Центральная догма молекулярной биологии

Транскрипция (переписывание) – первый этап биосинтеза, происходящий в ядре клетки. Трансляция – второй этап биосинтеза, происходящий в цитоплазме на рибосомах. Трансляция - синтез полипептидных цепей белков на матрице м-РНК согласно генетическому коду.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 27.07.2013
Размер файла 30,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Центральная догма молекулярной биологии

транскрипция трансляция биосинтез цитоплазма

В начале 50-х годов Ф. Крик сформулировал центральную догму молекулярной биологии. Согласно этой концепции генетическая информация от ДНК к белкам передается через РНК по схеме: ДНК - РНК - белок.

Первый этап биосинтеза происходит в ядре и носит название транскрипции (переписывание).

Транскрипция - биосинтез молекул РНК на матрице ДНК. Этот процесс катализируется ферментом РНК-полимеразой. Фермент узнает знак начала транскрипции - промотор - и присоединяется к нему. Промотор ориентирован таким образом, что РНК-полимераза проходит через данный генетический участок в определенном направлении. Фермент расплетает двойную спираль ДНК и копирует, начиная с промотора, одну из ее цепей. По мере движения РНК-полимеразы растущая цепь РНК отходит от матрицы и двойная спираль ДНК позади фермента восстанавливается. В процессе транскрипции синтезируется про-м-РНК - предшественник зрелой м-РНК, участвующей в трансляции. Про-м-РНК имеет большие размеры и содержит фрагменты, не кодирующие синтез полипептидной цепи. Эти фрагменты получили название интронов, кодирующие фрагменты называются экзонами. Процесс вырезания интронов и сращивания в строгом порядке экзонов называется сплайсингом. В процессе сращивания образуется зрелая м-РНК Транспорт м-РНК из ядра в цитоплазму осуществляется через ядерные поры. Зрелые эукариотические м-РНК обычно кодируют только одну полипептидную цепь.
Следующий этап биосинтеза происходит в цитоплазме на рибосомах и носит название трансляция.

Трансляция - синтез полипептидных цепей белков на матрице м-РНК согласно генетическому коду. В процессе трансляции информация о строении белка переводится с нуклеотидного кода м-РНК в определенную последовательность аминокислот в синтезируемых белках. Биосинтез белка осуществляется сложным макромолекулярным комплексом. Аминокислоты доставляются в рибосомы т-РНК. При синтезе белка м-РНК входит в состав полирибосомы (на ней одновременно ведут синтез от нескольких до 100 рибосом).

Таким образом, транскрипция и трансляция пространственно разобщены. Транскрипция протекает в ядре, а трансляция - в цитоплазме.

Клетка как таковая обладает огромным числом разнообразных функций, как мы уже говорили, часть из них - общеклеточные, часть - специальные, характерные для особых клеточных типов. Главными рабочими механизмами выполнения этих функций являются белки или их комплексы с другими биологическими макромолекулами, такими, как нуклеиновые кислоты, липиды и полисахариды. Так, известно, что процессы транспорта в клетке разнообразных веществ, начиная с ионов, кончая макромолекулами, определяются работой специальных белков или липопротеиновых комплексов в составе плазматической и иных клеточных мембран. Практически все процессы синтеза, распада, перестройки разных белков, нуклеиновых кислот, липидов, углеводов происходит в результате активности специфических для каждой отдельной реакции белков-ферментов. Синтезы отдельных биологических мономеров, нуклеотидов, аминокислот, жирных кислот, сахаров и др. также осуществляются огромным числом специфических ферментов - белков. Сокращение, приводящее к подвижности клеток или к перемещение веществ и структур внутри клеток, осуществляется также специальными сократительными белками. Многие реакции клеток в ответ на воздействие внешних факторов (вирусов, гормонов, чужеродных белков и др.) начинается с взаимодействия этих факторов со специальными клеточными белками-рецепторами.

