Фундаментальные физические взаимодействия в природе, их характеристика
Общие законы в структуре фундаментальных физических теорий. Гравитация, электромагнетизм, слабое и сильное взаимодействие как фундаментальные физические взаимодействия. Связь законов сохранения физических величин и свойств симметрии физических систем.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 24.02.2013 |
Размер файла | 203,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
План
Введение
1. Фундаментальные физические взаимодействия
1.1 Гравитация
1.2 Электромагнетизм
1.3 Слабое взаимодействие
1.4 Сильное взаимодействие
2. Фундаментальные законы сохранения
2.1 Закон сохранения энергии в механических процессах
2.2 Закон сохранения импульса
2.3 Закон сохранения момента импульса
3. Связь законов сохранения с симметрией пространства и времени
4. Симметрия как основа описания объектов и процессов в микромире
Литература
Введение
Во второй половине ХХ в. физики, занятые изучением фундаментальной структуры материи, получили удивительные результаты. Было открыто множество новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частиц.
Новые частицы обычно открывают в реакциях рассеяния уже известных частиц. Для этого сталкивают частицы с как можно большими энергиями, а затем исследуют продукты их взаимодействия и фрагменты, на которые распались образовавшиеся частицы. В наше время ускорители, создающие интенсивные пучки частиц с высокими энергиями.
В 50-70-е гг. физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Если в конце 40-х гг. было известно 15 элементарных частиц, то в конце 70-х гг. уже около четырехсот.
В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось, в результате развития естествознания, несмотря на столь большое разнообразие, все действующиe в природе силы можно свести к четыpем фундаменталъным взаимодействuям. Именно эти взаимодействия, в конечном счете, отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.
Фундаментальные физические законы - это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе. Различные формы движения материи описываются различными фундаментальными теориями. Каждая из этих теорий описывает вполне определенные явления: механическое или тепловое движение, электромагнитные явления.
Существуют более общие законы в структуре фундаментальных физических теорий, охватывающие все формы движения материи и все процессы. Это законы симметрии, или инвариантности, и связанные с ними законы сохранения физических величин.
Законы сохранения физических величин - это утверждения, согласно которым численные значения этих величин не меняются со временем в любых процессах или классах процессов. Фактически во многих случаях законы сохранения просто вытекают из принципов симметрии.
Законы сохранения тесно связаны со свойствами симметрии физических систем. При этом симметрия понимается как инвариантность физических законов относительно некоторой группы преобразований входящих в них величин. Наличие симметрии приводит к тому, что для данной системы существует сохраняющаяся физическая величина. Если известны свойства симметрии системы, как правило, можно найти для нее закон сохранения и наоборот.
В современной физике обнаружена определенная иерархия законов сохранения и принципов симметрии. Одни из этих принципов выполняются при любых взаимодействиях, другие же - только при сильных. Эта иерархия отчетливо проявляется во внутренних принципах симметрии, которые действуют в микромире.
1. Фундаментальные физические взаимодействия
1.1 Гравитация
Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в ХVII в. ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы.
Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенcивность. Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов. Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной?
Все дело во второй удивительной черте гравитации - ее универсальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас. Зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты в гравитации пока не доступны наблюдению.
Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселенной.
Кроме того, гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.
Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось.
1.2 Электромагнетизм
По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).
В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля.
Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все матеpиальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.
Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой - как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования монополя.
Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояниях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи - в мегамире, макромире и микромире. Как и гравитация, оно подчиняется закону обратных квадратов.
Электромагнитное поле Земли простирается далеко в космическое пространство; мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. Электромагнитное взаимодействие определяет также структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных). К нему сводятся все обычные силы: силы упругости, трения, поверхностного натяжения, им определяются агрегатные состояния вещества, оптические явления и др.
1.3 Слабое взаимодействие
К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.
У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы "спасти" закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку "нейтрино".
Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в "готовом виде", а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.
Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.
1.4 Сильное взаимодействие
Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.
К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.
Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.
Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.
