Процесс фотосинтеза
Химическая реакция фотосинтеза. Улавливание энергии солнечного света. Связывание углерода с образованием органических молекул. Цикл превращения солнечной энергии в углеводы. Гипотеза Ван Ниля. Расщепление молекулы воды. Изучение пурпурной серобактерии.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 12.05.2013 |
Размер файла | 15,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Процесс фотосинтеза
Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул.
Зеленые растения -- биологи называют их автотрофами -- основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см. Биологические молекулы), из которых важнее всего шестиуглеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения. Так создается пищевая цепь, поддерживающая планетарную экосистему.
Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:
вода + углекислый газ + свет --> углеводы + кислород
Растения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород -- продукт жизнедеятельности растений (см. Гликолиз и дыхание). К тому же, фотосинтез играет важнейшую роль в круговороте углерода в природе.
Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента Ван-Гельмонта, поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866-1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.
На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе. Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.
Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, -- молекулы хлорофилла. Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул -- эти кластеры принято называть Фотосистемой I и Фотосистемой II. Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем -- в Фотосистеме I.
Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.
После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. Биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.
В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.
Цикл превращения солнечной энергии в углеводы -- так называемый цикл Калвина -- сходен с циклом Кребса (см. Гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с молекулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь. В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого газа соединяются с РДФ. За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-H, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем -- реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов. Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.
В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом. Эти растения называются C3-растениями, поскольку комплекс «углекислый газ--рибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому. Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами. При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В C3-растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций. В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду. Растения, в которых происходит такой процесс, мы называем C4-растениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. C3-растения -- это в основном растения умеренного климата , а C4-растения в основном произрастают в тропиках.
Гипотеза Ван Ниля
фотосинтез солнечный свет вода
Процесс фотосинтеза описывается следующей химической реакцией:
СО2 + Н2О + свет --> углевод + О2
В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897-1986), в то время аспирант Стэнфордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H2S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом:
СО2 + Н2S + свет --> углевод + 2S.
Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.
Мелвин Калвин
Melvin Calvin, 1911-97
Американский биолог. Родился в г. Сент-Пол, штат Миннесота, в семье выходцев из России. В 1931 году получил степень бакалавра в области химии в Мичиганском колледже горного дела и технологии, а в 1935 году -- степень доктора химии в университете штата Миннесота. Двумя годами позже Калвин начал работать в Калифорнийском университете в Беркли и в 1948 году стал профессором; за год до этого был назначен директором отдела биоорганики в Радиационной лаборатории Лоренса в Беркли, где использовал технологические достижения военных исследований времен Второй мировой войны, например новые методы хроматографии, для изучения темновой фазы фотосинтеза. В 1961 году Калвин был удостоен Нобелевской премии в области химии.
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://elementy.ru/
Размещено на Allbest.ru
...Подобные документы
История открытия фотосинтеза - превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Описание способности хлорофилла поглощать и трансформировать солнечную энергию. Световая и темновая фазы фотосинтеза.
презентация [533,1 K], добавлен 18.03.2012Процесс превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. История открытия фотосинтеза и его уравнение. Связывание углекислого газа с пятиуглеродным сахаром рибулезодифосфатом. Значение фотосинтеза.
презентация [206,5 K], добавлен 08.12.2013Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.
презентация [298,6 K], добавлен 30.03.2011Фотосинтез как процесс синтеза органических веществ за счет энергии света. Специальные структуры и комплексы химических веществ растений, которые позволяют улавливать энергию солнечного света. Масштабы фотосинтеза. Роль хлоропластов в фотосинтезе.
презентация [627,3 K], добавлен 18.04.2012Первый экологический кризис – смена анаэробной атмосферы на аэробную. Особенности биосинтеза органических соединений при хемосинтезе. Нюансы фотосинтеза, цикл превращения солнечной энергии в углеводы. Эволюция живых организмов, появление человека.