Белки - это основные компоненты практически всех клеточных структур. Множество химических реакций внутри клетки определяется множеством ферментов, каждый из которых ведет одну или несколько отдельных реакций. Структура каждого отдельно взятого белка строго специфична, что выражается в специфичности их первичной структуры - в последовательности аминокислот вдоль полипептидной, белковой цепи. Причем специфичность этой аминокислотной последовательности безошибочно повторена во всех молекулах данного клеточного белка.

Такая правильность в воспроизведении однозначной последовательности аминокислот в белковой цепи детерминируется структурой ДНК того генного участка, который в конечном счете отвечает за структуру и синтез данного белка. Эти представления служат основным постулатом молекулярной биологии, ее «догмой». Информация о будущей молекуле белка передается в места его синтеза (в рибосомы) посредником - информационной РНК (иРНК), нуклеотидный состав которой отражает состав и последовательность нуклеотидов генного участка ДНК. В рибосоме строится полипептидная цепь, последовательность аминокислот в которой определяется последовательностью нуклеотидов в иРНК, последовательностью их триплетов. Тем самым центральная догма молекулярной биологии подчеркивает однонаправленность передачи информации: только от ДНК к белку, с помощью промежуточного звена, иРНК (ДНК иРНК белок). Для некоторых РНК-содержащих вирусов цепь передачи информации может идти по схеме РНК - иРНК - белок. Это не меняет сути дела, так как детерминирующим, определяющим звеном здесь является также нуклеиновая кислота. Обратные пути детерминации от белка к нуклеиновой кислоте, к ДНК или РНК неизвестны.

Для того чтобы в дальнейшем перейти к изучению структур клетки, связанных со всеми этапами синтеза белков, нам необходимо кратко остановиться на основных процессах и компонентах, определяющих это явление.

В настоящее время на основании современных представлений о биосинтезе белков можно дать следующую общую принципиальную схему этого сложного и многоступенчатого процесса.

Главная, «командная», роль в определении специфической структуры белков принадлежит дезоксирибонуклеиновой кислоте - ДНК. Молекула ДНК представляет собой чрезвычайно длинную линейную структуру, состоящую из двух взаимозакрученных полимерных цепей. Составными элементами - мономерами - этих цепей являются четыре сорта дезоксирибонуклеотидов, чередование или последовательность которых вдоль цепи уникальная и специфична для каждой молекулы ДНК и каждого ее участка. Различные достаточно длинные участки молекулы ДНК ответственны за синтез разных белков. Тем самым одна молекула ДНК может определить синтез большого числа функционально и химически различных белков клетки. За синтез каждого одного типа белков ответствен лишь определенный участок молекулы ДНК. Такой участок молекулы ДНК, связанный с синтезом одного какого-либо белка в клетке, часто обозначают термином «цистрон». В настоящее время понятие цистрон рассматривают как эквивалентное понятию ген. В уникальной структуре гена - в определенном последовательном расположении его нуклеотидов вдоль цепи - заключена вся информация о структуре одного соответствующего белка.

Из общей схемы белкового синтеза видно, что начальным пунктом, с которого начинается поток информации для биосинтеза белков в клетке, является ДНК. Следовательно, именно ДНК содержит ту первичную запись информации, которая должна сохраняться и воспроизводиться от клетки к клетке, из поколения в поколение.

Кратко касаясь вопроса о месте хранения генетической информации, т.е. о локализации ДНК в клетке, можно сказать следующее. Уже давно известно, что, в отличие от всех прочих компонентов белоксинтезирующего аппарата, ДНК имеет особую, весьма ограниченную локализацию: местом ее нахождения в клетках высших (эукариотических) организмов будет клеточное ядро. У низших (прокариотических)организмов, не имеющих оформленного клеточного ядра, ДНК также отмешана от остальной части протоплазмы в виде одного или нескольких компактных нуклеотидных образований. В полном соответствии с этим ядро эукариот или нуклеоид прокариот издавна рассматривается как вместилище генов, как уникальный клеточный органоид, контролирующий реализацию наследственных признаков организмов и их передачу в поколениях.

