Биохимия и ДНК
Биохимия: понятие и история развития. Биологические функции ДНК. Виды азотистых оснований. Расшифровка структуры и теоретически возможные механизмы удвоения (репликации) ДНК. Соотношение между нуклеотидной последовательностью РНК и аминокислотной.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 05.10.2013 |
Размер файла | 25,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Нижегородский институт менеджмента и бизнеса
Реферат
по дисциплине: Психогенетика
Биохимия и ДНК
Выполнила:
Прохорова Ю.А.
курс 4 22 поток
г. Гороховец, 2009
Содержание
Введение
1. Биохимия: понятие и история развития
2. ДНК: понятие и биологические функции
Заключение
Список использованной литературы
Введение
Психогенетика - область знаний, пограничная между психологией и генетикой, предметом исследования в которой является соотношение и взаимодействие наследственности и среды в формировании межиндивидуальной вариативности психических черт человека.
Хотя эта проблема существует с древности, возникновение психогенетики как науки принято связывать с двумя работами Ф. Гальтона: книгой "Наследственность таланта" (1869) и небольшой статьей "История близнецов как критерий относительной силы природы и воспитания" (1875). Они положили начало двум методам психогенетики: генеалогическому и близнецовому. Дальнейшая история этой науки тесно связана с успехами генетики количественных признаков, психологической диагностики, вариационной статистики. В последние годы психологические исследования все больше опираются на данные психологии развития, психофизиологии, молекулярной генетики. Появление молекулярной генетики стало возможным благодаря открытиям биохимии, поэтому необходимо рассмотрение основных понятий этих наук в контексте изучения психогенетики. Кроме того, в психогенетике используется системный подход, учитывающий знания из всех выше указанных областей.
1. Биохимия: понятие и история развития
Биохимия (биологическая, или физиологическая химия) -- наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности. Термин "биохимия" эпизодически употреблялся с середины XIX века, но в классическом смысле он был предложен и введен в научную среду в 1903 году немецким химиком Карлом Нейбергом.
Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности.
XVIII век ознаменовался гениальными трудами М.В. Ломоносова. На основе открытого им и французским химиком А.Л. Лавуазье закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода.
Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был известный английский химик и врач Уильям Праут. В 1828 году немецкий химик Ф. Вёлер синтезировал мочевину: сначала - из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году - из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма.
Последующими мощными толчками в этом направлении химии явились лабораторные синтезы липидов (в 1854 году -- П. Бертло, Франция) и углеводов из формальдегида (1861 -- А.М. Бутлеров, Россия). Бутлеровым была также разработана теория строения органических соединений (1861).
Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и ХХ веков работал крупнейший немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент - это белок.
Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, Ментен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен.
Открытие ферментов позволило начать грандиозную работу по полному описанию всех процессов метаболизма, не завершенную до сих пор. Одними из первых значительных находок в этой области стали открытия витаминов, гликолиза и цикла трикарбоновых кислот.
В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик описали структуру ДНК -- ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки -- молекулярной биологии.
2. ДНК: понятие и биологические функции
Дезоксирибонуклеиновая кислота (ДНК) -- один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках -- долговременное хранение информации о структуре РНК и белков.
В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения, ДНК -- это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин -- только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии.
Биологические функции
ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов -- наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом, образовавшиеся клетки оказываются генетически идентичны исходной.
Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).
Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (иРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых -- сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков -- в активный центр рибосомы, «ползущей» по иРНК.
Структура генома. Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. В клетках эукариот ДНК располагается, главным образом, в ядре в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом [40]. Генетическая информация генома состоит из генов. Ген -- единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные последовательности, например, промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.
У многих видов только малая часть общей последовательности генома кодирует белки. Так только около 1,5% генома человека состоит из кодирующих белок экзонов, а больше 50% ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК]. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) одна из неразрешённых научных загадок.
Последовательности генома, не кодирующие белок. В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК». Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом. Часто встречающаяся форма некодирующих последовательностей человека -- псевдогены, копии генов, инактивированные в результате мутаций. Эти последовательности нечто вроде молекулярных ископаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов. Другой источник разнообразия белков в организме - это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге. Наконец, некодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например, мяРНКhttp://ru.wikipedia.org/wiki/%D0%94%D0%9D%D0%9A - cite_note-46#cite_note-46. Недавнее исследование транскрипции генома человека показало, что 10% генома даёт начало полиаденилированным РНК, а исследование и генома мыши показало, что 62% его транскрибируется.
Транскрипция и трансляция. Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT CAG TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируется рибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными РНК, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4і комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны -- TAA, TGA, TAG.
Репликация. Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются и затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент строит полинуклеотидную цепь, находя правильное основание через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а только лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов (праймере), синтезируемом праймазой. Так как ДНК-полимеразы могут строить цепочку только в направлении 5' --> 3', для копирования антипараллельных цепей используются разные механизмы.
Заключение
Достижения биохимии широко используются в медицине, сельском хозяйстве (животноводстве, растениеводстве), микробиологии, вирусологии, способствуют становлению новых отраслей науки, например, генетической инженерии и клеточной инженерии, а также промышленности, например, биотехнологии.
В современном обществе высокий уровень развития биохимии - необходимое условие научно-технического прогресса, неотъемлемый элемент общей культуры, материального благосостояния и здоровья человека.
2003 год явил собой важную веху в истории генетики: 50 лет назад, в апреле 1953 г., была опубликована работа, посвященная открытию спирали ДНК - полимера, на котором у всех земных живых существ записаны их признаки: внешний вид, физиология, поведение, иммунитет, плодовитость, рост и развитие, окраска кожного и волосяного покрова.
