Вирусы человека
Понятие и гипотезы происхождения вирусов, их разновидности, исследованные на современном этапе. Генетическая изменчивость вирусов, их эволюция, внутренняя структура и принципы жизнедеятельности в организме человека, статистика и пути распространения.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 28.09.2013 |
Размер файла | 52,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Вирусы человека
Введение
Тема, выбранная мной, показалась мне очень интересной и увлекательной. О вирусах, этих внутриклеточных паразитах, ученым известно сравнительно немного, не говоря уже о тех, кто не занимается их изучением. А ведь вирусы - это возбудители многих заболеваний, с которыми человек сталкивается на протяжении всей жизни, и знать об этих болезнях должен каждый. В наши дни проблема изучения вирусов еще более актуальна: из-за такого опасного вирусного заболевания, как СПИД - «чумы XX века», поиском борьбы с которой заняты многие ученые. Но чтобы успешно бороться с коварными невидимками и болезнями, которые они вызывают, необходимо детально изучить их свойства.
Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции.
В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.
Вирусы - это паразиты, которые почти целиком зависят от клетки-хозяина. Они используют его энергию, необходимую для синтеза нуклеиновых кислот и белков, для дальнейших видоизменений этих белков и их адресной доставки. Без этого вирусы не могли бы размножаться и распространяться в среде. И тогда напрашивается вполне резонный вывод: несмотря на то, что все процессы в клетке после инфицирования регулируются вирусом, сам он - неживой объект, паразитирующий на живых системах с автономным метаболизмом. Вирусы играют большую роль в жизни человека, но в основном отрицательную. Они являются возбудителями ряда опасных заболеваний - оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа и др. Среди вирусных болезней растений известна мозаичная болезнь табака, гороха и других культур; у больных растений вирусы разрушают хлоропласты, и пораженные участки становятся бесцветными. Но вирусы могут быть и полезны. Таковыми оказались вирусы, поражающие позвоночных животных и насекомых. В 50-х годах 20 века в Австралии остро встала проблема с дикими кроликами, которые быстрей саранчи уничтожали посевы сельскохозяйственных культур и приносили огромный экономический ущерб. Для борьбы с ними использовали вирус миксоматоза. С помощью вирусов были сделаны такие выдающиеся открытия, как расшифровка генетического кода и строение генетических нуклеиновых кислот, а также установлены закономерности синтеза белков. Вирусы вездесущи, их можно найти повсюду, где есть жизнь. Можно даже сказать, что вирусы своеобразные «индикаторы жизни». Они наши постоянные спутники и со дня рождения сопровождают нас всегда и везде. Подсчитано, что человек при средней жизни в 70 лет примерно 7 лет болеет различными вирусными инфекциями. Вред, который они причиняют, очень велик. Достаточно сказать, что «на совести» больше половины всех заболеваний человека, а если вспомнить, что эти мельчайшие из мелких поражают ещё животных, растения и даже своих ближайших родственников по микромиру - бактерий, то станет ясно, что борьба с вирусами - одна из первоочередных задач науки.
1. Гипотезы происхождения вирусов
вирус генетический изменчивость
На протяжении всего развития науки о вирусах были выдвинуты три основные гипотезы.
Согласно первой из них, вирусы являются потомками бактерий или других одноклеточных организмов, претерпевших дегенеративную эволюцию. Согласно второй, вирусы являются потомками древних, доклеточных, форм жизни, перешедших к паразитическому способу существования. Согласно третьей, вирусы являются дериватами клеточных генетических структур, ставших относительно автономными, но сохранившим зависимость от клеток.
Возможность дегенеративной эволюции была неоднократно установлена и доказана, и, пожалуй, наиболее ярким примером ее может служить происхождение некоторых клеточных органелл эукариотов от симбиотических бактерий. Например, можно считать установленным, что хлоропласты простейших и растений происходят от предков нынешних сине-зеленых бактерий, а митохондрии - от предков пурпурных бактерий. Поэтому такая возможность не исключена и для происхождения вирусов, особенно таких крупных, сложных и автономных, каким является вирус оспы.
Все же мир вирусов слишком разнообразен, чтобы признать возможность столь глубокой дегенеративной эволюции для большинства его представителей, от вирусов оспы, герпеса до реовирусов, не говоря уж о таких автономных генетических структурах, как плазмиды.
Разнообразие генетического материала у вирусов является одним из аргументов в пользу происхождения вирусов от доклеточных форм. Действительно, генетический материал вирусов «исчерпывает» все его возможные формы: одно - и двунитевые РНК и ДНК, их линейные, циркулярные и фрагментарные виды. И все же разнообразие генетического материала у вирусов скорее свидетельствует о полифилетическом происхождении вирусов, нежели о сохранении предковых доклеточных форм, геном которых эволюционировал по маловероятному пути от РНК к ДНК, от однонитевых форм к двунитевым и т.п.
Третья гипотеза 20-30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся генов. Однако именно она легко объясняет не только вполне очевидное полифилетическое происхождение вирусов, но и общность столь разнообразных структур, какими являются полноценные и дефектные вирусы, сателлиты и плазмиды. Из этой концепции также вытекает, что образование вирусов не явилось единовременным событием, а происходило многократно и продолжает происходить в настоящее время. В далекие времена, наряду с формированием клеточных форм, происходило образование и неклеточных, представленных вирусами - автономными, но клеточно-зависимыми генетическими структурами. Ныне существующие вирусы являются продуктами эволюции, как древнейших их предков, так и недавно возникших автономных генетических структур.
2. История открытия вирусов
Первое знакомство.
В 80-е годы века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна.
Профессора Петербургского университета, всемирно известные А.Н. Бекетов и А.С. Фелинцин послали небольшую экспедицию в Бесарабию и на Украину в надежде разобраться в причинах болезни. В экспедицию входили Д.И. Ивановский и В.В. Половцев.
Д.И. Ивановский русский ученый в 1892 году открыл вирус табачной мозаики.
На поиски возбудителей болезни Ивановский потратил несколько лет. Он собирал факты, делал наблюдения, расспрашивал крестьян о симптомах болезни. И экспериментировал. Он собрал листья с нескольких больных растений. Через 15 дней на этих листьях появились белёсые пятна. Значит, болезнь действительно заразна, и может передаваться от растения к растению. Ивановский последовательно устранял возможных переносчиков болезни - корневую систему растений, семена, цветки, пыльцу… Опыты показали, что дело не в них: болезнетворное начало поражает растения иным путём.
