicating diverse approaches among European countries in managing macroeconomic policy, particularly within the banking system.
It is worth noting that the closeness of the relationship between canonical variables is quantified by the canonical correlation coefficient R2, which stands at 61.77%. This implies that 61.77% of the changes in macroeconomic stability indicators among European countries can be explained by fluctuations in the bank's capitalization level. The three roots comprehensively describe 100% of the variance in the set of capital indicators and 100% of the set of macroeconomic stability indicators. Utilizing the values of the capital ratios and the obtained canonical roots, an average of 5.73% of the variance in the left set and 6.09% of the variability in the right set can be explained.
Therefore, following the canonical analysis, the regression analysis was structured with the country's macroeconomic stability indicators as dependent variables and bank capitalization indicators as independent variables.
Figure 3 presents a scatter plot of canonical variables illustrating the interdependence of indicator sets.
Figure 3. Scatterplot of canonical variables.
Figure 3 shows minimal deviations from the regression line, indicating a direct impact of banks' capitalization ratios on macroeconomic stability indicators.
The final stage of evaluating the relationship between bank capitalization level and the country's economic stability involves the calculation and economic interpretation of panel regression models. At this stage, conducting tests to determine the use of fixed or random effects models, such as the Hausman test and the Breusch-Pagan Lagrange multiplier, is crucial. The results of these tests are presented in Table 6.
Table 6. Results of the Hausman test and Breusch-Pagan Lagrange multiplier
Resultant attribute (Y) |
Hausman test chi2 < 0.05 |
Breusch-Pagan Lagrange Prob > chi2 |
|
INFLATION |
Fixed effects chi2 = 0.0000 |
Fixed effects Prob < chi2 = 0.0000 chi2 =285.10 |
|
UNEMPL |
Random effects chi2 = 0.4075 |
Random effects Prob > chi2 |
|
GINI |
Random effects chi2 = 0.6402 |
Random effects Prob > chi2 |
The tests indicate that a fixed-effects model is required for the model with the inflation rate as the dependent variable, a random-effects model for the model with the unemployment rate as the dependent variable, and a random-effects model for the model with the Gini index as the dependent variable. The results of these calculations are presented in Table 7.
Table 7. Results of the panel regression with inflation as the outcome variable.
INFLATION |
Coefficient |
Std.err. |
t (norm t > 1.96) |
p (norm p < 0.05) |
|
NPL |
-0,003 |
0,026 |
-0,15 |
0,881 |
|
ROA |
-0,255 |
0,152 |
-1,68 |
0,094 |
|
ROE |
0,025 |
0,030 |
0,84 |
0,404 |
|
cons |
2,623 |
0,295 |
8,87 |
0,000 |
Considering the result of the Wald criterion and the p-value (greater than 0.05), the model appears to be statistically insignificant. The impact of the bank capitalization indicators, as indicated in Table 7, does not exhibit a statistically significant effect on the dependent variable - inflation (INFLATION). The value of the t-test and the corresponding p-value (more than 0.05) confirm this.
The next step involves determining the parameters of the random effects model, with the outcome variable being the unemployment rate (UNEMPL). Table 8 presents the results of the calculations.
Table 8. Results of estimating the parameters of the panel regression model with random effects, where the dependent variable is the unemployment rate (UNEMPL).
UNEMPL |
Coefficient |
Std.err. |
z |
p (norm p < 0.05) |
|
NPL |
0.248 |
0.018 |
13.58 |
0.000 |
|
ROA |
0.080 |
0.107 |
0.75 |
0.452 |
|
ROE |
-0.108 |
0.021 |
-5.13 |
0.000 |
|
cons |
6.581 |
0.613 |
10.72 |
0.000 |
Considering the result of the Wald test and the p-value (less than 0.05), the model is deemed statistically significant. A 1% increase in NPL corresponds to a 0.25% increase in the unemployment rate (UNEMPL), and a 1% increase in ROE leads to a 0.08% increase in UNEMPL. The impact of these indicators of bank capitalization exhibits a statistically significant effect on the dependent variable, as confirmed by the t-test and the p-value (less than 0.05). Importantly, it is observed that the impact of ROA on the UNEMPL coefficient is not statistically significant, with the p-value exceeding 0.05.
