Шкала электромагнитных волн
Частота и длина электромагнитных волн. Радиоволны и особенности их распространения. Источники и диапазон микроволн, области их применения. Инфракрасное, видимое и ультрафиолетовое излучение. Открытие рентгеновских лучей. Свойства гамма-излучения.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 04.04.2013 |
Размер файла | 245,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат по КСЕ
на тему: Шкала электромагнитных волн
Москва 2009
1. Частота и длина волны
Волна - изменение состояния среды или поля, распространяющееся в пространстве с конечной скоростью.
Распространение волн связано с переносом энергии без переноса массы, при этом возможны явления отражения, преломления, дисперсии, интерференции, дифракции, поляризации, поглощения и рассеяния волн.
Электромагнитное излучение (электромагнитные волны) -- распространяющееся в пространстве возмущение электрических и магнитных полей.
Электромагнитная волна характеризуется одним главным параметром -- числом гребней, которые за секунду проходят мимо наблюдателя (или поступают в детектор). Эту величину называют частотой излучения н. Поскольку для всех электромагнитных волн скорость в вакууме (с) одинакова, по частоте легко определить длину волны л:
л = с/н.
Мы просто делим путь, пройденный светом за секунду, на число колебаний за то же время и получаем длину одного колебания. Длина волны -- очень важный параметр, поскольку она определяет пограничный масштаб: на расстояниях заметно больше длины волны излучение подчиняется законам геометрической оптики, его можно описывать как распространение лучей. На меньших расстояниях совершенно необходимо учитывать волновую природу света, его способность обтекать препятствия, невозможность точно локализовать положение луча.
Ниже приведена шкала электромагнитных волн в зависимости от значений частоты и длины.
2. Радиоволны
Электромагнитные волны возникают при колебаниях свободных электронов в радиоантенах под действием электрического поля (при ускоренном движении электронов)
2.1 Распространение радиоволн
Радиоволны разных диапазонов обладают неодинаковыми свойствами, влияющими на дальность их распространения. Волны одной длины, преодолевают большие расстояния, волны, другой длины "теряются" за пределами горизонта. Бывает так, что радиосигнал превосходно слышен где-то по ту сторону Земля или в Космосе, но его невозможно обнаружить в нескольких десятках километров от радиостанции.
Рис.1. Путь радиоволн
Если бы мы настроили приемники на рядом расположенные радиостанции, работающие в диапазонах ультракоротких, коротких, средних и длинных волн, то, удаляясь от станций, смогли бы наблюдать такое явление: уже в нескольких десятках километров прекратился бы прием ультракоротковолновой и коротковолновой станций, через 800-1000 км перестали бы слышать передачи средневолновой станции, а через 1500-2000 км - и передачи длинноволновой станции. Но на большем расстоянии мы смогли бы услышать передачу коротковолновой станции.
Чем объяснить это явление? Что влияет на "дальнобойность" радиоволн разной длины? Земля и окутывающая ее атмосфера.
Земля, как известно, проводник тока, хотя и не такой хороший, как, скажем, медные провода. Земная атмосфера состоит из трех слоев. Первый слой, верхняя граница которого кончается в 10-12 км от поверхности Земли, называют тропосферой. Над ним, километров до 50 от поверхности Земли, второй слой - стратосфера. А выше, примерно до 400 км над Землей, простирается третий слой - ионосфера (рис.1). Ионосфера я играет решающую роль в распространении радиоволн, особенно коротких.
Воздух в ионосфере сильно разрежен. Под действием солнечных излучений там из атомов газов выделяется много свободных электронов, в результате чего появляются положительные ионы. Происходит, как говорят, ионизация верхнего слоя атмосферы. Ионизированный слой способен поглощать радиоволны в искривлять их путь. В течение суток в зависимости от интенсивности солнечного излучения количество свободных электронов в ионизированном слое, его толщина и высота изменяются, а от этого изменяются и электрические свойства этого слоя.