Основной принцип, лежащий в основе макромолекулярной структуры ДНК, - это так называемый принцип комплементарности. Как уже упоминалось, молекула ДНК состоит из двух взаимозакрученных цепей. Эти цепи связаны друг с другом посредством взаимодействия их противолежащих нуклеотидов. При этом по структурным соображениям существование такой двутяжной структуры оказывается возможным только в том случае, если противолежащие нуклеотиды обеих цепей будут стерически комплементарны, т.е. будут своей пространственной структурой дополнять друг друга. Такими взаимодополняющими - комплементарными - парами нуклеотидов являются пара А-Т (аденин-тимин) и пара Г-Ц (гуанин-цитозин).

Следовательно, согласно этому принципу комплементарности, если в одной цепи молекулы ДНК мы имеем некую последовательность четырех сортов нуклеотидов, то во второй цепи последовательность нуклеотидов будет однозначно детерминирована, так что каждому А первой цепи будет соответствовать Т во второй цепи, каждому Т первой цепи - А во второй цепи, каждому Г первой цепи - Ц во второй цепи и каждому Ц первой цепи - Г во второй цепи.

Видно, что указанный структурный принцип, лежащий в основе двутяжного строения молекулы ДНК, позволяет легко понять точное воспроизведение исходной структуры, т.е. точное воспроизведение информации, записанной в цепях молекулы в виде определенной последовательности из 4 сортов нуклеотидов. Действительно, синтез новых молекул ДНК в клетке происходит только на базе уже имеющихся молекул ДНК. При этом две цепи исходной молекулы ДНК начинают с одного из концов расходиться, и на каждом из разошедшихся однотяжных участков начинает собираться из присутствующих в среде свободных нуклеотидов вторая цепь в точном соответствии с принципом комплементарности. Процесс расхождения двух цепочек исходной молекулы ДНК продолжается, и соответственно обе цепи дополняются комплементарными цепями. В результате, как видно на схеме, вместо одной возникают две молекулы ДНК, в точности идентичные исходной. В каждой получившейся «дочерней» молекуле ДНК одна цепь, как видно, целиком происходит от исходной, а другая является заново синтезированной.

Главное, что еще раз необходимо подчеркнуть, это то, что потенциальная способность к точному воспроизведению заложена в самой двутяжной комплементарной структуре ДНК как таковой, и открытие этого, безусловно, составляет одно из главных достижений биологии.

Однако проблема воспроизведения (редупликации) ДНК не исчерпывается констатацией потенциальной способности ее структуры к точному воспроизведению своей нуклеотидной последовательности. Дело в том, что ДНК сама по себе вовсе не является самовоспроизводящей молекулой. Для осуществления процесса синтеза - воспроизведения ДНК по описанной выше схеме необходима деятельность специального ферментативного комплекса, носящего название ДНК-полимеразы. По-видимому, именно этот фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу. Таким образом, ДНК, подобно матрице, лишь задает порядок расположения нуклеотидов в синтезирующихся цепях, а сам процесс ведет белок. Работа фермента в ходе редупликации ДНК представляет собой на сегодня одну из наиболее интересных проблем. По-видимому, ДНК-полимераза как бы активно ползет вдоль двутяжной молекулы ДНК от одного ее конца к другому, оставляя позади себя раздвоенный редуплицированный «хвост». Физические принципы такой работы данного белка пока не ясны.

Однако ДНК и отдельные ее функциональные участки, несущие информацию о структуре белков, сами непосредственного участия в процессе создания белковых молекул не принимают. Первым этапом на пути к реализации этой информации, записанной в цепях ДНК, является так называемый процесс транскрипции, или «переписывания». В этом процессе на цепи ДНК, как на матрице, происходит синтез химически родственного полимера - рибонуклеиновой кислоты (РНК). Молекула РНК представляет собой одну цепь, мономерами которой являются четыре сорта рибонуклеотидов, которые рассматриваются как небольшая модификация четырех сортов дезоксирибонуклеотидов ДНК. Последовательность расположения четырех сортов рибонуклеотидов в образующейся цепи РНК в точности повторяет последовательность расположения соответствующих дезоксирибонуклеотидов одной из двух цепей ДНК. Таким путем нуклеотидная последовательность генов копируется в виде молекул РНК, т.е. информация, записанная в структуре данного гена, целиком переписывается на РНК. С каждого гена может сниматься большое, теоретически неограниченное количество таких «копий» - молекул РНК. Эти молекулы, переписанные во многих экземплярах как «копии» генов и стало быть несущие ту же информацию, что и гены, расходятся по клетке. Они уже непосредственно входят в связь с белоксинтезирующими частицами клетки и принимают «личное» участие в процессах создания белковых молекул. Другими словами, они переносят информацию от места, где она хранится, в места ее реализации. Соответственно эти РНК обозначают как информационные или матричные РНК, сокращенно мРНК (или иРНК).