Тогда молодой учёный ставит простой опыт. Он собирает больные листья, измельчает их и закапывает на участках со здоровыми растениями. Через некоторое время растения заболевают. Итак, первая удача - путь от больного растения к здоровому найден. Возбудитель передаётся листьями, попавшими в почву, перезимовывает и весной поражает посевы. Но о самом возбудителе он так ничего и не узнал. Его опыты показали лишь одно, - нечто заразное содержится в соке. В эти годы ещё несколько учёных в мире бились над опознанием этого «нечто». А. Майер в Голландии предложил, что заразное начало - бактерии. Однако Ивановский доказал, что Майер ошибся, посчитав носителями болезни бактерии. Профильтровав заразный сок через тонкопористые фарфоровые фильтры, он осадил на них бактерии. Теперь бактерии удалены, но заразность сока сохранилась. Проходит шесть лет и Ивановский обнаруживает, что столкнулся с непонятным агентом, вызывающим болезнь: он не размножается на искусственных средах, проникает сквозь самые тонкие поры, погибал при нагревании. Фильтруемый яд! Таким был вывод ученого. Но яд это - вещество, а возбудитель болезни табака был существом. Он отлично размножался в листьях растений.
Так Ивановский открыл новое царство живых организмов, самых мелких из всех живых и потому невидимых в световом микроскопе, проходящих сквозь тончайшие фильтры, сохраняющихся в соке годами и при этом не теряющих вирулентности. В 1889 году датский ботаник Мартин Виллем Бейринк, которого Майер заинтересовал болезнью табака, назвал вновь открытое существо вирусом, добавив, что вирус представляет собой «жидкое, живое, заразное начало».
Составные части вируса
В 1932 году молодому американскому биохимику Вендиллу Стенли тогдашний директор Рокфеллеровского института в Нью-Йорке Симон Флекенер предложил заняться вирусами. Стенли начал с того, что собрал тонну листьев табака, пораженных вирусом табачной мозаики, и решил получить сок из всей этой горы. Он отжал бутыль сока и начал исследовать сок доступными ему химическими методами. Разные фракции сока он подвергал воздействию всевозможных реактивов, надеясь получить чистый вирусный белок (Стенли был убеждён, что вирус это белок). Ему долгое время не удавалось избавиться от белков растительных клеток. Однажды, перепробовав разные методы подкисления и высаливания, Стенли получил почти чистую фракцию белка, отличавшегося по своему составу от белков растительных клеток. Учёный понял, что перед ним то, чего он так упорно добивался. Стенли выделил необыкновенный белок, растворил его в воде и поставил раствор в холодильник. Наутро в колбе вместо прозрачной жидкости лежали красивые шелковистые игольчатые кристаллы. Из тонны листьев Стенли добыл столовую ложку таких кристаллов. Затем Стенли отсыпал немного кристалликов, растворил их в воде, смочил этой водой марлю и ею натёр листья здоровых растений. Сок растений подвергся целому комплексу химических воздействий. После такой «массированной обработки» вирусы, скорее всего, должны были погибнуть. Натёртые листья заболели, а через пару недель характерная мозаика белых пятен покрыла все растения, затем повторил эту операцию опять, а после четвёртого или пятого «переливания» вируса отжал сок из листьев, подверг его той же химической обработки и снова получил точно такие же кристаллы. Странные свойства вируса пополнились ещё одним - способностью кристаллизироваться. Эффект кристаллизации был настолько ошеломляющим, что Стенли надолго отказался от мысли, что вирус - это существо. Так как все ферменты (катализаторы реакции в живых организмах) - белки, и количество многих ферментов также увеличивается по мере развития организма, и они могут кристаллизироваться, Стенли заключил, что вирусы - чистые белки, скорее ферменты.
Вскоре учёные убедились, что кристаллизировать можно не только вирус табачной мозаики, но и ряд других вирусов.
Вендел Стенли в 1946 году был удостоен Нобелевской премии.
Спустя пять лет английские биохимики Ф. Боуден и Н. Пири нашли ошибку в определении Стенли. 94% содержимого вируса табачной мозаики состоял из белка, а 6% представляло собой нуклеиновую кислоту. Вирус был на самом деле не белком, а нуклеопротеином - соединением белка и нуклеиновой кислоты.
Как только биологам стали доступны электронные микроскопы, учёные установили, что кристаллы вирусов состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли. Когда же удалось рассмотреть в электронном микроскопе отдельные вирусные частицы, то оказалось что они бывают разной формы - и шарообразные, и палочковидные, и в виде сандвича, и в форме булавы, но всегда наружная оболочка вирусов состоит из белка, а внутреннее содержимое представлено нуклеиновой кислотой.
Лизогения
Когда вирусологи поближе познакомились с жизнью вирусов, они обнаружили у них ещё одно неожиданное свойство. Раньше считали, что любая частица вируса, попав в клетку, начинает там размножаться и, в конце концов, клетка погибает. Но в 1921 году, а затем в середине 30-х. годов в институте Пастера в Париже была описана странная картина. К бактериям добавляли бактериофаги. Через какой-то промежуток времени клетки должны были погибнуть, но, удивительно, часть их осталась жить, и продолжала размножаться, несмотря на то, что кишмя кишели фаги. Каким-то образом эти клетки получили иммунитет к фагам. Учёные выделили такие клетки, очистили их от фагов, затем стали регулярно высевать их и однажды обнаружили, что в свободной от фагов культуре бактерий, откуда не возьмись, снова появляются фаговые частицы.
Исчезнув на время, как будто спрятавшись внутрь клетки, фаги снова заявили о своём существовании. Эти же фаги испытали на свежих ещё не заражённых культурах бактерий. Фаги по-прежнему вели себя необычно. Часть из них, как и полагалось, вызывало гибель клеток, но многие исчезали внутри клеток, а как только это происходило, клетки получали способность противостоять заражению другими такими же вирусами.
Процесс исчезновения вирусов назвали лизогенизацией, а клетки, заражённые такими вирусами, стали именовать лизогенными. Всякие попытки обнаружить всякие фаги внутри лизогенных бактерий окончились неудачно. Вирус прикреплялся к какой-то структуре клетки и без неё не размножался.
С помощью микроманипулятора учёные Львов и Тутман отделил от общей массы лизогенных бактерий одну клетку, и начали за ней наблюдать. Клетка поделилась один раз, дав начало двум молоденьким клеткам, те, в свою очередь, через положенное время дали потомство. Клетка, подозреваемая в том, что она спрятала внутри бактериальный вирус, ничем от других не отличалась. Сменилось 15 поколений бактерий, но терпеливые учёные постоянно наблюдали с помощью микроскопа, заменяя друг друга через определённые промежутки времени. Во время 19 деления одна из клеток лопнула точно так, как разрывались обычные бактерии, заражённые обычным вирусом.