2. Фундаментальные законы сохранения
2.1 Закон сохранения энергии в механических процессах
Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энергия характеризует взаимодействующие тела, а кинетическая - движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля.
Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях те сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах.
Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается постоянной.
Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергий в равной Количественной мере при взаимодействии тел.
Закон сохранения полной механической энергии в проце 6ссах с участием сил упругости и гравитационных сил является одним из основных законов механики. Знание этого закона упрощает решение многих задач, имеющих большое практическое значение в практической жизни.
Например, для получения электроэнергии широко используется энергия рек. С этой целью строят плотины, перегораживают реки. Под действием сил тяжести вода из водохранилища за плотиной движется вниз по колодцу ускоренно и приобретает некоторую кинетическую энергию. При столкновении быстро движущегося потока воды с лопатками гидравлической турбины происходит преобразование кинетической энергии поступательного движения воды в кинетическую энергию вращательного движения роторов турбины, а затем с помощью электрического генератора - в электрическую энергию.
Механическая энергия не сохраняется, если между телами действует сила трения. Автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля, асфальта. В результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.
Таким образом, при любых физических взаимодействиях энергия не возникает, а только превращается из одной формы в другую. Этот экспериментально установленный факт называется законом сохранения и превраще 6ния энергии.
Источники энергии на земле велики и разнообразны. Когда - то в древности люди знали только один источник энергии - мускульную силу и силу домашних животных. Энергия возобновлялась за счет пищи. Теперь большую часть работы делают машины, источником энергии для них служат различные виды ископаемого топлива: каменный уголь, торф, нефть, а также энергия воды и ветра.
Если проследить "родословную" всех этих разнообразных видов энергии, то окажется, что все они являются энергией солнечных лучей. Энергия окружающего нас космического пространства аккумулируется Солнцем в виде энергии атомных ядер, химическ 5их элементов, электромагнитных и гравитационных полей. Солнце в свою очередь, обеспечивает Землю энергией, проявляющейся в виде энергии ветра и волн, приливов и отливов, в форме геомагнетизма, различного вида излучений, мускульной энергии животного мира.
Геофизическая энергия высвобождается в виде природных стихийных явлений, обмена веществ в живых организмах, полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасания энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран.
Любые формы энергии, превращаясь друг в друга посредством механического движения, химических реакций и электромагнитных излучений, в конце концов, переходят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс - упорядочения структуры, которые наглядно прослеживаются прежде всего в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым "солнечным системам". И все возвращается на круги своя.
Закон сохранения механической энергии был сформулирован немецким ученым А. Лейбницем. Затем немецкий ученый Ю.Р. Майер, английский физик Дж. Джоуль и немецкий ученый Г. Гельмгольц экспериментально открыли законы сохранения энергии в немеханических явлениях.
2.2 Закон сохранения импульса
Покой и движение тела относительны, скорость движения зависит от выбора системы отсчета. По второму закону Ньютона, независимо от того, находилось ли тело в покое, или двигалось равномерно и прямолинейно, изменение его скорости движения может происходить только под действием силы, то есть в результате взаимодействия с другими телами.
Имеется физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково, равная произведению массы тела на его скорость и называемая импульсом тела. Импульс - величина векторная, совпадающая по направлению со скоростью. Изменение импульса равно импульсу приложенной силы. Импульс тела является количественной характеристикой поступательного движения тел.
Экспериментальные исследования взаимодействий различных тел - от планет и звезд до атомов и электронов, элементарных частиц - показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел остается постоянной.
Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой. Таким образом, в замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса.
Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета. На законе сохранения импульса основано реактивное движение, его используют при расчете направленных взрывов, например, при прокладке туннелей в горах. Полеты в космос стали возможными благодаря использованию многоступенчатых ракет.
2.3 Закон сохранения момента импульса
Момент импульса - физическая величина, характеризующая количество вращательного движения. Подчиняется закону сохранению, вытекающему из изотропности пространства.
