Процесс метаболизма
Рассмотрение метаболизма как основы существования живых организмов. Понятие трансляции и транскрипции, анаболизма и катаболизма. Автотрофный и гетеротрофный типы обмена веществ. Биологическое значение процесса биосинтеза белка, фотосинтеза и хемосинтеза.
Рубрика | Биология и естествознание |
Вид | лекция |
Язык | русский |
Дата добавления | 17.03.2013 |
Размер файла | 27,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Тема: Процесс метаболизма
План
1. Метаболизм - основа существования живых организмов
2. Пластический обмен - анаболизм
3. Энергетический обмен -- катаболизм
4. Автотрофный тип обмена веществ
5. Гетеротрофный тип обмена веществ
Контрольные вопросы для закрепления
Рекомендуемая литература
1. Метаболизм - основа существования живых организмов
Метаболимзм (от греч. мефбвплЮ, "превращение, изменение"), или обмен веществ -- набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Метаболизм обычно делят на две стадии -- в ходе катаболизма сложные органические вещества деградируют до более простых, в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.
2. Анаболизм
Совокупность реакций биологического синтеза называется пластическим обменом или анаболизмом (от греч. anabole -- подъем). Название этого вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам клетки, т. е. происходит ассимиляция.
Все процессы метаболизма в клетке и целом организме протекают под контролем наследственного аппарата. Все они являются результатом реализации генетической информации, имеющейся в клетке.
Реализация наследственной информации -- биосинтез белков
Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа транскрипцию и трансляцию.
Транскрипция (от лат. transcriptio -- переписывание) информации происходит путем синтеза на одной из цепей молекулы ДНК, на одноцепочечную молекулы РНК, последовательность нуклеотидов которой точно соответствует (комплементарности) последовательности нуклеотидов матрицы -- полинуклеотидной цепи ДНК. Существуют специальные механизмы "узнавания" начальной точки синтеза, выбора цепи ДНК, с которой считывается информация, а также механизмы завершения процесса. Так образуется информационная РНК.
Трансляция (от лат. translation -- передача) -- перевод информации, заключенной в последовательности нуклеотидов (последовательности кодонов) молекулы инк в последовательность аминокислот полипептидной цепи.
У прокариот (бактерий и синезеленых), не имеющих оформленного ядра, рибосомы могут связываться с вновь синтезированной молекулой и-РНК сразу же после ее отделения от ДНК или даже до полного завершения ее синтеза.
У эукариот и-РНК сначала должна быть доставлена через ядерную оболочку в цитоплазму. Перенос осуществляется специальными белками, которые образуют комплекс с молекулой РНК. Кроме транспорта и-РНК к рибосомам эти белки защищают и-РНК от повреждающего действия цитоплазматических ферментов. В цитоплазме на один из концов и-РНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида.
Рибосома перемещается по молекуле и-РНК не плавно, а прерывисто, триплет за триплетом.
По мере перемещения рибосомы по молекуле и-РНК к полипептидной цепочке одна за другой пристраиваются аминокислоты, соответствующие триплетам и-РНК, Точное соответствие аминокислоты коду триплета и-РНК обеспечивается т-РНК. Для каждой аминокислоты существует своя т-РНК, один из триплетов которой -- антикодон -- комплементарен строго определенному триплету и-РНК. Точно также каждой аминокислоте соответствует свой фермент, присоединяющий ее к т-РНК. Общий принцип передачи наследственной информации о структуре белковых молекул в процессе биосинтеза полипептидной цепи.
После завершения синтеза полипептидная цепочка отделяется от матрицы -- молекулы и-РНК, сворачивается в спираль, а затем приобретает третичную структуру, свойственную данному белку.
Молекула и-РНК может использоваться для синтеза полипептидов многократно, так же, как рибосома.
Биологический синтез небелковых молекул в клетке осуществляется в три этапа. Вначале реализуется информация о структуре специфического белка-фермента, а затем при помощи этого фермента образуется молекула определенного углевода или липида. Сходным путем образуется и другие молекулы: витамины, гормоны, и другие.
3. Энергетический обмен -- катаболизм
Процессом, противоположным синтезу, является диссимиляция -- совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки или катаболизмом (от греч. katabole -- разрушение). Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекулах органических соединений. Например, при разрыве такой химической связи, как пептидная, освобождается около 12 кДж на 1 моль. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. на 180 г глюкозы). При расщеплении глюкозы энергия выделяется поэтапно при участии ряда ферментов согласно итоговому уравнению:
C6H12O6 + 6O2 6H2O + 6CO2 + 2800кДж
Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ.
Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.
Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты.
Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ).
Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоемка. Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж вместо 12 кДж, выделяемых при разрыве обычных химических связей.
Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап -- подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы -- глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот -- на нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.