Учёные определили, что лизогенные клетки, хотя и несут в себе вирус или его часть, но до поры до времени этот вирус не инфекционен. Такой внутри клеточный вирус они назвали провирусом, или, если речь шла о бактериофагах, профагом.
Затем они доказали, что провирус, попав в бактерию, не исчезает. Через 18 поколений его удалось обнаружить. Оставалось предположить, что всё это время профаг размножался вместе с бактерией.
Впоследствии было доказано, что обычно профаги не могут размножаться сами по себе, как это делают все остальные вирусы, а размножаются только тогда, когда размножается сама бактерия.
И, наконец, третья честь этого открытия принадлежит Львову, Симиновичу и Кылдгарду - способ выделения из состояния равновесия провируса. Воздействуя небольшими дозами ультрафиолетовых лучей на лизогенные клетки, удавалось вернуть их профагам способность размножаться независимо от клеток. Такие освобождённые фаги вели себя точно так, как вели себя их предки: размножались и разрушали клетки. Львов сделал из этого верный, единственный вывод - ультрафиолет нарушает связь профага с какой-то из внутри клеточных структур, после чего и наступает обычное ускорение размножения фагов.
Открытие Херши и Чейза.
В 1952 появилась сенсационная работа двух американских исследователей - Альфреда Херши и Марты Чейз.
Херши и Чейз решили проверить, насколько верна картина нарисованная прежними исследователями. На поверхности клетки в электронный микроскоп фаги были видны. Но разглядеть их внутри клеток в те годы никому не удавалось. Тем более нельзя было увидеть процесс проникновения фага в клетку. Стоило только подставить клетку с налипшими фагами под пучок электронов, как электроны убивали всё живое, и то, что отражалось на экране микроскопа, было лишь посмертной маской некогда живых существ.
Учёным помогли методы радиационной химии. Пробирки с суспензией они давали нужную порцию меченных радиоактивным фосфором и серой фагов. Через каждые 60 секунд отбирались пробы, и в них определялось содержание отдельно фосфора и от дельно серы, как в клетках, так и вне них.
Спустя две с половиной минуты, было отмечено, что количество «горячего» фосфора на поверхности клеток оказалось равным 24%, а серы снаружи было в три раза больше - 76%. Ещё через две минуты стало ясно, что никакого равновесия между фосфором и серой не наступает и впоследствии сера упорно не желала лезть внутрь клеток, а оставалась снаружи. Через 10 минут - время достаточное, чтобы не мене 99% фагов прикрепилось и проникло внутрь бактерии, - клетки подвергли интенсивному встряхиванию: оторвали все, что прилипло к ним снаружи, а затем отделили центрифугированием бактериальные клетки от фаговых частиц. При этом более тяжелые клетки бактерии осели на дно пробирок, а лёгкие фаговые частицы остались в жидком состоянии. Так называемом надосаке.
Дальше надо было измерить отдельно радиоактивность осадка и надосадка. Отличить излучение серы от фосфора учёные смогли, а по величине радиоактивности им не трудно было высчитать, сколько фагов попало внутрь клеток и сколько осталось снаружи. Для контроля они тут же провели биологическое определение числа фагов в надосадке. Биологическое определение даёт цифру 10%.
Результаты опытов Херши и Чейза исключительно важны для последующего развития генетики. Они доказали роль ДНК в наследственности.
3. Генетическая изменчивость вирусов, их эволюция
Изменчивость В. Объясняет их способность «уходить» от иммунного ответа зараженного им организма (напр., в случае В. гриппа) и легко образовывать варианты, резистентные к лекарственным препаратам. Результатом изменчивости может быть также приобретение способности вызывать заболевания человека В., ранее патогенными только для животных. Нередко обнаруживается явное родство между отд. белками (напр., ферментами, осуществляющими синтез нуклеиновых кислот) у В., которые, на первый взгляд, не имеют между собой ничего общего. В ряде случаев заметно сходство между вирусными и клеточными белками. Из этого следует, что в ходе эволюции происходил (и, по-видимому, происходит) обмен генетич. информацией как между разными В., так и между В. и клеточными организмами. Ярким примером явления трансдукции - способности В. переносить гены или их фрагменты от одного организма к другому - может служить бактерия дифтерийная палочка, которая начинает вырабатывать токсин только после заражения её определенным фагом. Такой перенос генов (его называют горизонтальным) пытаются использовать для генной терапии путём создания на основе. В искусств. Конструкций - векторов, способных вводить в заражаемую клетку здоровые или корректирующие гены.
Особою категорию составляет т. Н. эндогенные В. Их геном в виде двунитевой ДНК, соответствующей геному ретровирусов, постоянно находится в составе клеточной хромосомы и функционирует как набор клеточных генов. Эндогенные В. могут быть полноценными, и тогда их экспрессия приводит к образованию В., способного заражать др. клетки (напр., В. рака молочных желёз мышей). В большинстве случаев, однако, эндогенные В. имеют дефектный геном, в котором некоторые вирусные гены отсутствуют или повреждены. Генетич. Материал разнообразных эндогенных В. составляет весьма значительную долю хромосомной ДНК животных, в т. Ч. Человека. Они обнаружены и у растений. Считается, что эндогенные В. возникли в результате заражения половых клеток и последующей интеграции вирусной и клеточной ДНК. Такое заражение в процессе эволюции могло происхлдить многократно, и многие эндогенные В. считаются весьма древними.
Ввиду огромного разнообразия В. построение их эволюционного «древа» весьма затруднено. Среди мн. предположений о происхождении В. наибольшего внимания заслуживают два: или они возникли из обособившихся («одичавших») элементов клеточного генома, или в какой-то форме существовали уже на доклеточной стадии биологич. эволюции.
В. сыграли и продолжают играть выдающуюся роль как удобные модельные объекты для изучения общих закономерностей молекулярной биологии. Именно при изучении В. были расшифрованы важнейшие закономерности синтеза белков и нуклеиновых кислот и регуляции этих процессов, сформулированы мн. Понятия молекулярной биологии и молекулярной генетики.
4. Как устроены вирусы?
Сравнивая живое и неживое, необходимо особо остановиться на вирусах, так как они обладают свойствами и того и другого. Что же такое вирусы?
Вирусы настолько малы, что их не видно даже в самый сильный световой микроскоп. Их удалось рассмотреть только после создания электронного микроскопа, разрешающая способность которого в 100 раз больше чем у светового.