Все вращающиеся тела обладают моментом импульса. Из формулы для расчета момента импульса
L=mVr,
где m - масса, V - скорость, r - радиус, видно, что с уменьшением радиуса должна возрастать скорость. Этим законом пользуются балерины, исполняя фуэте. Особенно хорошо этот закон проявляется в фигурном катании. При начале вращения руки и нога разводятся на максимально возможное расстояние от тела. Прижимая части тела обратно, уменьшая радиус, фигурист и балерина начинают вращаться быстрее, вызывая, при удаче, восторг зрителей.
Сохранение момента импульса происходит как в процессах микромира, так и в масштабах вращающихся звезд и галактик - он имеет всеобщий характер.
3. Связь законов сохранения с симметрией пространства и времени
Принципы симметрии тесно связаны с законами сохранения физических величин - утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённых классах процессов. Фактически, во многих случаях законы сохранения просто вытекают из принципов симметрии.
Связь между симметрией пространства и законами сохранения установила в 1918 году немецкий математик Эмми Нетер (1882 - 1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющаяся величина.
Теорема Нетер, доказанная ею во время участия в работе целой группы по проблемам общей теории относительности как бы побочно, стала важнейшим инструментом теоретической физики, утвердившей особую роль принципов симметрии при построении физической теории. Можно сказать, что теоретико-инвариантный подход, эрлангенский принцип проник в физику и определил целесообразность формулирования физических теорий на языке лагранжианов. Так, упоминаемые законы сохранения являются следствиями симметрий, существующих в реальном пространстве - времени. Закон сохранения энергии является следствием временной трансляционной симметрии - однородности времени. В силу однородности времени функция Лагранжа замкнутой системы явно от времени не зависит, а зависит от координат и импульсов всех элементов, составляющих эту систему. Несложными математическими преобразованиями можно показать, что это приводит к тому, что полная энергия системы в процессе движения остается неизменной.
Закон сохранения импульса является следствием трансляционной Инвариантности пространства (однородности пространства). Если потребовать, чтобы функция Лагранжа оставалась неизменной при любом бесконечно малом переносе замкнутой системы в пространстве, то получим закон сохранения импульса.
Закон сохранения момента импульса является Следствием симметрии относительно поворотов в пространстве, свидетельствует об изотропности пространства. Если потребовать, чтобы функция Лагранжа оставалась неизменной при любом бесконечно малом повороте замкнутой системы в пространстве, то получим закон сохранения момента импульса. Эти законы сохранения характерны для всех частиц, являются общими, выполняющимися во всех взаимодействиях.
До недавнего времени в физике проводилось четкое разделение на внешние и внутренние симметрии. Внешние симметрии - симметрия физических объектов в реальном пространстве - времени, называемые также пространственно временными или геометрическими. Законы сохранения энергии, импульса и момента импульса являются следствиями внешних симметрий.
4. Симметрия как основа описания объектов и процессов в микромире
физический гравитация электромагнетизм симметрия
Среди целой группы принципов современной физики важнейшим, пожалуй, является принцип симметрии, или инвариантность, на основе которого действует закон сохранения физических величин.
В той или иной степени представление о симметрии есть у всех людей, так как этим свойством обладают самые разные предметы, играющие важную роль в повседневной жизни. Более того, в силу самых разных причин и соображений многим творения человеческих рук умышленно придается симметричная форма. Возможно, наиболее симметричным продуктом деятельности человека является мяч, который выглядит всегда одинаково, как бы его ни поворачивали.
В природе симметрия также встречается в изобилии. Снежинка обладает удивительнейшей гексагональной симметрией. Кристаллы также имеют характерные геометрические формы. Падающая дождевая капля имеет форму идеальной сферы и, замерзая, превращается в ледяной шарик - градину.
Другой вид симметрии, часто наблюдаемый в природе и в созданных человеком вещах, - так называемая зеркальная симметрия. Человеческое тело приближенно обладает зеркальной симметрией относительно вертикальной оси. Многие архитектурные сооружения, например, арки или соборы, обладают зеркальной симметрией.
