Гормоны растений

Фитогормоны как вещества естественного обмена веществ, оказывающие в малых количествах регуляторное влияние, координирующее физиологические процессы. Основные классы гормонов растений: ауксины, цитокинины, флориген и верналин, синтетические ретарданты.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 19.03.2013
Размер файла 26,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Гормоны растений

ГОРМОНЫ РАСТЕНИЙ, или фитогормоны, вырабатываемые растениями органические вещества, отличные от питательных веществ и образующиеся обычно не там, где проявляется их действие, а в других частях растения. Эти вещества в малых концентрациях регулируют рост растений и их физиологические реакции на различные воздействия. В последние годы ряд фитогормонов удалось синтезировать, и теперь они находят применение в сельскохозяйственном производстве. Их используют, в частности, для борьбы с сорняками и для получения бессемянных плодов.

Фитогормоны -- это вещества, вырабатывающиеся в процессе естественного обмена веществ и оказывающие в ничтожных количествах регуляторное влияние, координирующее физиологические процессы. В этой связи к ним часто применяется термин -- природные регуляторы роста. В большинстве случаев, но не всегда фитогормоны образуются в одних клетках и органах, а оказывают влияние на другие. Иначе говоря, гормоны способны к передвижению по растению и их влияние носит дистанционный характер. Большинство физиологических процессов, в первую очередь рост, формообразование и развитие растений, регулируется гормонами. Гормоны играют ведущую роль в адаптации растений к условиям среды. Известны следующие пять групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы--ауксины, гиббереллины и цитокинины и частично брассины -- к веществам стимулирующего характера, тогда как абсцизовую кислоту и этилен -- к ингибиторам.

Растительный организм - это не просто масса клеток, беспорядочно растущих и размножающихся; растения и в морфологическом, и в функциональном смысле являются высокоорганизованными формами. Фитогормоны координируют процессы роста растений. Особенно отчетливо эта способность гормонов регулировать рост проявляется в опытах с культурами растительных тканей. Если выделить из растения живые клетки, сохранившие способность делиться, то при наличии необходимых питательных веществ и гормонов они начнут активно расти. Но если при этом правильное соотношение различных гормонов не будет в точности соблюдено, то рост окажется неконтролируемым и мы получим клеточную массу, напоминающую опухолевую ткань, т.е. полностью лишенную способности к дифференцировке и формированию структур. В то же время, надлежащим образом изменяя соотношение и концентрации гормонов в культуральной среде, экспериментатор может вырастить из одной-единственной клетки целое растение с корнями, стеблем и всеми прочими органами.

Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов - соединений белковой природы, контролирующих биохимические и физиологические процессы.

Гормоны растений были открыты только в 1920-х годах, так что все сведения о них получены сравнительно недавно. Однако еще Ю.Сакс и Ч.Дарвин в 1880 пришли к мысли о существовании такого рода веществ. Дарвин, изучавший влияние света на рост растений, писал в своей книге Способность к движению у растений (ThePowerofMovementinPlants): «Когда проростки свободно выставлены на боковой свет, то из верхней части в нижнюю передается какое-то влияние, заставляющее последнюю изгибаться». Говоря о влиянии силы тяжести на корни растения, он пришел к заключению, что «только кончик (корня) чувствителен к этому воздействию и передает некоторое влияние или стимул в соседние части, заставляя их изгибаться».

В течение 1920-1930-х годов гормон, ответственный за реакции, которые наблюдал Дарвин, был выделен и идентифицирован как индолил-3-уксусная кислота (ИУК). Работы эти выполнили в Голландии Ф.Вент, Ф.Кёгль и А.Хаген-Смит. Примерно в то же время японский исследователь Е.Куросава изучал вещества, вызывающие гипертрофированный рост риса. Теперь эти вещества известны как фитогормоны гиббереллины. Позже другие исследователи, работавшие с культурами растительных тканей и органов, обнаружили, что рост культур значительно ускоряется, если добавить к ним небольшие количества кокосового молока. Поиски фактора, вызывающего этот усиленный рост, привели к открытию гормонов, которые были названы цитокининами.

2. Главные классы гормонов растений

Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.

Ауксины.

Вещества, стимулирующие растяжение клеток растений, известны под общим названием «ауксины». Ауксины вырабатываются и накапливаются в высоких концентрациях в верхушечных меристемах (конусах нарастания побега и корня), т.е. в тех местах, где клетки особенно быстро делятся. Отсюда они перемещаются в другие части растений. Нанесенные на срез стебля ауксины ускоряют образование корней у черенков. Однако в чрезмерно больших дозах они подавляют корнеобразование. Вообще чувствительность к ауксинам у тканей корня значительно выше, чем у тканей стебля, так что дозы этих гормонов, наиболее благоприятные для роста стебля, обычно замедляют корнеобразование.