Выяснено, что цепь информационной РНК синтезируется, прямо используя соответствующий участок ДНК в качестве матрицы. Синтезируемая цепь мРНК при этом точно копирует по своей нуклеотидной последовательности одну из двух цепей ДНК (принимая, что урацилу (У) в РНК соответствует его производное тимин (Т) в ДНК). Это происходит на основе того же структурного принципа комплементарности, который определяет редупликацию ДНК. Оказалось, что когда происходит синтез мРНК на ДНК в клетке, то в качестве матрицы для образования цепи мРНК используется лишь одна цепь ДНК. Тогда каждому Г этой цепи ДНК будет соответствовать Ц в строящейся цепи РНК, каждому Ц цепи ДНК - Г в цепи РНК, каждому Т цепи ДНК - А в цепи РНК и каждому А цепи ДНК - У в цепи РНК. В итоге получающаяся цепь РНК будет строго комплементарна к матричной цепи ДНК и, следовательно, идентичная по последовательности нуклеотидов (принимая Т = У) второй цепи ДНК. Таким образом, происходит «переписывание» информации с ДНК на РНК, т.е. транскрипция. «Переписанные» сочетания нуклеотидов цепи РНК уже непосредственно определяют расстановку соответствующих, кодируемых ими аминокислот в цепи белка.

Здесь, как и при рассмотрении редупликации ДНК, в качестве одного из наиболее существенных моментов процесса транскрипции необходимо указать на его ферментативный характер. ДНК, являющаяся матрицей в этом процессе, целиком определяет расположение нуклеотидов в синтезирующейся цепи мРНК, всю специфичность образуемой РНК, но сам ход процесса осуществляется особым белком - ферментом. Этот фермент называется РНК-полимеразой. Его молекула имеет сложную организацию, позволяющую ему активно продвигаться вдоль молекулы ДНК, одновременно синтезируя цепочку РНК, комплементарную к одной из цепей ДНК. Молекула ДНК, служащая матрицей, при этом не расходуется и не изменяется, сохраняясь в прежнем виде и будучи всегда готова для такого переписывания с нее неограниченного количества «копий» - мРНК. Поток этих мРНК от ДНК к рибосомам и составляет тот поток информации, который обеспечивает программирование белоксинтезирующего аппарата клетки, всей совокупности ее рибосом.

Таким образом, рассмотренная часть схемы описывает поток информации, идущий от ДНК в виде молекул мРНК к внутриклеточным частицам, синтезирующим белки. Теперь мы обратимся к потоку иного рода - к потоку того материала, из которого должен создаваться белок. Элементарными единицами - мономерами - белковой молекулы являются аминокислоты, которых имеется 20 различных сортов. Для создания (синтеза) белковой молекулы свободные аминокислоты, присутствующие в клетке, должны быть вовлечены в соответствующий поток, поступающий в белоксинтезирующую частицу, и уже там расставлены в цепочку определенным уникальным образом, диктуемым информационной РНК. Такое вовлечение аминокислот - строительного материала для создания белка - осуществляется через присоединение свободных аминокислот к особым молекулам РНК относительно небольшого размера. Эти РНК, служащие для присоединения к ним свободных аминокислот, не будут информационными, а несут иную адапторную - функцию, смысл которой будет виден дальше. Аминокислоты присоединяются к одному из концов небольших цепочек трансферных РНК (тРНК), по одной аминокислоте на одну молекулу РНК.