The Non-Performing Loans Rate serves as an indirect indicator of a bank's capitalization, marked by overdue payments on assets extending beyond 90 banking days. This interrelation is notably linked to the rise in loan delinquencies, often stemming from customers facing financial constraints due to job instability. Prompt evaluation of credit risk and judicious restructuring, when needed, stand as pivotal elements for ensuring sustained bank viability. Moreover, return on assets is intricately tied to the NPL's level, exerting a direct influence on the country's unemployment rate. In contrast, the inverse impact of banks' ROE can be attributed to the augmentation of banks' internal funds and profits.
In addition, the research includes another regression model with random effects, where the dependent variable is GINI. Table 9 presents the results of the calculations.
Table 9. Results of estimating the parameters of the panel regression model with random effects, where the dependent variable is the INI.
GINI |
Coefficient |
Std.err. |
z |
p > z (norm p < 0.05) |
|
NPL |
0.047 |
0.014 |
3.31 |
0.001 |
|
ROA |
0.110 |
0.083 |
1.33 |
0.185 |
|
ROE |
-0.027 |
0.016 |
-1.65 |
0.009 |
|
cons |
30.586 |
0.649 |
47.07 |
0.000 |
Considering the result of the Wald test and the p-value (less than 0.05), the model demonstrates statistical significance. A 1% increase in NPL corresponds to a 0.05% increase in the GINI coefficient, while a 1% increase in ROE leads to a 0.03% decrease in the GINI ratio. These indicators of bank capitalization have a statistically significant effect on the dependent variable, as confirmed by the t-test and the p-value (less than 0.05). Notably, the impact of ROA on the GINI coefficient is not statistically significant, with the p-value exceeding 0.05.
DISCUSSION
Comparing the results obtained in this study with similar research areas reveals notable distinctions. Many authors predominantly focus on the internal volatility of capitalization levels, driven by changes in banks' profitability, liquidity, and solvency, without explicitly linking it to fluctuations in the country's socio-economic environment during crises.
In contrast, our approach offers significant advantages over studies such as Shair et al. (2019), which explore the impact of risk and competition on the profitability of the banking industry in Pakistan but overlook key indicators of the country's socio-economic development. Our study provides a detailed assessment of the relationship between bank capitalization levels and macroeconomic stability, drawing insights from the experiences of 34 European countries with varying levels of socioeconomic development.
Similarly, Tam (2023) identifies internal factors affecting the capital adequacy ratio of commercial banks but does not consider the external volatility of the bank's environment, including macroeconomic processes. While Olajide et al. (2023) examine the relationship between exchange rates, interest rates, and economic development in Nigeria, our study extends beyond by incorporating the impact of bank capitalization ratios as fundamental to financial stability.
Moreover, Habiba's (2023) examination of the Basel Accords focuses on the consistency of regulations with the core ideas of risk reduction and financial sector stabilization, particularly in Algerian commercial banks. However, it only partially considers qualitative external aspects of capitalization volatility, primarily related to political inhibitors, without delving into the quantitative indicators of macroeconomic stability.
In conclusion, our paper introduces an enhanced approach to assess the relationship between bank capitalization level and macroeconomic stability. By providing a more detailed analysis of the canonical and regression relationships between these blocks, our study contributes valuable insights to the existing literature.
CONCLUSIONS
The study aimed to assess the relationship between the level of bank capitalization and macroeconomic stability in 34 European countries from 2010 to 2021. A literature review of existing approaches confirmed the practical significance of this topic.
In the initial stages of the study, relevant indicators for banks' capitalization levels (NPL,ROA,ROE) and the country's macroeconomic stability (INFLATION, UNEMPL, GINI) were identified using factor analysis. These indicators formed the basis for the canonical analysis.