Антенны радиостанций излучают радиоволны как вдоль земной поверхности, так и вверх под различными углами к ней. Волны, идущие первым путем, называют земными или поверхностными, а вторым путем - пространственными. При приеме сигналов станций длинноволнового Диапазона используется главным образом энергия поверхностных волн, которые хорошо огибают поверхность Земли. Но Земля, являясь проводником, поглощает энергию радиоволн. Поэтому по мере удаления от длинноволновой станции громкость приема ее передач постепенно падает и, наконец, прием совсем прекращается.
Средние волны хуже огибают Землю и, кроме того, сильнее, чем длинные, поглощаются ею. Этим-то и объясняется меньшая "дальнобойность" средневолновых радиовещательных станций по сравнению с длинноволновыми.
Так, например, сигналы радиостанции, работающей на волне длиной 300-400 м, могут быть приняты на расстоянии в два-три раза меньшем, чем сигнала станции такой же мощности, но работающей на волне длиной 1500-2000 м. Чтобы повысить дальность действия этих станций, приходится увеличивать их мощность.
В вечернее и ночное время передачи радиостанций длинноволнового и средневолнового диапазонов можно слышать на больших расстояниях, чем днем. Дело в том, что излучаемая вверх часть энергии радиоволн этих станций днем бесследно теряется в атмосфере. После же захода Солнца нижний слой ионосферы искривляет их путь так, что они возвращаются к Земле на таких расстояниях, на которых прием этих станций поверхностными волнами уже невозможен.
Радиоволны коротковолнового диапазона сильно поглощаются Землей и плохо огибают ее поверхность. Поэтому уже в нескольких десятках километров от таких станций их поверхностные волны затухают. Но зато пространственные волны могут быть обнаружены приемниками в нескольких тысячах километрах от них и даже в противоположной точке Земли.
Искривление пути пространственных коротких волн происходит в ионосфере. Войдя в ионосферу, они могут пройти в ней очень длинный путь и вернуться на Землю очень далеко от радиостанции. Они могут совершить кругосветное "путешествие" - их можно принять даже в том месте, где расположена передающая станция. Этим и объясняется секрет хорошего распространения коротких волн на большие расстояния даже при малых мощностях передатчика.
Но короткие волны имеют и недостатки. Образуются зоны, где передачи коротковолновой станции не слышны. Их называют зонами молчания (рис.1). Величина зоны молчания зависит от длины волны и состояния ионосферы, которое в свою очередь зависит от интенсивности солнечного излучения.
Ультракороткие волны по своим свойствам наиболее близки к световым лучам. Они в основном распространяются прямолинейно и сильно поглощаются землей, растительным миром, различными сооружениями, предметами. Поэтому уверенный прием сигналов ультракоротковолновых станций поверхностной волной возможен главным образом тогда, когда между антеннами передатчика и приемника можно мысленно провести прямую линию, не встречающую по всей длине каких-либо препятствий в виде гор, возвышенностей, лесов. Ионосфера же для ультракоротких волн подобно стеклу для света - "прозрачна". Ультракороткие волны почти беспрепятственно проходят через нее. Поэтому-то этот диапазон волн используют для связи с искусственными спутниками Земли, космическими кораблями и между ними.
Но наземная дальность действия даже мощной ультракоротковолновой станции не превышает, как правило, 100-200 км. Лишь путь наиболее длинных волн этого диапазона (8-9 м) несколько искривляется нижним слоем ионосферы, который как бы пригибает их к земле. Благодаря этому расстояние, на котором возможен прием ультракоротковолнового передатчика, может быть большим. Иногда, однако, передачи ультракоротковолновых станций слышны на расстояниях в сотни и тысячи километров от них.
электромагнитный волна излучение
3. Микроволны
Микроволны -- это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.
Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название -- микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.
Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.
А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.
Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.
3.1 Источники
Крабовидная туманность в радиодиапазоне
Крабовидная туманность -- наиболее изученный остаток взрыва сверхновой. На данном изображении показано, как она выглядит в радиодиапазоне.