Для каждого сорта аминокислоты в клетке существуют свои специфические, присоединяющие только этот сорт аминокислоты молекулы адапторных РНК. В таком навещенном на РНК виде, аминокислоты и поступают в белоксинтезирующие частицы.

Центральным моментом процесса биосинтеза белка является слияние этих двух внутриклеточных потоков - потока информации и потока материала - в белоксинтезирующих частицах клетки. Эти частицы называются рибосомами. Рибосомы представляют собой ультрамикроскопические биохимические «машины» молекулярных размеров, где из поступающих аминокислотных остатков, согласно плану, заключенному в информационной РНК, собираются специфические белки. Хотя на данной схеме изображена лишь одна частица, каждая клетка сдержит тысячи рибсом. Количество рибосом определяет общую интенсивность белкового синтеза в клетке. Диаметр одной рибосомной частицы около 20 нм. По своей химической природе рибосома - рибонуклеопротеид: она состоит из особой рибосомной РНК (это третий известный нам класс РНК в дополнение к информационным и адапторным РНК) и молекул структурного рибосомного белка. Вместе это сочетание нескольких десятков макромолекул образует идеально организованную и надежную «машину», обладающую свойством прочитывать информацию, заключенную в цепи мРНК, и реализовать ее в виде готовой белковой молекулы специфического строения. Поскольку существо процесса состоит в том, что линейная расстановка 20 сортов аминокислот в цепи белка однозначно детерминируется расположением четырех сортов нуклеотидов в цепи химически совсем иного полимера - нуклеиновой кислоты (мРНК), то этот процесс, происходящий в рибосоме, принято обозначать термином «трансляция», или «перевод» - перевод как бы с 4-буквенного алфавита цепей нуклеиновых кислот на 20-буквенный алфавит белковых (полипептидных) цепей. Как видно, в процессе трансляции участвуют все три известных класса РНК: информационная РНК, являющаяся объектом трансляции, рибосомная РНК, играющая роль организатора белоксинтезирующей рибонуклеопротеидной частицы - рибосомы, и адапторные РНК, осуществляющие функцию переводчика.

Процесс синтеза белка начинается при образовании соединений аминокислот с молекулами адапторных РНК, или тРНК. При этом сначала происходит энергетическая «активация» аминокислоты за счет ее ферментативной реакции с молекулой аденозинтрифосфата (АТФ), а затем «активированная» аминокислота соединяется с концом относительно недлинной цепочки тРНК, приращение химической энергии активированной аминокислоты запасается при этом в виде энергии химической связи между аминокислотой и тРНК.

Но одновременно с этим решается и вторая задача. Дело в том, что реакцию между аминокислотой и молекулой тРНК ведет фермент, обозначаемый как аминоацил-тРНК-синтетаза. Для каждого из 20 сортов аминокислот существуют свои особые ферменты, осуществляющие реакцию с участием только данной аминокислоты. Таким образом, существует не менее 20 ферментов (аминоацил-тРНК-синтетаза), каждый из которых специфичен для одного сорта аминокислоты. Каждый из этих ферментов может вести реакцию не с любой молекулой тРНК, а лишь с теми, которые несут строго определенное сочетание нуклеотидов в своей цепи. Таким образом, благодаря существованию набора столь специфических ферментов, различающих, с одной стороны, природу аминокислоты и, с другой - нуклеотидную последовательность тРНК, каждый из 20 сортов аминокислот оказывается «приписанным» только определенным тРНК с данным характерным нуклеотидным сочетанием.

В каждый данный момент непосредственно в самой рибосоме находятся лишь относительно короткий отрезок цепи мРНК. Но именно этот отрезок при участии рибосомы может взаимодействовать с молекулами адапторных РНК. И здесь снова главную роль играет уже дважды разбиравшийся выше принцип комплементарности.

В этом и состоит объяснение механизма того, почему данному триплету цепи мРНК соответствует строго определенная аминокислота. Видно, что необходимым промежуточным звеном, или адаптором, при «узнавании» каждой аминокислотой своего триплета на мРНК является адапторная РНК (тРНК).