The canonical analysis validated the existence of a link between the level of bank capitalization and macroeconomic stability, with a coefficient of determination of 0.617, indicating a moderate density of the relationship. Approximately 61.77% of the change in the country's macroeconomic stability indicators in European countries is explained by fluctuations in the bank's capitalization. A moderate direct correlation of 0.685 was observed between the return on assets level and the return on equity ratio.
To explore how bank capitalization influences a country's macroeconomic stability, we constructed one fixed-effects regression model, where the dependent variable is the inflation rate, and two random-effects models, with the dependent variables being the unemployment rate and GINI index. The models with random effects were found to be statistically significant based on the result of the Wald test and p-value (less than 0.05).
According to the coefficients obtained from the panel regression, a 1% increase in the NPL leads to a 0.25% increase in the unemployment rate and a 1% increase in ROA results in a 0.08% increase in the unemployment rate. Similarly, a 1% increase in NPL corresponds to a 0.05% increase in the GINI index, while a 1% increase in ROE leads to a 0.03% decrease in the GINI index. It was determined that the impact of ROA on the unemployment rate and the GINI coefficient is not statistically significant, as the p-value is greater than 0.05.
In summary, the canonical analysis and panel regression models confirmed the existence and nature of the relationship between the elements of the chain 'level of bank capitalization - macroeconomic stability”. These findings can be valuable in forecasting national indicators and developing anti-crisis measures during economic turbulence, considering the fluctuations in the banks' capitalization levels as crucial financial intermediaries for the country.
REFERENCES
1. Database. World Bank. (n.d.).
httj?sj//databan^kLworldbank.org/spurce/wpr!d-deveLop.ment- indicatprs
2. What is financial stability? (2022). Bank of England. https;//wwWLbankpfen9land.co;uk/kno.wJedgebank/what-iS- financial.-stability
3. Madhuri Thakur (2020). Principles of Human Resource Management. EDUCBA.
https.://www¦.researchgate.net/publjcatipn/338335044_The_ PrincipJesJO.f_Human_Respurce_Management
4. National Security versus Global Security. (2022). United Nations. https.://www¦.un,prg/en/chronicJe/artic!e/natipnal-. security.-versus-.global-securjty.
5. Financial stability. (2022). The World Bank. https.://www¦.worldbank¦prg/en/p.ubljcatipn/gfdr/.gfdr-. 2016/backgrpundy.financial-stability
6. Rusmanto, T., Soedarmono, W., & Tarazi, A. (2020). Credit information sharing in the nexus between charter value and systemic risk in Asian banking. Research in International Business and Finance, 53.
https.://doj;o.r.g/10;1.016/j1ribaf..2020;101199
7. Gambacorta, L., & Shin, H.S. (2018). Why bank capital matters for monetary policy. Journal of Financial Intermediation, 35, 17-29.
httBSJZZdpj.Prg/10.1016/j.ifi.2016.09.005
8. Shair, F., Sun, N., Shaorong, S., Atta, F., & Hussain, M. (2019). Impacts of risk and competition on the profitability of banks: Empirical evidence from Pakistan. PLoS ONE, 1411). https.://doj;o.r.g/10;137.1/journ.aa..pone..Q2.24378
9. Stolz, S., & Wedow, M. (2011). Banks' regulatory capital buffer and the business cycle: Evidence for Germany. Journal of FinancialStabiiiy, 2(7), 98-110. http://dx.doiLor^^10L21.39/.ssrnL771944
10. Swiety, I.A., Ali, M. S., Al-Fasfus, F., Alattar, K., & Zarban, А. (2023). Assessing the Impact of Macroeconomic Indicators in the Resilience of Jordanian Commercial Banks Amid COVID-19 Pandemic. Studies in Systems, Decision and Control, 488, 712-721. h№s.;/./dfii*9.rg/10*100.Z/9.Z8.-.3- 031-39.158-.3_66.