Второй этап -- бескислородный, или неполный. Он называется также анаэробным дыханием (гликолизом) или брожением. Термин "брожение" обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению. Например, в мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы пировиноградной кислоты (С3Н4О8), которые затем восстанавливаются в молочную кислоту (С3Н6О3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. В суммарном виде это выглядит так:
C6H12O6 + 2H3PO4 + 2 АДФ 2C3H6O3 + 2АТФ + 2H2O
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):
C6H12O6 + 2H3PO4 + 2 АДФ 2C2H5OH + 2CO2 + 2АТФ + 2H2O
У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.
Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% энергии, а остальная рассеивается в виде теплоты.
Третий этап энергетического обмена -- стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов -- Н2О и СО2. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:
2C3H6O3 + 6O2 + 36H3PO4 + 36 АДФ 6CO2 + 38H2O + 36АТФ
Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.
По способу получения энергии все организмы делятся на две группы -- автотрофные и гетеротрофные.
4. Автотрофный тип обмена веществ
Автотрофы -- это организмы, осуществляющие питание (т. е. получающие энергию) за счет неорганических соединений. К ним относятся некоторые бактерии и все зеленые растения. В зависимости от того, какой источник энергии используется автотрофными организмами для синтеза органических соединений, их делят на две группы: фототрофы и хемотрофы.
Фотосинтез.
Фотосинтезом называют образование органических (и неорганических) молекул из неорганических за счет использования энергии солнечного света. Этот процесс состоит из двух фаз -- световая и темновая.
В световой фазе кванты света -- фотоны -- взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией "возбужденное" состояние. Затем избыточная энергия части возбужденных молекул преобразуется в теплоту или испускается в виде света. Другая ее часть передается ионам водорода Н+, всегда имеющимся в водном растворе вследствие диссоциации воды.
H2O H+ + OH-
Образовавшиеся атомы водорода (Н°) непрочно соединяются с органическими молекулами -- переносчиками водорода. Ионы гидроксила ОН отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН0. Радикалы ОН0 взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:
4ОН- О2 + 2Н2О
Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является вода, расщепляющаяся в результате фотолиза -- разложение воды под влиянием света. Кроме фотолиза воды энергия света используется в световой фазе для синтеза АТФ из АДФ и фосфата без участия кислорода.
Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путем накапливается энергия, необходимая для процессов, происходящих в темновой фазе фотосинтеза.
В комплексе химических реакций темновой фазы, для течения которых свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы, и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:
6СО2 + 24Но C6H12O6 +6H2O
Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.
Как уже отмечалось выше, побочным продуктом фотосинтеза зеленых растений является молекулярный кислород, выделяемый в атмосферу. Свободный кислород в атмосфере является мощным фактором преобразования веществ. Его появление послужило предпосылкой возникновения на нашей планете аэробного типа обмена веществ.
Хемосинтез был открыт видным русским микробиологом С. Н. Виноградским (1887)
К группе автотрофов - хемосинтетиков (хемотрофов) относятся нитрифицирующие бактерии. Некоторые из них используют энергию окисления аммиака в азотистую кислоту, другиё - энергию окисления азотистой кислоты в азотную. Известны хемосинтетики, извлекающие энергию из окисления двухвалентного железа в трехвалентное или из окисления сероводорода до серной кислоты. Фиксируя атмосферный азот, переводя нерастворимые минералы в форму, пригодную для усвоения растениями, хемосинтезирующие бактерии играют важную роль в круговороте веществ в природе. Автотрофами хемосинтетиками являются, так называемые "железные бактерии" и "серные бактерии". Первые из них используют энергию, выделяющуюся при окислении двухвалентного железа в трехваленое, вторые окисляют сероводород до серной кислоты.
5. Гетеротрофный тип обмена веществ
Организмы, неспособные сами синтезировать органические соединения из неорганических, нуждаются в доставке их из окружающей среды. Такие организмы называются гетеротрофами. К ним относятся большинство бактерий, грибов, и все животные.
Животные поедают других животных и растения и получают с пищей готовые углеводы, жиры, белки и нуклеиновые кислоты. В ходе жизнедеятельности происходит расщепление этих веществ. Из части освободившихся при этом молекул - глюкозы, аминокислот, нуклеотидов, синтезируются более сложные органические соединения, свойственные данному организму, - гликоген, жиры, белки, нуклеиновые кислоты.
Контрольные вопросы для закрепления
1. Что такое метаболизм
2. Что такое трансляция
3. Что такое транскрипция
4. Какое биологическое значение имеет процесс биосинтез белка
5. Что такое катаболизм
6. Как происходит процесс фотосинтез.
7. Как происходит процесс хемосинтез.