Далее в рибосоме помимо рассмотренной только что молекулы тРНК с навешенной аминокислотой находится еще одна молекула тРНК. Но, в отличие от рассмотренной выше молекулы тРНК, эта молекула тРНК своим концом присоединена к концу находящейся в процессе синтеза белковой (полипептидной) цепочки. Такое положение отражает динамику событий, происходящих в рибосоме в процессе синтеза белковой молекулы. Эту динамику можно представить себе следующим образом. Начнем с некоего промежуточного момента, отраженного на схеме и характеризующегося наличием уже начавшей строиться белковой цепочки, присоединенной к ней тРНК и только что вошедшей в рибосому и связавшейся с триплетом новой молекулы тРНК с соответствующей ей аминокислотой. По-видимому, сам акт присоединения молекулы тРНК к расположенному в данном месте рибосомы триплету мРНК приводит к такой взаимной ориентации и тесному контакту между аминокислотным остатком и строящейся цепью белка, что между ними возникает ковалентная связь. Связь возникает таким образом, что конец строящейся белковой цепи, на схеме присоединенный к тРНК, переносится от этой тРНК на аминокислотный остаток поступившей аминоацил-тРНК. В результате «правая» тРНК, сыграв роль «донора», окажется свободной, а белковая цепь - переброшенной на «акцептор» - «левую» (поступившую) аминоацил-тРНК, в итоге белковая цепь окажется удлиненной на одну аминокислоту и присоединенной к «левой» тРНК. Вслед за этим происходит переброска «левой» тРНК вместе со связанным с ней триплетом нуклеотидов мРНК «вправо», тогда прежняя «донорная» молекула тРНК окажется вытесненной отсюда и уйдет из рибосом, на ее месте появится новая тРНК со строящейся цепью белка, удлиненной на один аминокислотный остаток, а цепь мРНК будет продвинута относительно рибосомы на один триплет вправо. В результате продвижения цепи мРНК на один триплет вправо в рибосоме появится следующий вакантный триплет (УУУ), и к нему немедленно по комплементарному принципу присоединится соответствующая тРНК с аминокислотой (фенилаланил-тРНК). Это опять вызовет образование ковалентной (пептидной) связи между строящейся цепью белка и фенилаланиновым остатком и вслед за этим продвижение цепи мРНК на один триплет вправо со всеми вытекающими отсюда последствиями и т.д. Таким путем осуществляется последовательно, триплет за триплетом, протягивание цепи информационной РНК через рибосому, в результате чего цепь иРНК »прочитывается» рибосомой целиком, от начала до конца. Одновременно и сопряженно с этим происходит последовательное, аминокислота за аминокислотой, наращивание белковой цепочки. Соответственно в рибосому одна за другой поступают молекулы тРНК с аминокислотами и выходят молекулы тРНК без аминокислот. Оказываясь в растворе вне рибосомы, свободные молекулы тРНК снова соединяются с аминокислотами и опять несут их в рибосому, сами же, таким образом, циклично обращаясь без разрушения и изменения.

Размещено на Allbest.ru

...

Подобные документы

  • Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.

    презентация [832,8 K], добавлен 05.12.2012

  • Изучение кодирования аминокислотной последовательности белков и описание процесса синтеза белка в рибосомах. Генетический код и синтез рибонуклеиновой кислоты. Построение цепи матричной РНК и синтез протеина. Трансляция, сворачивание и транспорт белков.

    реферат [3,5 M], добавлен 11.07.2015

  • Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация [250,9 K], добавлен 01.11.2015

  • Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа [816,0 K], добавлен 26.07.2009

  • Молекулярно-генетический уровень организации живого. Схема строения ДНК. Экспрессия гена как процесс реализации информации, закодированной в нем. Центральная догма молекулярной биологии. Транскрипционный аппарат клетки. Схемы транскрипции и сплайсинга.