11. Simon, L. (2021). Capital requirements in a model of bank runs: The 2008 run on repo. Latin American Journal of Central Banking, 2(3). https.:.Z/do.i;o.r.g/1.0;1016/j1latcb.202L..100038.
12. Tam, Phan Thanh (2023). Policy Implications for Enhancing the Capital Adequacy Ratio of Commercial Banks Post Covid-19 pandemic in Vietnam. Res Mi/itaris, 13(1), 337 - 347. https.://www.Ls.co.pusLco.m/reco.rd./dispJay;uri?eid=2- s2.0.-85142044388&prjgin=resuLtslist&sprt=pJf: f&src=s&st1=bank+capjtaJ&sid=a720d36a6f95c4c5f1d5032 7ba2bpb2e&sPt=b&sdt=b&sl=.27&s=.TITLE-ABS-.
KEY%28bank+capital%29.&r.eJpos=0.&citeCnt=0&searchTer m=.
13. Conti, Antonio M.A., Nobili, Andreab, Signoretti, & Federico, M.A. (2023). Bank capital requirement shocks: A narrative perspective. European Economic Review, 151(104254).
https.://dpj.prg/10.1.01.6/j.eurpecprev.2022.104254
14. International Monetary Fund (2016). Finland financial system stability assessment. IMF Country Report, 16(370). https.://www..i.mf.org/en/PublicatLons/CR/.Issues/2016/1.2/31 /Fjnnand-Financial-.Sy.stemL-.Stability.-Assessm.erit-44437
15. Capital adequacy and liquidity regulation (CRR/CRD). (2019). FIN-FSA. Financial Supervisory Authority. m https.://.www.Lf.inanssiva.!v.on.t.a1fi/.e.n/.r.egulatio.n./.resu!a.tpry.-. .f.ra.m.e.w.ork/crrcrd./
16. Calmfors, L. (2015). The Swedish Macroeconomic Policy Framework. IFN Working Paper, 1075.
https.://www.jfn.se/wfiJes/wp/wp.1075..pdf#.:~.:t:ext=Sweden .%E.2%8.0.%.99.s.%20.m.a.c.r.oe.c.o.n.o.mJ.c.%20poJicy.%2.0fra.m.ew.o.r k.%2.0h.a.s.%20.r.e.ce.ntly%.2.0.co.m.e.%2.0to./.The%.2.0.ri.s.e.o/o.2.0J.n%. .20une.mpJ.oy.m.en.t.%.20.%Q28F.igu.re.%.20.4%.29.%.20.w.as%.2.0.Li.m. ited
17. Banca D'Italia (2022). Macroeconomic projections for the Italian economy (Eurosystem staff macroeconomic projections).
https.://www.bancadjtaJia.it/.pubbJicazipni/prpjezipnj: macr.pec.ono.m.ic.he/.20.22./.м.acr.oe.c.o.n.o.m.i.c.-.Proj.e.ctio.n.s-Ita.!y.-.
.Decem.ber/_202.2.pdf?language_id=1
18. The Economist (2022). Ranking of countries by economic indicators as of the end of 2022. https.://.s.u.bscrjbenow;e.c.o.n.o.m.i.s.t.c.om.
19. Aryati, A., Junaidi, J., & Putra, R.A. (2023). Financial Development and economic Growth: evidence from Indonesia Before and after the COVID-19 Pandemic. Economy of Regions, 19(4), 1263-1274. h.ttps^://do.i,o.rg/10,17059.Z.ek.on..r.eg.2023.-4-.23
20. Angela, Kuznetsova, Borys, Samorodov, Galyna, Azarenkova, Kateryna, Oryekhova, Maksym Babenko (2020). Operational control over the financial stability of banking. Banks and Bank Systems, 15(1), 51-58. httвSJZZdPj.prg/10.2Д5Д1/bbs.15X1.).2020..06.