Симметрии, соответствующие вращению или отражению, наглядны и радуют глаз, но они не исчерпывают весь запас симметрий, существующих в природе. Исследуя математическое описание той или иной системы, физики открывают время от времени новые и неожиданные формы симметрии. Они достаточно тонко "запрятаны" в математическом аппарате и совсем не видны тому, кто наблюдает саму физическую систему.
Сегодня математическое исследование, основанное на анализе симметрии, также может стать источником выдающихся достижений в физике. Даже если заложенные в математическом описании симметрии трудно или невозможно представить себе наглядно физически, они могут указать путь к выявлению новых фундаментальных принципов природы. Поиск новых симметрий стал главным средством, помогающим физику в наши дни продвигаться к более глубокому пониманию мира.
Симметрия (от греческого symmetria - соразмерность), в широком смысле - инвариантность (неизменность) структуры, свойств, формы (направление в геометрии, кристаллографии) материального объекта относительно его преобразований (то есть изменений ряда физических свойств). Симметрия лежит в основе сохранения законов. В "Кратком Оксфордском словаре" симметрия определяется как "красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью"
Сохранения законы, наиболее общие физические законы, согласно которым численные значения некоторых физических величин, характеризующих физическую систему при определённых условиях, не изменяются с течением времени при различных процессах в этой системе. Важнейшие сохранения законы - законы сохранения энергии, импульса, момента количества движения, электрического заряда.
Существование сохранения законов, как правило, связано с наличием в этой системе той или иной симметрии. Например, однородность времени приводит к сохранению законов энергии, а однородность пространства приводит к сохранению законов импульса.
Однако понятие симметрии можно расширить, включив в него более абстрактные понятия, никак не связанные с геометрией. Например, одна из симметрий связана с работой, совершённой при подъёме тела. Затрачиваемая энергия зависит от разности высот, которую требуется преодолеть при этом. Но энергия не зависит от абсолютной высоты: безразлично, измеряются высоты от уровня моря или от уровня суши - важна только разность высот. Этот примет - иллюстрация того, что физики называют калибровочными симметриями, связанными с изменениями масштаба. Все симметрии, которые связаны с законами микромира, являются калибровочными.
Приведённые описания различных типов симметрии дают нам достаточно оснований говорить о громадной роли принципа симметрии в современной физике. Такая роль симметрии требует строго её определения.
Симметрия в физике - это свойство физических величин, детально описывающих поведение систем, оставаться неизменными (инвариантными) при определённых преобразованиях, которым могут быть подвергнуты входящие в них величины.
Понятие симметрии играет в жизни человека важную роль. Природа красива и требует для своего описания красивых уравнений. Возможность записать законы природы.
Литература
1. Гейзенберг В. Физика и философия. Часть и целое. М., 1989.
2. Карненков С.Х. "Основные концепции естествознания". - М.: Культура и спорт, ЮНИТИ, 1998.
3. Мигдал А.Б., Асламазов Л.Г. "Энциклопедический словарь юного физика". Москва: Педагогика, 1984.
4. Миронов А.В. "Концепции современного естествознания". - ПЗ Пресс, 2003.
5. Найдыш В.М. "Концепции современного естествознания", М., 1999г.
6. Пригожин И., Стенгерс И. Время, хаос, квант. М., 1994.
7. Свиридов В.В. "Концепции современного естествознания". - СПб.: Питер, 2005.
8. Урманцев Ю.А. "Симметрия природы и природа симметрии". - Москва: Мысль, 1974.
9. Хоромавина С.Г. "Концепции современного естествознания". - Ростов н/Д: "Феникс", 2003.
10. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.
Размещено на Allbest.ru
...Подобные документы
Иерархия естественно научных законов. Законы сохранения. Связь законов сохранения с симметрией системы. Фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.
реферат [30,5 K], добавлен 17.10.2005Слабое взаимодействие, или слабое ядерное взаимодействие, — одно из четырёх фундаментальных взаимодействий в природе, его переносчики. Отличительные свойства слабого взаимодействия, его характеристика интенсивности. Операция пространственной инверсии.