Это различие в чувствительности объясняет, почему верхушка горизонтально лежащего побега проявляет отрицательный геотропизм, т.е. изгибается кверху, а кончик корня - положительный геотропизм, т.е. изгибается к земле. Когда под действием силы тяжести ауксин скапливается на нижней стороне стебля, клетки этой нижней стороны растягиваются сильнее, чем клетки верхней стороны, и растущая верхушка стебля изгибается кверху. По-другому действует ауксин на корень. Скапливаясь на нижней его стороне, он подавляет здесь растяжение клеток. По сравнению с ними клетки на верхней стороне растягиваются сильнее, и кончик корня изгибается к земле.

Ауксины ответственны и за фототропизм - ростовые изгибы органов в ответ на одностороннее освещение. Поскольку под действием света распад ауксина в меристемах, по-видимому, несколько ускоряется, клетки на затененной стороне растягиваются сильнее, чем на освещенной, что заставляет верхушку побега изгибаться по направлению к источнику света.

Так называемое апикальное доминирование - явление, при котором присутствие верхушечной почки не дает пробуждаться боковым почкам, - тоже зависит от ауксинов. Результаты исследований позволяют считать, что ауксины в той концентрации, в какой они накапливаются в верхушечной почке, заставляют верхушку стебля расти, а перемещаясь вниз по стеблю, они тормозят рост боковых почек. Деревья, у которых апикальное доминирование выражено резко, как, например, у хвойных, имеют характерную устремленную вверх форму, в отличие от взрослых деревьев вяза или же клена.

После того как произошло опыление, стенка завязи и цветоложе быстро разрастаются; образуется крупный мясистый плод. Рост завязи связан с растяжением клеток - процессом, в котором участвуют ауксины. Теперь известно, что некоторые плоды можно получить и без опыления, если в подходящее время нанести ауксин на какой-нибудь орган цветка, например на рыльце. Такое образование плодов - без опыления - называют партенокарпией. Партенокарпические плоды лишены семян.

На плодоножке созревших плодов или на черешке старых листьев образуются ряды специализированных клеток, т.н. отделительный слой. Соединительная ткань между двумя рядами таких клеток постепенно разрыхляется, и плод или лист отделяется от растения. Это естественное отделение плодов или листьев от растения называется опадением; оно индуцируется изменениями концентрации ауксина в отделительном слое.

Из природных ауксинов шире всего распространена в растениях индолил-3-уксусная кислота (ИУК). Однако этот природный ауксин применяется в сельском хозяйстве значительно реже, чем такие синтетические ауксины, как индолилмасляная кислота, нафтилуксусная кислота и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Дело в том, что ИУК под действием ферментов растения непрерывно разрушается, тогда как синтетические соединения не подвержены ферментативному разрушению, и потому малые их дозы способны вызывать заметный и долго сохраняющийся эффект.

Синтетические ауксины находят широкое применение. Их используют для усиления корнеобразования у черенков, которые без этого плохо укореняются; для получения партенокарпических плодов, например у томатов в теплицах, где условия затрудняют опыление; для того чтобы вызвать у плодовых деревьев опадение части цветков и завязей (сохранившиеся плоды при таком «химическом прореживании» оказываются крупнее и лучше); чтобы предотвратить предуборочное опадение плодов у цитрусовых и некоторых семечковых, например у яблонь, т.е. чтобы отсрочить их естественное опадение. В высоких концентрациях синтетические ауксины применяются в качестве гербицидов для борьбы с некоторыми сорняками.

Гиббереллины.

Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота.

Важный физиологический эффект гиббереллинов - ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально.

Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост.

Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными.

Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву.

Цитокинины.

Гормоны, известные как цитокинины, или кинины, стимулируют не растяжение, а деление клеток. Цитокинины образуются в корнях и отсюда поступают в побеги. Возможно, они синтезируются также в молодых листьях и почках. Первый открытый цитокинин - кинетин - был получен с использованием ДНК спермы сельди.

Цитокинины - «великие организаторы», регулирующие рост растений и обеспечивающие у высших растений нормальное развитие их формы и структур. В стерильных тканевых культурах добавление цитокининов в надлежащей концентрации вызывает дифференцировку; появляются примордии - нерасчлененные зачатки органов, т.е. группы клеток, из которых со временем развиваются различные части растения. Обнаружение этого факта в 1940 послужило основой для последующих успешных экспериментов. В начале 1960-х годов научились уже выращивать целые растения из одной недифференцированной клетки, помещенной в искусственную питательную среду.

Еще одно важное свойство цитокининов - их способность замедлять старение, что особенно ценно для зеленых листовых овощей. Цитокинины способствуют удержанию в клетках ряда веществ, в частности аминокислот, которые могут быть направлены на ресинтез белков, необходимых для роста растений и обновления его тканей. Благодаря этому замедляются старение и пожелтение, т.е. листовые овощи не так быстро теряют товарный вид. В настоящее время предпринимаются попытки использовать один из синтетических цитокининов, а именно бензиладенин, в качестве ингибитора старения многих зеленых овощей, например салата, брокколи и сельдерея.