    презентация [725,1 K], добавлен 21.02.2014

  • Трансляция клетки как процесс биосинтеза белка, определяемый матричной РНК. Понятие генетического кода, его свойства. Отклонения от универсального генетического кода. Строение рибосом, механизм элонгации и терминации. Белки в эволюции и онтогенезе.

    презентация [2,2 M], добавлен 21.02.2014

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Информация о строении белков. Матричный принцип. Генетическая роль нуклеиновых кислот. Центральная догма молекулярной биологии. Репликция, репарация и полуконсервативность. Недорепликация концов линейных молекул, теломераза. Технология амплификации ДНК.

    презентация [3,3 M], добавлен 14.04.2014

  • Регуляция на этапе биосинтеза и сборки компонентов аппарата трансляции и на этапе его функционирования. Регуляция круговорота белков путем избирательного протеолиза. Регуляция активности белковых посредников нековалентным взаимодействием с эффекторами.

    реферат [20,1 K], добавлен 26.07.2009

  • Экспрессия генов - способность контролировать синтез белка. Структура и свойства генетического кода, его универсальность и просхождение. Передача генетической информации, транскрипция и трансляция. Митохондриальный и хлоропластный генетические коды.

    реферат [41,5 K], добавлен 27.01.2010

  • Сущность и функции везикулярного транспорта. Процессы эндоцитоза и экзоцитоза. Образование отщепляющейся вакуоли, ее внутриклеточное перемещение. Транспорт белков через аппарат Гольджи. Механизм биосинтеза и секреции белковых и полипептидных гормонов.

    презентация [1,3 M], добавлен 23.11.2013

  • Процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Точки начала и конца транскрипции, основной фермент и вспомогательные факторы. Этапы обратной транскрипции, особенности транскрипции про- и эукариот.

    презентация [2,3 M], добавлен 14.04.2014

  • Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация [2,3 M], добавлен 21.12.2013

  • Молекулярная организация генетического материала. Транскрипция и трансляция мРНК прокариот. Роль рибонуклеиновых кислот в белковом синтезе. Расположение функциональных центров на субчастицах рибосомы. Свойства генетического кода. Активация аминокислот.

    курсовая работа [2,0 M], добавлен 19.11.2013

  • Ген - участок ДНК, в котором содержится информация о первичной структуре одного белка. Последовательность из трех расположенных друг за другом нуклеотидов (триплет). Важные свойства генетического кода. Схема синтеза белка в рибосоме (трансляция).

    презентация [354,6 K], добавлен 06.03.2014

  • Белки и липиды - важные структурные, запасные и функциональные элементы клетки. Азотфиксация и биосинтез аминокислот. Пути биосинтеза аминокислоты лизина у грибов. Поглощение неорганических питательных веществ водорослями активным и пассивным путями.

    реферат [22,3 K], добавлен 23.04.2010

  • Биосинтез как направление телесно-ориентированной (соматической) психотерапии. Происхождение жизни в ее современной клеточной форме, возникновение механизма наследуемого биосинтеза белков. Рибонуклеиновые кислоты, эволюция и специализация молекул РНК.

    реферат [588,5 K], добавлен 07.06.2010

  • Специфические факторы противовирусного иммунитета и синтез антител к определенному антигену. Клетки памяти и выдача иммунного ответа в форме биосинтеза антител. Распространение инфекционного бронхита птиц и ящера. Культивирование вирусов в клетках.

    контрольная работа [568,3 K], добавлен 17.11.2010

  • Процесс образования мембран. Особенности экзоцитозного пути. Характерные особенности биосинтеза мембранных белков. Сигналы для сортировки белков в эукариотических клетках. Изменения липидного состава мембран в ответ на изменения условий окружающей среды.

    реферат [3,6 M], добавлен 03.08.2009

  • Галофильные микроорганизмы. Биосинтез эктоина и гидроксиэктоина. Осмоадаптация аэробных метилотрофных бактерий. Получение бесклеточных экстрактов, определение концентрации белка. Идентификация генов биосинтеза эктоина у бактерии Methylarcula marina.

    диссертация [1,0 M], добавлен 24.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.