Сейчас нам известно, что вирусные частицы не являются клетками; они представляют собой скопление нуклеиновых кислот (которые составляют единицы наследственности, или гены), заключенные в белковую оболочку.
Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.
Вирусы состоят из различных компонентов:
а) сердцевина - генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.
б) белковая оболочка, которую называют капсидом.
Оболочка часто построена из индентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.
в) дополнительная липопротеидная оболочка.
Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).
В отличие от обычных живых клеток вирусы не употребляют пищи и не вырабатывают энергии. Они не способны размножаются без участия живой клетки. Вирус начинает размножаться лишь после того, как он проникнет в клетку определенного типа. Вирус полиомиелита, например, может жить только в нервных клетках человека или таких высокоорганизованных животных, как обезьяны.
Изучению вирусов, инфицирующих некоторые бактерии в кишечнике человека, показало, что цикл размножения этих вирусов протекает следующим образом: вирусная частица прикрепляется к поверхности клетки, после чего нуклеиновая кислота вируса (ДНК) проникает внутрь клетки, а белковая оболочка остается снаружи. Вирусная нуклеиновая кислота, оказавшись внутри клетки, начинает самовоспроизводиться, используя в качестве строительного материала вещества клетки-хозяина. Затем, опять таки из продуктов обмена клетки, вокруг вирусной нуклеиновой кислоты образуется белковая оболочка: так формируется зрелая вирусная частица. Вследствии этого процесса некоторые жизненно важные частицы клетки-хозяина разрушаются, клетка гибнет, ее оболочка лопается, освобождаются вирусные частицы, готовые к заражению других клеток. Вирусы вне клетки представляют собой кристаллы, но при попадании в клетку «оживают».
Итак, ознакомившись с природой вирусов, посмотрим, насколько они удовлетворяют сформулированным критериям живого. Вирусы не являются клетками и в отличие от живых организмов с клеточной структурой не имеют цитоплазмы. Они не получают энергии за счет потребления пищи. Казалось бы, их нельзя считать живыми организмами. Однако вместе с тем вирусы проявляют свойства живого. Они способны приспосабливаться к окружающей среде путем естественного отбора. Это их свойство обнаружилось при изучении устойчивости вирусов к антибиотикам. Допустим, что больного с вирусной пневмонией лечат каким-то антибиотиком, но вводят его в количестве, недостаточном для разрушения всех вирусных частиц. При этом те вирусные частицы, которые оказались более устойчивыми к антибиотику и их потомство наследует эту устойчивость. Поэтому в дальнейшем этот антибиотик окажется не эффективным, штамма созданного естественным отбором.
Но, пожалуй, главным доказательством того, что вирусы относятся к миру живого, является их способность к мутациям. В 1859 году, но всему земному шару широко распространилась эпидемия азиатского гриппа. Это явилось следствием мутации одного гена в одной вирусной частицы у одного больного в Азии. Мутантная форма оказалась способной преодолеть иммунитет к гриппу, развивающийся у большинства людей в результате перенесенной ранее инфекции. Широко известен и другой случай мутации вирусов, связанный с применением вакцины против полиомиелита. Эта вакцина состоит из живого вируса полиомиелита, ослабленного настолько, что он не вызывает у человека никаких симптомов. Слабая инфекция, которой человек практически не замечает, создает против болезни вирусных штаммов того же типа. В 1962 году было зарегистрировано несколько тяжелых случаев полиомиелита, вызванных, по-видимому, этой вакциной. Вакцинировано было несколько миллионов: в отдельных случаях произошла мутация слабого вирусного штамма, так что он приобрел высокую степень вирулентности. Поскольку мутация свойственна только живым организмам, вирусы следует считать живыми, хотя они просто организованны и не обладают всеми свойствами живого.
Итак, мы перечислили характерные особенности живых организмов, отличающие их от неживой природы, и теперь нам легче представить себе какие объекты изучает биология.
5. Химический состав вирусов
Просто организованные вирусы представляют собой нуклеопротеины, т.е. состоят из нуклеиновой кислоты (ДНК или РНК) и несколько белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка называется капсидом. Примером таких вирусов является вирус табачной мозаики. Его капсид содержит всего один белок с небольшой молярной массой. Сложно организованные вирусы имеют дополнительную оболочку, белковую или липопротеиновую. Иногда в наружных оболочка сложных вирусов помимо белков содержатся углеводы, например у возбудителей гриппа и герпеса. И их наружная оболочка является фрагментом ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. Геном вирусов могут быть представлены, как однониточными, так и двунитчатыми ДНК и РНК. Двунитчатая ДНК встречается у вирусов оспы человека, оспы овец, свиней, аденовирусов человека, двунитчатая РНК служит генетической матрицей у некоторых вирусов насекомых и других животных. Широко распространены вирусы, содержащие однонитчатую РНК.
6. Взаимодействие вируса с клеткой
Вирусы - самые маленькие из живущих на земле организмов. Долгие годы учёные спорили, являются ли они вообще организмами. Многие считали, что это химические соединения, большие молекулы, подобные ферментам. Вирусы состоят всего из двух частей: белковой оболочке и спрятанной внутри нуклеиновой кислоты, несущей наследственную запись о свойствах вирусной частицы. Вирус может прикрепляться к оболочке клетки, «пробуравить» там крошечное отверстие и в него впрыснуть свою нуклеиновую кислоту.
При образовании пиноцитозных вакуолей вместе с капельками жидкости межклеточной среды случайно внутрь клетки могут попадать и вирусы, циркулирующие в жидкостях организма. Однако, как правило, проникновению вируса в цитоплазму клетки предшествует связывание его с особым белком-рецептором, находящимся на клеточной поверхности. Связывание с рецептором осуществляется благодаря наличию специальных белков на поверхности вирусной частицы, которые «узнают» соответствующий рецептор на поверхности чувствительной клетки. Участок поверхности клетки, к которому присоединился вирус, погружается в цитоплазму и превращается в вакуоль. Вакуоль, стенка которой состоит из цитоплазматической мембраны, может сливаться с другими вакуолями или с ядром. Так вирус доставляется в любой участок клетки.
Очутившись внутри бактерии, она приступает к подрывной деятельности. В короткое время нуклеиновая кислота вируса с помощью приютившей её клетки синтезирует сотни своих копий. С этих копий изготавливается нужное число белковых оболочек. И порой получается несколько тысяч новеньких вирусных частиц.
Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность инфекционного процесса. Так, вирус гепатита. А. или В. проникает и размножается только в клетках печени, аденовирусы и вирус гриппа - в клетках эпителия слизистой оболочки верхних дыхательных путей, вирус, вызывающий воспаление головного мозга, - в нервных клетках, вирус эпидемического паротита (свинка) - в клетках околоушных слюнных желез и т.д.
Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т.е. происходит редупликация вирусного генома и само сборка капсида. Для осуществления редупликации нуклеиновая кислота должна освободиться от капсида. После синтеза новой молекулы нуклеиновой кислоты она одевается, синтезированными в цитоплазме клетки - вирусными белками - образуется капсид. Накопление вирусных частиц приводит к выходу их из клетки. Для некоторых вирусов это происходит путем «взрыва», в результате чего целостность клетки нарушается и она погибает. Другие вирусы выделяются способом, напоминающим почкование. В этом случае клетки организма могут долго сохранять свою жизнеспособность.
Иной путь проникновения в клетку у вирусов бактерий - бактериофагов. Толстые клеточные стенки не позволяют белку-рецептору вместе с присоединившимся к нему вирусом погружаться в цитоплазму, как это происходит при инфицировании клеток животных. Поэтому бактериофаг вводит полый стержень в клетку и вталкивает через нее ДНК (или РНК), находящуюся в его головке. Геном бактериофага попадает в цитоплазму, а капсид остается снаружи. В цитоплазму бактериальной клетки начинается редупликация генома бактериофага, синтез его белков и формирование капсида. Через определенный промежуток времени
бактериальная клетка гибнет, и зрелые фаговые частицы выходят в окружающую среду.
Потомство одной ничтожной вирусной частицы разрушает клетку. Действуя внутри клетки, вирус подрывает все её жизненные ресурсы: он захватывает места синтеза белков, забирает энергию клетки, накладывает вето на запасные строительные блоки.
Жизнедеятельность бактериальных вирусов.
Спустя 25 лет после открытия вируса, канадский ученый Феликс Д'Эрел, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названы бактериофагами (или просто фагами).
Фаг, так называемый2 и по форме напоминающий головастика прикрепляется к бактериальной клетке и затем впрыскивает в неё длинную одиночную нить ДНК. Бактериальная клетка содержит собственную ДНК, которая управляет всеми процессами её жизнедеятельности. Но как только в бактериальную клетку внедряется вирусная ДНК, она захватывает власть над «фабриками клетки» и начинает «посылать команды» на синтез составных частей вирусов за счет веществ бактерии. Вещества бактериальной клетки всё больше и больше расходуются на строительство вирусной ДНК и вирусного белка и в конце концов она погибает.
После того как, вирусная ДНК попадает в бактериальную клетку, она становится способной синтезировать целые вирусные частицы. Менее чем через 30 минут оболочка клетки лопается, и сотни образовавшихся в ней вирусов выходят наружу. Каждая из таких вирусных частиц может теперь вновь заразить бактерию, и через некоторое время это приводит к гибели всей популяции бактерий.
7. Классификация вирусов
Дезоксивирусы
ДНК двунитчатая
Без внешних оболочек: аденовирусы, паповавирусы.
С внешними оболочками: герпис - вирусы.
Смешанный тип симметрии: Т-четные бактериофаги.
Без определённого типа симметрии: оспенные вирусы.
ДНК однонитчатая.
Без внешних оболочек: крысиный вирус Килхама, аденосателлиты, фаг цЧ 174.
Рибовирусы.
РНК двунитчатая.
Без внешних оболочек: реовирусы, вирусы раневых опухолей растений.
РНК однонитчатая.
Без внешних оболочек: полиовирус, энтеровирусы, риновирусы, вирус табачной мозаики.
С внешними оболочками: вирусы гриппа, парагриппа, бешенства, онкогенные РНК-содержащие вирусы.
«Портреты» вирусов различных типов строения:
А - вирус табачной мозаики со спиральным типом симметрии;
Б - реовирус с кубическим типом симметрии;
В-аномальные формы вирусов;
Г - сложноустроенные вирусы гриппа (1), оспы (2) и фаг (3)
8. Роль вирусов в жизни человека
Способы передачи вирусных заболеваний.
Вирусы играют большую роль в жизни человека. Они являются возбудителями ряда опасных заболеваний - оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа и др.
Вирусы, размножаются только в клетках, это внутриклеточные паразиты. В свободном, активном состоянии они не встречаются и не способны размножаться вне клетки. Если у всех клеточных организмов обязательно имеются две нуклеиновые кислоты - ДНК и РНК, то вирусы содержат только одну из них. На этом основании все вирусы делятся на две большие группы: ДНК, - содержащие и РНК - содержащие.
В отличие от клеточных организмов у вирусов отсутствует собственная система, синтезирующая белки. Вирусы вносят в клетку только свою генетическую информацию. С матрицы - вирусной ДНК или РНК - синтезируется матричная (информационная) РНК, которая и служит основой для синтеза вирусных белков рибосомами инфицированной клетки. Молекула ДНК вирусов, или их геном, может встраиваться в геном клетки - хозяина и существовать в таком виде неопределённо долгое время. Таким образом, паразитизм вирусов носит особый характер - это паразитизм на генетическом уровне.
Капельная инфекция
Капельная инфекция - самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми микроорганизмами могут вдохнуть другие люди, особенно в местах большого скопления народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции - правильное пользование носовыми платками и проветривание комнат.
Некоторые микроорганизмы, такие, как вирус оспы или туберкулезная палочка, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен.
Контагиозная передача (при непосредственном физическом контакте)
В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. К контагиозным вирусным болезням относится трахома (болезнь глаз, очень распространенная в тропических странах), обычные бородавки и обыкновенный герпес - «лихорадка» на губах.