реферат [46,2 K], добавлен 27.03.2015Фундаментальные взаимодействия: гравитационное, электромагнитное, сильное, слабое; их понятие и краткая история. Взаимосвязь всех материальных объектов микро, макро и мегамира. Электромагнитное взаимодействие между телами в космических масштабах.
реферат [332,4 K], добавлен 10.07.2011Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.
презентация [312,0 K], добавлен 18.10.2015Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.
реферат [227,7 K], добавлен 17.11.2014Законы симметрии микромира и макромира. Связи законов сохранения и законов симметрии. Классический детерминизм и вероятностно-статистический детерминизм. Отличие живых систем от неживых. Экологические проблемы современности.
шпаргалка [29,3 K], добавлен 10.09.2007Гигиеническая характеристика физических факторов воздушной среды. Физические свойства атмосферного воздуха. Метеорологические факторы. Ионизация воздуха и атмосферное электричество. Изучение принципов гигиенического нормирования микроклимата помещений.
презентация [575,5 K], добавлен 05.12.2013Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.
реферат [24,0 K], добавлен 05.01.2008Изучение физических и физико-химических процессов, лежащих в основе жизни. Рассмотрение структуры и свойств биологически важных молекул, межклеточного взаимодействия, передачи информации в каналах связи. Механизмы воздействия на организм факторов среды.
курс лекций [1,0 M], добавлен 10.05.2015Слабое и сильное ядерное взаимодействия, их отличительные особенности характер протекающих процессов. Гипотезы зарождения жизни на Земле: самопроизвольное зарождение, биогенез, панспермии, биохимическая эволюция. Пример химических элементов-изомеров.
контрольная работа [261,8 K], добавлен 18.07.2011Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.
курсовая работа [19,5 K], добавлен 04.11.2011Симметрия пространства – времени и законы сохранения, калибровочные симметрии. Связь с инвариантностью относительно масштабных преобразований. Открытие киральной чистоты молекул биогенного происхождения. Связь грани между законами и условиями их действия.
реферат [15,6 K], добавлен 31.01.2009История открытия закона сохранения и превращения энергии. Фундаментальные законы природы. Закон сохранения и превращения энергии. Количественное соотношение теплоты и механической работы, механический эквивалент тепла. Смысл закона сохранения энергии.
контрольная работа [44,0 K], добавлен 03.10.2011Физические поля и излучения функционирующего организма человека. Механизм взаимодействия излучений человека и окружающей среды и возможности медицинской диагностики и лечения. Физические поля биологических объектов. Метод газоразрядной визуализации.
доклад [67,1 K], добавлен 15.12.2009Определение, сущность и сравнение симметрии и асимметрии. История возникновения категорий симметрии как одного из фундаментальных свойств природы, а также анализ ее места в познании и архитектуре. Общая характеристика асимметрии человеческого мозга.
контрольная работа [30,6 K], добавлен 22.12.2010Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.
контрольная работа [23,4 K], добавлен 10.06.2015Общие фундаментальные принципы и законы. Связь жизни на Земле с физическими условиями. Происхождение жизни. Влияние Солнца на экологические процессы Земли. Биосфера Земли. Причины и характер загрязнения биосферы, способы решения этой проблемы.
контрольная работа [22,1 K], добавлен 14.10.2007Детерминизм как учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Общая характеристика законов сохранения, история открытия закона сохранения вещества. Эволюция закона сохранения энергии.
реферат [23,5 K], добавлен 29.11.2009Понятие и биологическая сущность мутагенов, их классификация и характерные признаки, сферы применения в биотехнологии. Механизмы образования мутаций при действии различных биологических факторов. Характер влияния физических мутагенов на живые клетки.
реферат [35,0 K], добавлен 23.01.2010Рассмотрение химии как составного элемента системы "общество - природа". Описание химических и физических изменений веществ. Изучение законов сохранения массы и энергии. Описание реакционной способности веществ. Основы атомно-молекулярного учения.
реферат [29,3 K], добавлен 30.07.2010