метаболизм транскрипция автотрофный биосинтез
Рекомендуемая литература
- Основная:
1. Захаров В.Б., С.Г. Мамонтов, Н.И. Сонин. Общая биология. Базовый уровень: учеб. для 10 кл. общеобразовательных учреждений.- М.: Дрофа, 2009. -368с.
Дополнительная:
1. Каменская А. А. Биология. Общая биология. 10-11 классы : учеб. Для общеобразоват. Учреждений - 4-е изд., стереотип. - М. : Дрофа, 2008. - 367, [1] с. : ил.
2. Биология в таблицах и схемах. Сост. Онищенко А.В. - Санкт-Петербург, ООО "Виктория-плюс", 2004
Интернет-ресурсы:
1. http://www.gnpbu.ru/web_resurs/Estestv_nauki_2.htm. Подборка интернет-материалов для учителей биологии по разным биологическим дисциплинам.
2. http://school-collection.edu.ru Единая коллекция цифровых образовательных ресурсов.
Размещено на Allbest.ru
...Подобные документы
Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.
презентация [201,8 K], добавлен 21.10.2014Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.
реферат [39,6 K], добавлен 14.05.2011Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.
контрольная работа [816,0 K], добавлен 26.07.2009Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.
презентация [3,8 M], добавлен 12.01.2014Сущность стадий транскрипции, процессинга и трансляции. Взаимодействие организмов в экосистемах. Биологическое значение в жизни организмов биоритмов и биологических часов. Анализ эволюции нервной системы животных от низших до высших многоклеточных.
контрольная работа [260,8 K], добавлен 21.12.2008Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.
презентация [2,3 M], добавлен 21.12.2013Классификация, свойства, строение и номенклатура ферментов. Факторы, влияющие на их активность. Характеристика представителей гликозидазы, аептидгидролазы. Изучение особенностей метаболизма, анаболизма и катаболизма. Исследование структуры кофермента.
презентация [594,2 K], добавлен 25.12.2014Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.
презентация [2,8 M], добавлен 14.04.2014Сущность понятия "биоэнергетика". Существенные признаки живого. Внешний и промежуточный обмен веществ и энергии. Метаболизм: понятие, функции. Три стадии катаболических превращений основных питательных веществ в клетке. Отличия катаболизма от анаболизма.
презентация [3,9 M], добавлен 05.01.2014Сущность и типы автотрофного и гетеротрофного питания растительных организмов. Меристемные ткани, их местоположение в теле растения и постоянные ткани, которые они образуют. Первичные и вторичные меристемы, функции и строение корневых волосков и почек.
контрольная работа [962,0 K], добавлен 14.10.2010Понятие обмена веществ, анаболизма и катаболизма. Виды обменных процессов в теле человека. Потребность организма в витаминах и пищевых волокнах. Обмен энергии в состоянии покоя и при условии мышечной работы. Регуляция обменных процессов веществ и энергии.
презентация [18,7 K], добавлен 05.03.2015Общие понятия об обмене веществ и энергии. Анализ потребностей прокариот в питательных веществах. Типы метаболизма микроорганизмов. Сравнительная характеристика энергетического метаболизма фототрофов, хемотрофов, хемоорганотрофов и хемолитоавтотрофов.
курсовая работа [424,3 K], добавлен 04.02.2010Описание химического состава плодов и овощей. Роль обмена веществ и энергии в жизни живых существ. Биологическое значение цикла Кребса. Микро- и макроэволюция как две стороны единого эволюционного процесса. Определение понятий "антиген", "антитело".
контрольная работа [24,2 K], добавлен 13.10.2010Сущность и этапы обмена веществ, функции метаболизма. Особенности живого организма как объекта термодинамических исследований. Сходства равновесной и стационарной систем. Определение общего изменения энтропии. Процесс образования макроэргических связей.
презентация [6,4 M], добавлен 13.10.2013Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.
презентация [5,9 M], добавлен 21.11.2013Процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Точки начала и конца транскрипции, основной фермент и вспомогательные факторы. Этапы обратной транскрипции, особенности транскрипции про- и эукариот.
презентация [2,3 M], добавлен 14.04.2014Химический состав плодов и овощей. Сущность обмена веществ и роль его в организме. Биологическое значение цикла Кребса. Определение макро- и микроэволюции, их соотношение. Клеточный иммунитет как один из основных факторов защиты организма, его виды.
контрольная работа [25,0 K], добавлен 07.10.2010Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.
презентация [250,9 K], добавлен 01.11.2015Биологическая химия как наука, изучающая химическую природу веществ живых организмов. Понятие витаминов, коферментов и ферментов, гормонов. Источники жирорастворимых и водорастворимых витаминов. Понятие обмена веществ и энергии, обмена липидов и белков.
курс лекций [442,2 K], добавлен 21.01.2011История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010