9. Список черных дел вирусов
Некоторые наиболее известные вирусные заболевания человека
Название болезни |
Возбудитель |
Поражаемые области тела |
Способ распространения |
Тип вакцинации |
|
Грипп |
Микровирус одного их трех типов - А, В и С - с различной степенью вирулентности |
Дыхательные пути: эпителий, выстилающий трахеи и бронхи. |
Капельная инфекция |
Убитый вирус: штамм убитого вируса должен соответствовать штамму вируса, вызывающего заболевание |
|
Простуда |
Самые разные вирусы, чаще всего риновирусы (РНК - содержащие вирусы) |
Дыхательные пути: обычно только верхние |
Капельная инфекция |
Живой или инактивированный вирус вводится путем внутримышечной инъекции; вакцинация не очень эффективна, так как существует множество самых разных штаммов риновирусов |
|
Оспа |
Вирус натуральной оспы (ДНК - содержащий вирус), один из вирусов оспы |
Дыхательные пути, затем - кожа |
Капельная инфекция (возможна контагиозная передача через раны на коже). |
Живой ослабленный (аттенуированный) вирус вносят в царапину на коже; сейчас не применяется. |
|
Свинка (эпидеми-ческий паротит) |
Ксовирус (РНК - содержащий вирус) |
Дыхательные пути, затем генерализован-ная инфекция по всему телу через кровь; особенно поражаются слюнные железы, а у взрослых мужчин также и семенники |
Капельная инфекция (или контагиозная передача через рот с заразной слюной) |
Живой аттенуированный вирус |
|
Корь |
Ксовирус (РНК - содержащий вирус) |
Дыхательные пути (от ротовой полости до бронхов), затем переходит на кожу и кишечник |
Капельная инфекция |
Живой аттенуированный вирус |
|
Коревая краснуха (краснуха) |
Вирус краснухи |
Дыхательные пути, шейные лимфатические узлы, глаза и кожа |
Капельная инфекция |
Живой аттенуированный вирус |
|
Полиомие-лит (детский паралич) |
Вирус полиомиелита (пикорнавирус; РНК - содержащий вирус, известно три штамма) |
Глотка и кишечник, затем кровь; иногда двигательные нейроны спинного мозга, тогда может наступить паралич |
Капельная инфекция или через человеческие испражнения |
Живой аттенуированный вирус вводится перорально, обычно на кусочке сахара |
|
Желтая лихорадка |
Арбовирус, т.е. вирус, переносимый членистоногими (РНК - содержащий вирус) |
Выстилка кровеносных сосудов и печень |
Переносчики - членистоно гие, например клещи, комары |
Живой аттенуированный вирус (очень важно также контролировать численность возможных переносчиков) |
Грипп - не столь уж тяжелая болезнь, однако им болеют ежегодно многие миллионы людей, а периодически возникают пандемии (повальные эпидемии) уносят немало жизней.
В 1886 и 1887 годах грипп зарегистрирован в России; летом 1889 года в Бухаре активность возбудителя повысилась, а позднее в том же году инфекция распространилась и на другие районы России и в Западную Европу. Так началась пандемия гриппа 1889-1890 годов. При второй и третьей эпидемиях число смертельных случаев прогрессивно увеличивалось. Самая зловещая черта этой эпидемии состояла в том, что она, по-видимому, дала толчок какому-то процессу, и теперь грипп с нами не расстается, или, как писал эпидемиолог Гринвуд «нам никак не удается вернуть утраченные позиции».
В 1918 году, после окончания первой мировой войны, разразилась небывалая пандемия гриппа, получившего название «испанки».
За полтора года пандемия охватила все страны, поразив более миллиарда человек. Болезнь протекала исключительно тяжело: около 25 миллионов человек погибло - больше, чем от ранений на всех фронтах первой мировой войны за четыре года.
Никогда позже грипп не вызывал столь высокой смертности: смертность была невысокой во время всех последующих эпидемий и пандемий, хотя процент смертных случаев при гриппе невысок, массовость заболевания приводит к тому, что во время каждой большой эпидемии гриппа от него умирают тысячи больных, особенно стариков и детей. Отмечено, что во время эпидемий резко повышается смертность от болезней лёгких, сердца и сосудов.
Грипп остаётся «королём» эпидемий. Ни одна болезнь не может за короткое время охватить сотни миллионов людей, а гриппом во время пандемии заболевает более миллиарда людей! Так было не только в памятную пандемию 1918 года, но сравнительно недавно - в 1957 году, когда разразилась пандемия «азиатского» гриппа, и в 1968 году, когда появился «гонконгский» грипп. Известно несколько разновидностей вируса гриппа - А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.
Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются - ходят на работу, пользуются городским транспортом, посещают зрелищные места.
Инфекция передается от больного к здоровому человеку воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.
Оспа - одно из древнейших заболеваний. Описание оспы нашли в египетском папирусе Аменофиса Й, составленном за 4000 лет до нашей эры. Оспенные поражения сохранились на коже мумии, захороненной в Египте за 3000 лет до нашей эры. Упоминание оспы, которую китайцы назвали «ядом из материнской груди», содержится в древнейшем китайском источнике - трактате «Чеу-Чеуфа» (1120 год до нашей эры). Первое классическое описание оспы дал арабский врач Разес.
Оспа в прошлом была самым распространённым и самым опасным заболеванием. Её опустошительная сила не уступала силе чумы.
Первое упоминание об оспе в России относится к ЧV веку. В 1610 году инфекция была занесена в Сибирь, где вымерла треть местного населения. Люди бежали в леса тундры и горы выставляли идолов, выжигали на лице шрамы наподобие оспин, что бы обмануть этого злого духа, - всё было напрасно, ничто не могло остановить безжалостного убийцу.
Однако, попытки защититься от оспы столь же древни, как и сама оспа. В основе их лежало наблюдение: люди, однажды переболевшие оспой, больше не болели.
Первая вакцинация против оспы в России была проведена в торжественной обстановке профессором Московского университета Ефремом Мухиным в 1801 году. Ребёнку из воспитательного дома в Москве была привита оспа по дженнеровскому способу и в честь этого присвоена фамилия Вакцинов.
10 апреля 1919 года В.И. Ленин подписал декрет об обязательном оспопрививании, что положило начало массовым прививкам.
Полиомиелит - вирусное заболевание, при котором поражается серое вещество центральной нервной системы. Возбудитель полиомиелита - мелкий вирус, не имеющий внешней оболочки и содержащий РНК. Вирус полиомиелита поражает конечности, то есть изменяет формы костей. Характерные изменения костей были найдены при раскопках в Гренландии на скелетах, относящихся к 500-600 годам до нашей эры. Заболеваемость полиомиелитом отличается рядом характерных особенностей. Полиомиелит распространяется по типу кишечных заболеваний. При высоком уровне санитарии дети не заражаются в раннем возрасте, но инфицируются позже. Полиомиелит, как бы взрослеет, а у взрослых заболевание протекает значительно тяжелее. Эффективным методом борьбы с данным заболеванием является живая полиомиелитная вакцина. Применение поливакцины позволило эффективно гасить вспышки эпидемии инфекции, резко снизилась заболеваемость. Однако, вакцинация живой вакциной - это не ликвидация вируса - убийцы, а только замена его искусственно лабораторным штаммом, безопасным для человека.