Рис. 2
Радиоизлучение генерируется быстрыми электронами при движении в магнитном поле. Поле заставляет электроны поворачивать, то есть двигаться ускоренно, а при ускоренном движении заряды испускают электромагнитные волны. По этому изображению, которое построено по данным наблюдений американской Национальной радиоастрономической обсерватории (NRAO), можно судить о характере магнитных полей в Крабовидной туманности.
Главное преимущество микроволновой печи -- прогрев со временем продуктов по всему объему, а не только с поверхности.
Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.
А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).
3.2 Применение микроволн
Сотовый телефон
Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.
Радиус действия базовой станции -- размер соты -- от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.
В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.
Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.
Телевизор
Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.
Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора -- в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда -- высокая яркость, низкая амплитуда -- темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).
С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.
Спутниковая тарелка
Параболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа, но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.
Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд -- 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50-100 см, и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2-3 м.
4. Инфракрасное излучение
Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается (рис. 1). В 19 в. было доказано, что Инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А.А. Глаголева-Аркадьева получила радиоволны с l ~ 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к инфракрасному излучению и радиоволновому и, следовательно, все они имеют электромагнитную природу.
Проходя через земную атмосферу, инфракрасное излучение ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают Инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое, однако, для инфракрасного излучения значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение. Особенно сильно поглощают инфракрасное излучение пары воды, полосы поглощения которых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области - углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число «окон», прозрачных для инфракрасного излучения. Наличие в атмосфере взвешенных частиц - дыма, пыли, мелких капель воды (дымка, туман) - приводит к дополнительному ослаблению инфракрасного излучения в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны Инфракрасное излучение при малых размерах частиц (воздушная дымка) Инфракрасное излучение рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман). Инфракрасное излучение рассеивается так же сильно, как и видимое.
4.1 Источники инфракрасного излучения
Мощным источником инфракрасного излучения является Солнце, около 50% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на Инфракрасное излучение. При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только Инфракрасное излучение Мощным источником Инфракрасное излучение является угольная электрическая дуга с температурой ~ 3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры ~ 950 К. Для лучшей концентрации Инфракрасное излучение такие нагреватели снабжаются рефлекторами. В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники Инфракрасное излучение: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых оптических квантовых генераторов - лазеров также лежит в инфракрасной области спектра; например, излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм, лазера на смеси неона и гелия - 1,15 мкм и 3,39 мкм, лазера на углекислом газе - 10,6 мкм, полупроводникового лазера на InSb - 5 мкм и др.
4.2 Применение инфракрасного излучения
Инфракрасное излучение находит широкое применение в научных исследованиях, при решении большого числа практических задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива
Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и инфракрасном излучении фотография, полученная в инфракрасном излучении, обладает рядом особенностей по сравнению с обычной фотографией. Например, на инфракрасных снимках часто видны детали, невидимые на обычной фотографии.
В промышленности инфракрасное излучение применяется для сушки и нагрева материалов и изделий при их облучении, а также для обнаружения скрытых дефектов изделий.
На основе фотокатодов, чувствительных к инфракрасному излучению (для l < 1,3 мкм), созданы специальные приборы - электроннооптические преобразователи, в которых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов Инфракрасное излучение от специальных источников вести наблюдение или прицеливание в полной темноте. Создание высокочувствительных приёмников Инфракрасное излучение позволило построить специальные приборы - теплопеленгаторы для обнаружения и пеленгации объектов, температура которых выше температуры окружающего фона (нагретые трубы кораблей, двигатели самолётов, выхлопные трубы танков и др.), по их собственному тепловому инфракрасному излучению. На принципе использования теплового излучения цели созданы также системы самонаведения на цель снарядов и ракет. Специальная оптическая система и приёмник инфракрасного излучения, расположенные в головной части ракеты, принимают Инфракрасное излучение от цели, температура которой выше температуры окружающей среды (например, собственное инфракрасное излучение самолётов, кораблей, заводов, тепловых электростанций), а автоматическое следящее устройство, связанное с рулями, направляет ракету точно в цель. Инфракрасные локаторы и дальномеры позволяют обнаруживать в темноте любые объекты и измерять расстояния до них. Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.