Гормоны цветения.

Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента.

Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях.

Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.

Дормины.

Дормины - это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество «абсцизин II». По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытомуФ.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.

Витамины группы В.

К фитогормонам иногда относят и некоторые витамины группы В, а именно тиамин, ниацин (никотиновую кислоту) и пиридоксин. Эти вещества, образующиеся в листьях, регулируют не столько формообразовательные процессы, сколько рост и питание растений.

Синтетические ретарданты.

Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества - фосфон, цикоцел и алар.

Список используемой литературы

фитогормон физиологический ауксин синтетический

1) Рейвн П., Эверт Р., Айкхорн Э. Современная ботаника, тт. 1-2. М., 1990

2) http://fizrast.ru/razvitie/rost/fitogormony.html

3) http://www.krugosvet.ru/enc/nauka_i_tehnika/biologiy

4) http://dic.academic.ru

Размещено на Allbest.ru

...

Подобные документы

  • Растительные гормоны (фитогормоны): ауксины, цитокинины, гиббереллины, брассиностероиды, абсцизины, этилен. Ауксин и плоды. Ауксин как гербицид. История изучения ауксинов. Биосинтез и деградация ауксинов. Физиологические проявления действия ауксинов.

    реферат [18,7 K], добавлен 28.09.2012

  • Основные формы фитохрома, характеристика их свойств. Физиологические процессы, которые регулируются в растениях светом с помощью фитохромной системы. Принципы фоторегулирования метаболизма растений и регуляторное действие красного цвета на фотосинтез.

    контрольная работа [586,9 K], добавлен 28.06.2015

  • Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация [5,9 M], добавлен 21.11.2013

  • Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.

    презентация [5,3 M], добавлен 03.12.2013

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Культура ткани в размножении пшеницы. Гормональная регуляция в культуре ткани, схема контроля органогенеза. Роль гуминовых кислот в процессе стимуляции роста растений, их влияние на характер белкового и углеводного обмена растений пшеницы in vitro.

    курсовая работа [1,9 M], добавлен 05.11.2011

  • Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат [998,2 K], добавлен 07.05.2015

  • Общая характеристика водного обмена растительного организма. Структура и свойства воды, ее функции в метаболизме растений. Значение транспирации и влияние внешних условий на степень открытости устьиц. Физические основы устойчивости растений к засухе.

    курсовая работа [673,5 K], добавлен 12.09.2011

  • Влияние перегрева растений на их функциональные особенности, виды опасностей. Связь между условиями местообитания растений и жароустойчивостью. Приспособления и адаптация растений к высоким температурам. Экологические группы растений по жароустойчивости.

    реферат [9,8 K], добавлен 23.04.2011

  • Нарушение определенных функций растений, болезненные явления и симптомы, вызываемые недостатком питательных веществ. Причины голодания растений. Признаки азотного, фосфорного, марганцевого и калийного голодания. Подкормка растений недостающим элементом.

    презентация [2,9 M], добавлен 06.01.2016

  • Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.

    курсовая работа [769,0 K], добавлен 18.02.2010

  • Гормоны коры и мозгового вещества надпочечников. Механизм действия стероидных гормонов. Функциональные взаимодействия в системе "гипоталамус - гипофиз - кора надпочечников". Гормоны щитовидной железы и их синтез. Синдромы нарушения выработки гормонов.

    презентация [1,9 M], добавлен 08.01.2014

  • Митохондрии, рибосомы, их структура и функции. Ситовидные трубки, их образование, строение и роль. Способы естественного и искусственного вегетативного размножения растений. Сходство и различие голосеменных и покрытосеменных растений. Отдел Лишайники.

    контрольная работа [2,3 M], добавлен 09.12.2012

  • Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.

    презентация [3,0 M], добавлен 15.03.2011

  • Земные и космические факторы жизни растений. Солнечная радиация как основной источник света для растений. Фотосинтетически и физиологически активная радиация и ее значение. Влияние интенсивности освещения. Значение тепла и воздуха в жизни растений.

    презентация [2,0 M], добавлен 01.02.2014

  • Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

    курс лекций [188,8 K], добавлен 15.06.2010

  • Исследование особенностей вторичного обмена растений, основных методов культивирования клеток. Изучение воздействия биологически активных растительных соединений на микроорганизмы, животных и человека. Описания целебного действия лекарственных растений.

    курсовая работа [119,9 K], добавлен 07.11.2011

  • Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.

    реферат [44,4 K], добавлен 11.01.2013

  • Фитоиммунитет и его виды. Типы повреждений растений насекомыми и клещами. Связь между устойчивостью к вредителям и поражением растений возбудителями заболеваний. Основные факторы групповой и комплексной устойчивости растений к патогенным агентам.

    курсовая работа [28,2 K], добавлен 30.12.2002

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.