Бешенство - инфекционное заболевание, передающееся человеку от больного животного при укусе или контакте со слюной больного животного, чаще всего собаки. Один из основных признаков развивающегося бешенства - водобоязнь, когда у больного затруднено глотание жидкости, развиваются судороги при попытке пить воду. Вирус бешенства содержит РНК, уложенную в нуклеокапсид спиральной симметрии, покрыт оболочкой и при размножении в клетках мозга образует специфические включения, по мнению некоторых исследователей, - «кладбища вирусов», носящие название телец Бабеша-Негри. Заболевание неизлечимо.
Вирусный гепатит - инфекционное заболевание, протекающее с поражением печени, желтушным окрашивании кожи, интоксикацией. Заболевание известно со времен Гиппократа более 2-х тысяч лет назад. В странах СНГ ежегодно от вирусного гепатита гибнет 6 тыс. человек. Болезнь иначе называется - болезнь Боткина. Вирус гепатита обладает высокой устойчивостью. Он может годами сохраняться в высушенном материале при комнатной температуре, выдерживать кипячение в течение 30 минут и кратковременную обработку обычными дезинфицирующими средствами. Вирус длительное время сохраняется в воде и выделениях больного. Размножается он только в организме человека - это облигатный (обязательный) паразит человека. Эпидемический гепатит известен в двух формах: собственно инфекционный гепатит, передающийся от человека к человеку, как кишечная инфекция, и сывороточный гепатит, передающийся людям при проведении переливании крови, уколов и т.д. В 1888 году Боткин пришел к заключению, что «катаральная желтуха», так тогда называли вирусный гепатит, является самостоятельным инфекционным заболеванием. Сывороточный гепатит часто бывает у диабетиков, наркоманов и других людей, делающих себе инъекции, а также татуировки.
Опухолеродные вирусы - За годы, прошедшие с тех пор, как впервые был установлен факт возникновения вирусных сарком у кур, многочисленными исследователями у разных видов позвоночных были обнаружены онкогенные вирусы, принадлежащие к двум группам: ДНК - содержащие и ретровирусы. Среди онкогенных ДНК-вирусов есть паковавирусы, адековирусы и герпесвирусы. Из РНК-содержащих вирусов опухоли вызывают только ретровирусы.
Диапазон опухолей, вызываемых онкогенными вирусами, необычайно широк. Хотя вирус полиомы вызывает главным образом опухоли слюнных желез, уже само его название показывает, что он способен вызывать и многие другие опухоли. Ретровирусы вызывают главным образом лейкозы и саркомы, которые нередко бывают причиной опухолей молочной железы и ряда других органов. Хотя рак - это заболевание целого организма, анологичное по сути явление, называемое трансформацией, наблюдается и в культурах клеток. Такие системы используются в качестве моделей для изучения онкогенных вирусов. Способность трансформировать клетки in vitro лежит в основе методов количественного определения многих онкогенных вирусов. Эти же системы используются и для сравнительного изучения физиологии нормальных и опухолевых клеток.
Вирусы и злокачественные опухоли человека - Одним из аргументов против роли вирусов в возникновении большинства злокачественных опухолей у человека считается тот факт, что в подавляющем большинстве случаев злокачественные опухоли не заразны, тогда как при вирусной этиологии можно ожидать передачи от человека к человеку. Если, однако, допустим, что в возникновении опухолей играет роль активация наследуемых вирусов экзогенными факторами, то следует ожидать, что будут выявлены факты наследственного предрасположения к злокачественным опухолям. Такое предрасположение к развитию некоторых опухолей действительно обнаружено, но этому можно найти различные объяснения. Несмотря на 10 лет интенсивной работы, направляемой специальными правительственными программами, связь между злокачественными опухолями у человека и вирусами все еще остается проблематичной. Представляется в высшей степени странным, что онкогенные вирусы, которые играют столь очевидную роль в возникновении опухолей у самых разных животных, должны почему-то «обходить» человека.
СПИД - Синдром приобретенного иммунного дефицита - это новое инфекционное заболевание, которое специалисты признают как первую в известной истории человечества действительно глобальную эпидемию. Ни чума, ни черная оспа, ни холера не являются прецедентами, так как СПИД решительно не похож ни на одну из этих и других известных болезней человека. Чума уносила десятки тысяч жизней в регионах, где разражалась эпидемия, но никогда не охватывала всю планету разом. Кроме того, некоторые люди, переболев, выживали, приобретая иммунитет и брали на себя труд по уходу за больными и восстановлению пострадавшего хозяйства. СПИД не является редким заболеванием, от которого могут случайно пострадать немногие люди. Ведущие специалисты определяют в настоящее время СПИД как «глобальный кризис здоровья», как первую действительно все земную и беспрецедентную эпидемию инфекционного заболевания, которое до сих пор по прошествии первой декады эпидемии не контролируется медициной и от него умирает каждый заразившейся человек.
СПИД к 1991 году был зарегистрирован во всех странах мира, кроме Албании. В самой развитой стране мира - Соединенных Штатах уже в то время один их каждых 100-200 человек инфицирован, каждые 13 секунд заражался еще один житель США и к концу 1991 года СПИД в этой стране вышел на третье место по смертности, обогнав раковые заболевания. Пока что СПИД вынуждает признать себя болезнью со смертельным исходом в 100% случаев.
Первые заболевшие СПИДом люди выявлены в 1981 году. В течении прошедшей первой декады распространение вирус-возбудителя шло преимущественно среди определенных групп населения, которые называли группами риска. Это наркоманы, проститутки, гомосексуалисты, больные врожденной гемофилии (так как жизнь последних зависит от систематического введения препаратов и донорской крови).
Однако к концу первой декады эпидемии в ВОЗ накопился материал, свидетельствующий о том, что вирус СПИД вышел за пределы названных групп риска. Он вышел в основную популяцию населения.
С 1992 года началась вторая декада пандемии. Ожидают, что она будет существенно тяжелее, чем первая. В Африке, например, в ближайшие 7-10 лет 25% сельскохозяйственных ферм останутся без рабочей силы по причине вымирания от одного только СПИДа.
СПИД - одно из важнейших и трагических проблем, возникших перед человечеством в конце 20 века. Возбудитель СПИДа - вирус иммунодефицита человека (ВИЧ) - относится к ретровирусам. Своим названием ретровирусы обязаны необычному ферменту - обратной транскриптазе (ретровертазе), которая закодирована в их геноме и позволяет синтезировать ДНК на РНК-матрице. Таким образом, ВИЧ способен продуцировать в клетках-хазяевах, таких как «хелперные» Т-4 - лимфоциты человека, ДНК-копии своего генома. Вирусная ДНК включается в геном лимфоцитов, где ее нахождение создает условия для развития хронической инфекции. До сих пор неизвестны даже теоретические подходы к решению такой задачи, как очистка генетического аппарата клеток человека от чужеродной (в частности, вирусной) информации. Без решения этой проблемы не будет полной победы над СПИДом.