5. Видимое излучение
Видимое излучение -- это электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра ~ от 380 (фиолетовый) до 780 нм (Красный. Оно производиться солнцем, газоразрядной трубкой и любым веществом, нагретым добела (до белого каления). Они вызывают химические изменения, например на фотопленке. Различные длины волн этого волнового диапазона воспринимаются как различные цвета, иными словами составляют радугу светов
6. Ультрафиолетовое излучение
Ультрафиолетовое излучение (от ультра... -- сверх, за пределами, по ту сторону, и фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн l 400--10 нм. Вся область Ультрафиолетовое излучение условно делится на ближнюю (400--200 нм) и далёкую, или вакуумную (200--10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.
Ближнее ультрафиолетовое излучение открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное Ультрафиолетовое излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885--1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал Ультрафиолетовое излучение с длиной волны до 25 нм (1924). К 1927 был изучен весь промежуток между вакуумным ультрафиолетовым излучением и рентгеновским излучением.
6.1 Источники ультрафиолетового излучения
Излучение накалённых до 3000 К твёрдых тел содержит заметную долю Ультрафиолетовое излучение непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное Ультрафиолетовое излучение испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений Ультрафиолетовое излучение промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетового излучения непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм).
Естественные источники ультрафиолетового излучения -- Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть Ультрафиолетовое излучение (l > 290 нм) достигает земной поверхности. Более коротковолновое ультрафиолетовое излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30--200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и др. космических тел, кроме поглощения в земной атмосфере, в интервале 91,2--20 нм практически полностью поглощается межзвёздным водородом.
6.2 Применение ультрафиолетового излучения
Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов. На фотоэффекте, вызываемом ультрафиолетовым излучением, основана фотоэлектронная спектроскопия. Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и т.д.). Люминесценция под действием ультрафиолетового излучения используется при создании люминесцентных ламп, светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии. Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и т.п. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций. Способность многих веществ к избирательному поглощению Ультрафиолетовое излучение используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.
6.3 Биологическое действие ультрафиолетового излучения
При действии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия Ультрафиолетовое излучение лежат химические изменения молекул биополимеров. Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и др. низкомолекулярных соединений.
На человека и животных малые дозы Ультрафиолетовое излучение оказывают благотворное действие -- способствуют образованию витаминов группы D, улучшают иммунобиологические свойства организма. Характерной реакцией кожи на ультрафиолетовое излучение является специфическое покраснение -- эритема (максимальным эритемным действием обладает Ультрафиолетовое излучение с l = 296,7 нм и l = 253,7 нм), которая обычно переходит в защитную пигментацию (загар). Большие дозы ультрафиолетового излучения могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы Ультрафиолетовое излучение в некоторых случаях могут оказывать канцерогенное действие на кожу.
В растениях ультрафиолетовое излучение изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы Ультрафиолетовое излучение большие дозы ультрафиолетового излучения, несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).
На микроорганизмы и культивируемые клетки высших животных и растений ультрафиолетовое излучение оказывает губительное и мутагенное действие.
7. Рентгеновское излучение
7.1 Открытие рентгеновского излучения
Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.
Рис. 3
По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо -- при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. На некоторых языках (включая русский и немецкий) эти лучи были названы его именем, несмотря на его сильные возражения. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье. За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году, в России, впервые было употреблено название «рентгеновские лучи. В других странах используется предпочитаемое Рентгеном название -- X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена -- Абрама Фёдоровича Иоффе.
Рентгеновское излучение -- электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10?4 до 10? A (от 10?14 до 10?8 м).
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли:
где Z -- атомный номер элемента анода, A и B -- константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, -- из молибдена.
В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.
Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.
7.2 Свойства излучения
Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое.
Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.
При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов. При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.
Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.
В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.
8. Гамма-излучение
Гамма-излучение, коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жёстким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение. обладает чрезвычайно малой длиной волны (l ? 10-8см) и вследствие этого ярко выраженными корпускулярными свойствами, т. е. ведёт себя подобно потоку частиц -- гамма-квантов, или фотонов, с энергией hv (v -- частота излучения, h -- Планка постоянная).
Гамма-излучение возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частица-античастица, а также при прохождении быстрых заряженных частиц через вещество.
8.1 Свойства гамма-излучения
Обладает большой проникающей способностью, т. е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии Гамма-излучение. с веществом, -- фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте происходит поглощение g-кванта одним из электронов атома, причём энергия g-кванта преобразуется (за вычетом энергии связи электрона в атоме) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна 5-й степени атомного номера элемента и обратно пропорциональна 3-й степени энергии Гамма-излучение Т. о., фотоэффект преобладает в области малых энергий g-квантов (? 100 кэв) на тяжёлых элементах (Pb, U).
Действие на организм Гамма-излучение подобно действию др. видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния Гамма-излучение зависит от энергии g-квантов и пространственных особенностей облучения (например, внешнее или внутреннее). Относительная биологическая эффективность (ОБЭ) гамма-излучение (эффективность жёсткого рентгеновского излучения принимается за 1) составляет 0,7--0,9. В производств в условиях (хроническое воздействие в малых дозах) ОБЭ Гамма-излучение принята равной 1.
Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков) и растений.
Список литературы
1) Банкрашкова А. Иллюстрированный словарь. Физика. Москва, АСТ Астрель, 2006.
2) Энциклопедия для детей Аванта+. Физика 1. Биография физики. Путешествие в глубь материи. Механическая картина мира. Автор: М. Аксенова. Издательство Аванта+. Москва. 2008г. 448 стр.
3) Энциклопедия для детей Аванта+. Физика 2. Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц. Автор: В. Санюк. Издательство Аванта+. 2007г. 432 стр.
4) Блудов М.И. Беседы по физике.- М.: Просвещение, 1992.-384 с.
Размещено на Allbest.ru
...Подобные документы
Понятие и история открытия инфракрасного излучения, составляющие его диапазона; использование в промышленности и астрономии. Зависимость его интенсивности и длины волны от температуры нагревания. Электромагнитный спектр. Тепловое излучение человека.
презентация [221,5 K], добавлен 11.04.2013Характеристика излучения крайне высоких частот, его особенности и свойства. Общее описание d-элементов (железо, цинк, медь и т.д.): атомный радиус, активность, значимость в организме. Процессы обмена d-элементов в организме, влияние излучения на них.
курсовая работа [389,5 K], добавлен 18.07.2014Принцип суперпозиции волн, понятие продольных и поперечных волн. Законы сохранения массы и электрического заряда, их проявления в жизни. Гипотезы квантовой механики. Первое начало термодинамики и внутренняя энергия системы. Типология живых организмов.
контрольная работа [121,1 K], добавлен 07.05.2011История исследования радиации и главные факторы, влияющие на интенсивность соответствующего излучения. Источники и оценка негативного воздействия на человеческий организм радиации, прямого и косвенного. Пути защиты от излучения, описание крупных аварий.
презентация [2,5 M], добавлен 17.08.2015Проведение исследований с целью изучения влияния ионизирующего излучения на биологические ткани. Виды радиобиологических повреждений у млекопитающих. Основные источники облучения населения и его последствия. Градация доз радиации, ее воздействие на биоту.
презентация [7,7 M], добавлен 10.02.2014Высокая солнечная активность. Столкновение астероидов с Землей. Пространство "ложный вакуум". "Вытекание" времени из Вселенной. Извержение вулкана Ла-Пальма на Канарских островах. Смена магнитных полюсов. Пучок высокоэнергетического гамма-излучения.