21. Vasylyeva, T. A., Leonov, S. V., & Lunyakov, O. V. (2014). Countercyclical capital buffer as a macroprudential tool for regulation of the financial sector. Actual Problems of Economics, 158(8), 278-283.
https.:Z/.www,scp.puslcp.mZrecprdZdispJay.urj?eid.=;2-s2..0: 849219.79.786&o.rigin=resuJ.tsJist
22. Buriak, A., Lyeonov, S., & Vasylieva, T. (2015). Systemically important domestic banks: An indicator-based measurement approach for the Ukrainian banking system. Prague Economic Papers, 24(6), 715-728.
httвsJZZdpj.prg/10.18267Z,i.pep..531
23. Bilan, Y., Brychko, M., Buriak, A., & Vasilyeva, T. (2019). Financial, business and trust cycles: The issues of synchronization. Zbornik Radova Ekonomskog FakultetAu Rijeci, 37(1), 113-138.
httjPsj//doi;org/10;1.80.45./zbefri..2O19.1.11.3
24. Blankson, N., Anarfo, E. B., Amewu, G., & Doabil, L. (2022). Examining the determinants of bank efficiency in transition: empirical evidence from Ghana. Heliyon, 88). httjpsj//doi;oxg/10;1.016/j1heliypn.2022.e10156
25. Oliynyk, V., Zhuravka, F., Bolgar, T., & Yevtushenko, O. (2017). Optimal control of continuous life insurance model. Investment Management and Financial Innovations, 14(4), 21-29. httpsj//doLorp/10;21511/jmfi;14(4.1.2017.03.
26. Oe, H., Yamaoka, Y., & Duda, K. (2022). How to Sustain Businesses in the Post-COVID-19 Era: A Focus on Innovation, Sustainability and Leadership. Business Ethics and Leadership, 6(4), 1-9.
https://doj,org/10.21272./beJJ6X4)..1-9.2022
27. Hakobyan, N., Dabaghyan, A., & Khachatryan, A. (2022). Strategies of Post-War Anomie's Overcoming in the Fields of Social Interactions and Business. Business Ethics and Leadership, 6(3), 105-112.
httjPsj//doj;oxg/10;21272/beJJ6.(3)..105-.112.2022
28. Olajide, O.S., Aderonke, A.B., & Ajike, O.K. (2023). Exchange rate, interest rate and economic development in Nigeria (1980-2020). SocioEconomic Challenges, 7(2), 130141. httjps_://doj.o.rg/10.2.12.72./.sec.7(2.1..13.0-141.2023
29. Pozo, J. (2023). The effects of countercyclical leverage buffers on macroeconomic and financial stability. Quarterly Review of Economics and Finance, 89, 194-217. httjpsj//doj;Gr.g/10;1.016/j1qre.f.2023.03.010
30. Messaoudi, A., Derbal, F.Z., Hasnaoui, M., & Belhamidi, H. (2023). How far does the central bank influence its economies? The example of Algeria. SocioEconomic Challenges, 7(2), 45-53.
https.://doj,o.r.g/10.2.1272./sec.7(2.I..45-.53..2023
31. Patel, S., Kasztelnik, K., & Zelihic, M. (2023). Global overview of modern financing typologies to mitigate financial risks in developed countries. SocioEconomic Challenges, 7(2), 54-66.
https.:.Z/doj,o.r.g/10.2.1272./sec.7(2.).54.-66..2023
32. Habiba, M. (2023). Basel Agreements in the Efficiency of Algerian Banks Financial Evolution and Interdisciplinary
Research. Financial Markets, Institutions and Risks, 7(1), 123-135. https://doj;orp/10;2X272./fmjr.7(1J..123-1.35.2023
33. Neogi, R.G., & Behera, H. (2020). Macroeconomic implications of bank capital regulations. Reserve Bank of India Occasional Papers, 41(2), 1-32.