Хотя уже ясно, что причиной синдрома приобретенного иммунодефицита (СПИД) и связанный с ним заболеваний является вирус иммунодефицита человека (ВИЧ), происхождение этого вируса остается загадкой. Есть убедительные серологические данные в пользу того, что на западном и восточном побережьях Соединенных Штатов инфекция появилась в середине 70-х годов. При этом случаи ассоциированных со СПИДом заболеваний, известных в центральной Африке, указывают на то, что там инфекция, возможно, появилась еще раньше (50-70 лет). Как бы то ни было, пока не удается удовлетворительно объяснить, откуда взялась эта инфекция. С помощью современных методов культивирования клеток было обнаружено несколько ретровирусов человека и обезьян. Как и другие РНК-содержащие вирусы, они потенциально изменчивы; поэтому у них вполне у них вполне вероятны такие перемены в спектре хозяев и вирулентности, которые могли бы объяснить появление нового патогенна (существует несколько гипотез: 1) воздействие на ранее существующий вирус неблагоприятных факторов экологических факторов; 2) бактериологическое оружие; 3) мутация вируса в следствии радиационного воздействия урановых залежей на предполагаемой родине инфекционного патогенна - Замбии и Заире).
...Подобные документы
Понятие мутации вирусов и мутагенов. Частота мутаций вирусов и механизмы их возникновения. Модификации, вызываемые хозяином. Изменчивость вирусов при пассажах. Изменчивость вирусов, возникающая в процессе пассажей при пониженных и повышенных температурах.
реферат [32,0 K], добавлен 10.11.2010Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.
реферат [299,2 K], добавлен 22.11.2005Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.
презентация [2,4 M], добавлен 23.02.2014Открытие вирусов, их размеры, особенности строения и жизненный цикл. Синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида. Вирусы растений, животных и человека как возбудители различных заболеваний. Эволюционное развитие вирусов.
контрольная работа [433,8 K], добавлен 15.03.2014Свойства вирусов, особенности их строения и классификация. Взаимодействие вируса с клеткой. Процессы, связанные с размножением вируса. Описание основных вирусных заболеваний. Эволюция вирусов на современном этапе. Влияние загрязнения внешней среды.
реферат [466,4 K], добавлен 24.03.2011Гипотезы о зарождении жизни на Земле. Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.
реферат [40,9 K], добавлен 26.12.2013Понятие, история открытия, происхождение, культивация, формы существования и свойства вирусов. Общая характеристика и сравнение вирусов животных, растений и бактерий. Механизмы инфицирующего и летального воздействия ВИЧ на клетки организма человека.
реферат [25,5 K], добавлен 23.01.2010Вирусы как особая форма жизни, их отличительные признаки и характеристики, состав и общие свойства, распространенность и исследование роли в биосфере. Примеры некоторых наиболее распространенных вирусов человека, характер их негативного воздействия.
презентация [2,8 M], добавлен 14.04.2014Вирусы как группа живых существ, не имеющих клеточного строения, их формы, генетические связи с представителями флоры и фауны Земли. Заражение системы клеточного иммунитета человека и сущность СПИДа. Происхождение и размножение вирусов, их вред и польза.
творческая работа [2,7 M], добавлен 24.02.2010Схема строения булавовидного бактериофага. Жизненный цикл вируса на примере ортомиксовирусов, к которым относятся вирусы гриппа А, В и С типов. Описание вирусов иммунодефицита человека (ВИЧ), вызывающего СПИД, табачной мозаики, герпеса 8 типа, гриппа.
презентация [864,8 K], добавлен 07.09.2010История открытия вирусов как нового типа возбудителей болезней русским ученым Д.И. Ивановским. Отличительные особенности и классификация вирусов, их строение: сердцевина, белковая оболочка (капсид), липопротеидная оболочка. Циркуляция фагов в биосфере.
презентация [170,7 K], добавлен 21.12.2012Семейство вирусов, поражающих человека и обезьян. Строение филовируса и его генома. Полные нуклеотидные последовательности геномов вирусов Эбола и Марбург. Передача инфекции, симптомы и течение, инкубационный период и сдерживание распространения.
доклад [969,8 K], добавлен 07.01.2011Эволюция человека, ее отличие от эволюции животных и движущие силы. Гипотезы естественного происхождения человека. Признаки человека и его место в системе животного мира. Основные этапы антропогенеза и характерные черты развития предков человека.
контрольная работа [27,6 K], добавлен 03.09.2010История открытия вирусов, их детальное исследование после изобретения микроскопа. Характеристика вирусов: свойства, формы существования, строение, химический состав и процесс размножения. Гипотеза о происхождении вирусов из "беглой" нуклеиновой кислоты.
презентация [553,5 K], добавлен 18.01.2014Особенности вирусов - возбудителей опасных заболеваний человека, которые передаются при физическом контакте, воздушно-капельным, половым путем. Характеристика вирусологии - науки, изучающей природу вирусов, их строение, размножение, биохимию, генетику.
реферат [21,1 K], добавлен 23.01.2010Вопросы происхождения и сущности жизни издавна стали предметом интереса человека в его стремлении разобраться в окружающем мире. Гипотезы возникновения жизни. Доказательство родства человека и животных. Эволюция человека. Теории появления человека.
реферат [33,0 K], добавлен 05.06.2008Тайна происхождения человека и его расселения на территории Земли. Путь гоминизации многих видов приматов. Теория африканского происхождения человека. Родословная человека, факторы антропогенеза. Основные этапы эволюции человека. Современный тип людей.
презентация [1,3 M], добавлен 21.05.2015Характеристика вирусов как очень маленьких живых организмов, вызывающих болезни у растений и животных. Особенности строения вирусных ДНК, РНК, их внешний вид, размеры компонентов, вызываемые заболевания. Размножение и основные стадии репродукции вирусов.
презентация [1,6 M], добавлен 20.01.2012Основные стадии эволюции человека. Понятие расы человека, ее признаки, классификации, гипотезы происхождения и характеристика. Антропологические типы и географическое распространение рас. Работы биологов Карла Линнея, Жана Ламарка, Чарльза Дарвина.
презентация [1,8 M], добавлен 29.10.2013Представления о происхождении человека в Европейском средневековье. Современные взгляды на проблему происхождения человека. Предположения Ч. Дарвина о происхождении человека. Проблема прародины современного человека. Особенности хода эволюции человека.
реферат [36,8 K], добавлен 26.11.2010