реферат [35,8 K], добавлен 18.11.2009Изучение фотосинтеза с момента его открытия Д. Пристли. Краткая хронология открытий ХХ в. в области фотосинтеза. Идея Тимирязева о непосредственном участии хлорофилла в акте фотосинтеза, обратимые окислительно-восстановительные превращения пигмента.
реферат [21,3 K], добавлен 08.03.2011Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.
презентация [890,0 K], добавлен 04.04.2012История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010Исследование процесса образования органических веществ из углекислого газа и воды за счет энергии света. Особенности световой и темновой фаз фотосинтеза. Реакции пластического и энергетического обменов. Фотоавтотрофный и хемоавтотрофный типы питания.
презентация [1,9 M], добавлен 16.04.2015Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.
реферат [866,4 K], добавлен 05.06.2010Понятие и виды энергии. Основа и структура календаря. Смена дня и ночи. Законы определения теплового излучения тел. Корпускулярные свойства света. Скорость хода реакции. Смысл волновой функции. Процессы дыхания и фотосинтеза. Жизнь и эволюция звезд.
контрольная работа [113,0 K], добавлен 18.04.2011Свойства цитоплазмы, химическая природа и функциональное значение ферментов. Действие недостатка воды на растение. Современные представления о сущности фотосинтеза. Физиологическая роль каротиноидов, химизм аэробной фазы дыхания, заслуга Г. Кребса.
контрольная работа [129,7 K], добавлен 12.07.2010Уровни организации живой материи: молекулярно-генетический, клеточный, тканевый, онтогенетический. Сущность фотосинтеза и реакций, которые входят в его процесс. Биосфера и солнечная активность. Основные направления в развитии учения о составе вещества.
контрольная работа [52,2 K], добавлен 10.06.2011Искусственный фотосинтез как новый источник энергии. Искусственный фотосинтез в суперкомпьютере. Улучшение фотосинтеза нанотехнологиями. Обеспечение сверхурожая с помощью ускорения процесса фотосинтеза. Внедрение углеродных нанотрубок в хлоропласты.
презентация [2,5 M], добавлен 11.11.2014Свет и его экологическое значение в жизни растений. Спектральный состав лучистой энергии солнца. Фотосинтетически активная радиация. Пигменты листа. Спектры поглощения. Световой режим леса. Индекс листовой поверхности. Понятие компенсационной точки.
курсовая работа [1,2 M], добавлен 11.09.2012Изучение преобразования энергии света в химическую энергию фотосинтеза у сине-зеленых водорослей, позволяющее организмам сохранять жизнедеятельность и являющееся, приспособлением к неблагоприятным условиям жизни. Фотогетеротрофность и хемоорганотрофность.
реферат [27,5 K], добавлен 26.04.2010Световые и темновые реакции. Фотосинтез как один из мощных процессов преобразования солнечной энергии. Локализация фотосинтетического аппарата в клетке зеленого растения. Фотосистема в тилакоидной мембране. Нециклический и циклический поток электронов.
презентация [3,3 M], добавлен 01.03.2016Анализ места света в жизни организмов, в том числе и в процессе фотосинтеза. Оценка экологических пределов выносливости организмов. Энергия солнца как практически единственный источник энергии для всех живых организмов. Сущность и значение видимого света.
презентация [4,2 M], добавлен 26.11.2010Растение как единственный возобновляемый источник энергии на Земле. Схема электромагнитного излучения. Солнечная энергия и ее годовое поступление в виде фотосинтетической активной радиации. Понятие биологической продуктивности и первичной продукции.
презентация [900,7 K], добавлен 04.05.2012Источники, резервы углерода в природе. Биогеохимический цикл (кругооборот) элемента. Закон бережливости природы. Сущность процессов хемосинтеза, фотосинтеза, углефикации, разложения, минерализации, вулканической деятельности. Проблема парникового эффекта.
презентация [194,6 K], добавлен 02.02.2015