34. Kuznichenko, Y., Frolov, S., Zhuravka, F., Yefimov, M., & Fedchenko, V. (2018). Regulatory assessment of the bank market risk: international approaches and Ukrainian practice. Banks and Bank Systems, 13(4), 73-84. https;//doj,or.g/10,21511ybbs113(4)..2018.Q7
35. Kuznyetsova, A., Klishchuk, O., Lisnyak, A., Kerimov, A., & Babayev, A. (2020). Innovation mechanism in monetary policy forecasting: unification of all macroeconomic puzzles in SVAR model. Marketing and Management of Innovations, 4, 219-230. https.://doj,or.g/10,2.12.72./.mmi¦.2Q2Q^4.-17
36. Kryklii, O., & Jayasundera, A. (2023). Evaluating The Significance of Uncertainty on Bank Liquidity: A Case Study of Ukrainian Banks in Russian Military Aggression. Financial Markets, Institutions and Risks, 7(2), 111-121.
https: /Zdpj.prд/10.21272/fmir.7.(2).111-121.2023
37. Khan, F., Anuar, M. A., Choo, L. G. (2011). Determinants of bank profitability in Pakistan: A case study of Pakistani banking sector. World Applied Sciences Journal, 15(10), 1484-1493.
https.:Z/www..researchдate,netZpubljcatipnZ286179182_Dete rЛ^jnants_pf_bank_prpfitabiljty_Ln_Paklistanl_A_case_study_ P.f_Pakjstani_ban kj ng_sector
38. Lutsyk, M., Solovarov, A., & Paliukh, A. (2022). Identification of banking risks and their impact on financial stability. Socio-Economic Relations in the Digital Society, 4(46), 24-36. httBSJ/ZdPj.Prд/10.55643ZserJ4.46.2022.471
39. Loucanova, E. & Olsiakova, M. (2022). Comparison of Innovation in the Electronic Banking Services of the Largest Slovak Banks. Marketing and Management of Innovations, 4, 1-9. https: /Zdoj.org/10.21272Zm mi .2022.4-0.1
40. Didenko, I., & Yefimenko, A. (2023). Interconnections assessment of banking capitalization with macroeconomic stability, including corruption and shadow economy.
Technology Audit and Production Reserves, 4 (4 (72)), 6067. httJPs:ZZdPi,pr.дZ10,1.5587Z2706-5448.2Q23.286657
41. Feinstein, Z., & Halaj, G. (2023). Interbank asset-liability networks with fire sale management. Journal of Economic Dynamics and Control, 155.
https:ZZdPi.pr.дZ10,1016Zj.iedcL2Q23.1Q4734
Размещено на Allbest.ru
...Подобные документы
A bank: nature of activity, main business-processes and organizational structure, the market place and history. Definitions of the project and project management, the project life cycle. Management of development projects in a bank, the expected results.
реферат [20,6 K], добавлен 14.02.2016General information about Asya Participation Bank. Offering uninterrupted, rapid and effective service via Online Banking. Capital and Shareholder Structure. Affiliates and subsidiaries. The leader of participation banking. Bank Asya’s Objectives.
курсовая работа [1,4 M], добавлен 01.11.2011Financial position of the "BTA Bank", prospects, business strategy, management plans and objectives. Forward-looking statements, risks, uncertainties and other factors that may cause actual results of operations; strategy and business environment.
презентация [510,7 K], добавлен 17.02.2013Краткая финансово-экономическая характеристика деятельности ОАО "Optima Bank", адекватность капитала. Процедура учета и организация документооборота расчетно-кассовых операций. Коэффициенты эффективности использования обязательств коммерческого банка.
отчет по практике [42,3 K], добавлен 29.01.2015Рoль вклaдoв клиентoв в фoрмирoвaние реcурcнoй бaзы бaнкa. Клaccификaция бaнкoвcкиx депoзитoв. Xaрaктериcтика АО "Kaspi Bank", анализ его финaнcoвo-xoзяйcтвенной деятельнocти. Aнaлиз депoзитнoгo пoртфеля бaнкa, его прoблемы и перcпективы развития.
дипломная работа [289,2 K], добавлен 21.05.2012The principal types of banking in the modern world are commercial banking and central banking. The provision of safe deposit facilities for money and valuables. Establishing a bank account. Cashier’s checks. Characteristic of the central bank in the UK.