презентация [4,9 M], добавлен 29.11.2016Теории планетарной причинности зарождения жизни. Основные разновидности материи и связи между ними. Природа реликтового излучения - космического электромагнитного излучения с высокой степенью изотропности. Материалистическая природа эволюции Дарвина.
контрольная работа [23,3 K], добавлен 10.06.2011Опытное получение излучения в результате бомбардировки бериллия альфа-частицами в ходе физических экспериментов. Оценка его энергии супругами Кюри. Предположения Дж. Чедвика. Характеристики выделенной частицы, которая получила название нейтрона.
презентация [435,9 K], добавлен 05.01.2015Понятие теплового излучения и его характеристики. Излучение реальных тел и тела человека. Биологическое и терапевтическое действие тепла и холода. Способы передачи тепла. Физические основы термографии, тепловизоры. Термограмма здорового человека.
реферат [3,2 M], добавлен 10.11.2012Характер изменения представлений о пространстве и времени с созданием теории относительности. Характеристика комет, описание наиболее известных их них. Свойства продольных и поперечных волн. Типы связей в кристаллах. Процессы в расплавах и растворах.
контрольная работа [538,5 K], добавлен 26.10.2010Изучение различных сторон проявления радиоактивности и проблем ее использования в мирных целях. История открытия, источники радиации, виды излучения. Радиационные эффекты облучения человека и других живых организмов. Экологические радиационные катастрофы.
презентация [3,1 M], добавлен 11.10.2015Разнообразие и роль мембран в функционировании прокариотических и эукариотических клеток. Морфология мембран, их выделение. Дифракция рентгеновских лучей, электронная микроскопия. Разрушение клеток, разделение мембран. Критерии чистоты мембранных фракций.
курсовая работа [1,2 M], добавлен 30.07.2009Описания изменений в ДНК клетки, возникающих под действием ультрафиолета и рентгеновских лучей. Характеристика особенностей генных и хромосомных мутаций. Причины и передача цитоплазматических мутаций. Исследование мутаций в соматических клетках растений.
презентация [62,2 K], добавлен 17.09.2015Понятие и виды энергии. Основа и структура календаря. Смена дня и ночи. Законы определения теплового излучения тел. Корпускулярные свойства света. Скорость хода реакции. Смысл волновой функции. Процессы дыхания и фотосинтеза. Жизнь и эволюция звезд.
контрольная работа [113,0 K], добавлен 18.04.2011Основные параметры слуха и звуковых волн. Теоретические подходы к изучению слуха. Особенности восприятия речи и музыки. Способность человека определять направление на источник звука. Резонансная природа звукового и слухового аппарата у человека.
реферат [27,0 K], добавлен 04.11.2013Существование биосферы на Земле. История становления и развития геохронологической шкалы. Периодизация истории Земли и международные геохронологическая и стратиграфическая шкалы. Современная геохронологическая шкала. Положения клеточной теории.
реферат [40,5 K], добавлен 15.10.2008Особенности биологии и экологии пряно-ароматических растений. Классификация пряно-ароматических растений, характеристика наиболее характерных для России растений, их биологические особенности, ареал распространения, области и особенности применения.
курсовая работа [314,9 K], добавлен 21.09.2010Глаза насекомых-одно из самых удивительных творений природы. Разнообразие глаз в живой природе-результат долгой эволюции каждого вида и связано с его образом жизни и средой обитания. Инфракрасное зрение змей требует нелокальной обработки изображений.
реферат [159,1 K], добавлен 30.10.2008Методы селекции: отбор, гибридизация, мутагенез, клеточная и генная инженерия. Способы селекции животных: инбридинг, аутбридинг и гетерозис. Искусственный мутагенез как работа с микроорганизмами с использованием рентгеновских лучей, ядов и радиации.
презентация [594,9 K], добавлен 23.02.2013Специфика использования математических моделей в биологии. Пример определения зависимости между количеством и качеством потомства. Особенности имитационных и базовых моделей для описания ограниченного роста, конкуренции, отбора и волн жизни организмов.
реферат [259,7 K], добавлен 09.10.2013