презентация [1,1 M], добавлен 23.03.2015Сущность понятия "ипотечное кредитование". Объемы ипотечного кредитования в Казахстане. Основные источники финансирования жилищного строительства Астаны. Кредитный портфель АО "Kaspi Bank". Предложения по совершенствованию ипотечного кредитования.
доклад [14,2 K], добавлен 09.12.2010Development banking, increasing the degree of integration of the banking sector of Ukraine in the international financial community, empowerment of modern financial markets, increasing range of banking products. The management mechanism of bank liquidity.
реферат [17,2 K], добавлен 26.05.2013Оценка современного состояния и перспектив дальнейшего развития банковской системы Казахстана, причины опережения развития по сравнению с постсоветскими странами. Характеристика "HSBC Bank Kazakhstan", анализ и оценка его сервисов, микро- и медиасреда.
презентация [125,7 K], добавлен 17.02.2011Раскрытие сущности и характеристика основных видов кредитования населения. Общие условия и методы кредитования. Кредитная политика и анализ структуры кредитного портфеля в КФ АО "Kaspi bank". Кредитный мониторинг проблемных потребительских кредитов.
дипломная работа [312,2 K], добавлен 25.10.2015Внедрение CRM и его преимущества. Общая характеристика Сбербанка, стратегия и элементы бизнес-модели. Задекларированные высокоуровневые цели и направления развития CRM в исследуемом банке. Ожидаемые результаты реализации стратегии и критерии успеха.
дипломная работа [2,2 M], добавлен 15.01.2017Оценка основных показателей деятельности банка, величина собственного капитала, коэффициенты доходности и прибыльности АО "Kaspi bank". Анализ динамики и структуры его кредитного портфеля. Финансовые отношения банка с клиентами и расчетные операции.
курсовая работа [648,3 K], добавлен 08.12.2014Asian Development Fund. Poverty reduction in Asia and the Pacific. Promotion of pro poor, sustainable economic growth. Supporting social development. Facilitating good governance. Long-term Strategic Framework. Private, financial sector development.
презентация [298,7 K], добавлен 08.07.2013History of introduction of a modern banking system to the Muslim countries, features of their development and functioning in today's market economy. Perspectives of future development of Islamic banking in the world and in the Republic of Kazakhstan.
курсовая работа [1,3 M], добавлен 19.04.2012Анализ и оценка финансово-экономической деятельности банка на примере ОАО "Кaspi bank". Организационно-экономическая характеристика и финансовые показатели деятельности коммерческого банка, разработка рекомендаций по его финансовому оздоровлению.
курсовая работа [1,2 M], добавлен 05.05.2015Особенности потребительского кредитования за рубежом. Современный анализ потребительского кредитования в Республике Казахстан. Кредитная политика в банках второго уровня в Казахстане. Организация потребительского кредитования на примере АО "Kaspi bank".
дипломная работа [174,4 K], добавлен 26.05.2010The Banking System of USA. Central, Commercial Banking and the Development of the Federal Reserve and Monetary Policy. Depository Institutions: Commercial Banks and Banking Structure. Banking System in Transition. Role of the National Bank of Ukraine.
научная работа [192,0 K], добавлен 22.01.2010History of the online payment systems. Payment service providers. Online bill payments and bank transefrs. Pros and cons for using online payment systems. Card Holder Based On Biometrics. Theft in online payment system. Online banking services, risk.
реферат [37,2 K], добавлен 26.05.2014Commercial banks as the main segment market economy. Principles and functions of commercial banks. Legal framework of commercial operation banks. The term "banking risks". Analysis of risks and methods of their regulation. Methods of risk management.
дипломная работа [95,2 K], добавлен 19.01.2014Issues about housing prices formation process. Analytical model of housing prices. Definition a type of relationship between the set of independent variables and housing prices. The graph of real housing prices of all Russian regions during the period.
курсовая работа [1,6 M], добавлен 23.09.2016