Сегодня мы знаем, что молекула ДНК является носителем кода, который управляет химизмом всего живого, а двойная спираль молекулы ДНК стала одним из самых известных научных символов.
Список использованной литературы
биохимия репликация нуклеотидный
1. Альбертс Б.; Брей Д.; Льюис Дж. и др. Молекулярная биология клетки в 3-х томах. - М.: Мир, 1994.
2. Бохински Г. Современная биохимия. - М., Мир, 1988.
3. Ленинджер А. Основы биохимии. В 3-х томах. - М., Мир, 1985.
4. Марри Р., Греннер Д. и др. Биохимия человека. В 2-х томах. - М., Мир, 1993.
5. Мецлер Д. Биохимия. В 3-х томах. М., Мир, 1980 г. Страйер. Биохимия. В 3-х томах. - М., Мир, 1985.
6. Психогенетика, Учебник/И.В. Равич-Щербо, Т.М. Марютина, Е.Л. Григоренко. Под ред. И.В. Равич-Щербо -- М.; Аспект Пресс, 2000.
7. Психогенетика: Учебное пособие. Александров А.А. -- СПб Питер, 2007.
8. Уотсон Д. Двойная спираль: Воспоминания об открытии структуры ДНК. - М.: Мир, 1969.
Размещено на Allbest.ru
...Подобные документы
Биохимия – наука о молекулярных основах жизни, ее задачи и направления, разделы. Значение клинической биохимии, виды исследований и основные достижения. Молекулярные основы канцерогенеза и механизмы иммунитета. Специфические особенности белков, их состав.
презентация [4,3 M], добавлен 22.11.2014История открытия нуклеиновых кислот. Основные виды РНК. Методы цитологического распознавания ДНК и РНК. Закономерности количественного содержания азотистых оснований в молекуле ДНК, правила Чаргаффа. Строение молекул РНК. Структура азотистых оснований.
презентация [1,4 M], добавлен 13.01.2011Цель естествознания: гипотезы, анализ вопроса. Математика как отправная точка естествознания. История развития химических концепций. Эволюционная химия. Динамическая биохимия. Генная инженерия: предпосылки ее возникновения, история развития.
контрольная работа [43,8 K], добавлен 28.01.2008Биохимия алкоголизма; социальные, психологические и физиологические факторы его развития. Генетическая предрасположенность к алкоголизму. Гены, отвечающие за метаболизм алкоголя и контролирующие нейропсихические функции. Метаболизм алкоголя в печени.
курсовая работа [1,7 M], добавлен 15.04.2015Ускорение химических реакций с помощью катализаторов. Особенности ферментов (энзимов) как высокоспецифичных белков, выполняющих функции биологических катализаторов. Строение ферментов, их специфичность и классификация. Этапы ферментативного катализа.
презентация [3,4 M], добавлен 20.11.2014Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.
презентация [4,1 M], добавлен 09.12.2013Понятие микроорганизмы. Подразделение на эукариот и прокариот. Деление на облигатные аэробы, факультативные анаэробы, аэротолерантные анаэробы и облигатные анаэробы. Возможные типы питания микроорганизмов. Облигатные фототрофы и облигатные хемотрофы.
реферат [18,2 K], добавлен 16.03.2007Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.
контрольная работа [1,0 M], добавлен 05.09.2011Гиббереллины — обширный класс фитогормонов, регулирующих рост и развитие: история открытия, химическая структура, классификация, содержание в растениях. Биохимия, регуляторные функции и биологическая активность гиббереллинов, их строение, свойства.
презентация [6,4 M], добавлен 20.10.2014Гормональная регуляция обмена веществ. Биохимические механизмы регуляции пищеварения. Характеристика гастроинтестинальных гормонов. Центральные рефлекторные влияния в верхней части пищеварительного тракта. Процесс переваривания белков и поступление пищи.
презентация [282,9 K], добавлен 22.02.2017Понятие и закономерности репликации как процесса образовании идентичных копий ДНК для передачи генетической информации в поколениях клеток и организмов. Схема полуконсервативной репликации, ее основные этапы и принципы, участвующие цепи, факторы влияния.
презентация [596,1 K], добавлен 17.11.2015История развития физико-химической биологии. Химия природных соединений, биохимия, молекулярная биология и фармакология. Марганец - химический элемент, его свойства. Соединения марганца в биологических системах. Марганец в минеральном питании растений.
курсовая работа [144,5 K], добавлен 04.09.2010Возможность развития отдельного признака клетки или организма. Основное свойство гена. Строение и химическая организация гена. Строение и виды азотистых оснований нуклеотидов. Структура молекулы ДНК. Спирализация и суперспирализация молекулы ДНК.
презентация [3,3 M], добавлен 17.06.2013Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.
презентация [35,1 M], добавлен 11.11.2013Химический состав и функции крови: защитная, транспортная, регуляторная, дыхательная, терморегулирующая, постоянство внутренней среды организма и взаимосвязь обменных процессов. Ферменты сыворотки и биохимические показатели метаболизма собак и кошек.
реферат [33,4 K], добавлен 20.01.2011Общая характеристика и роль макроэргических соединений в обмене веществ. Специфика белков мышечной ткани, их строение и функции. Аэробная работоспособность, ее биохимические факторы. Норма сахара в крови, изменение уровня глюкозы в крови при работе.
контрольная работа [1,5 M], добавлен 08.07.2011Химический состав бактериальной клетки: вода, белки, жиры, углеводы и минералы. Основные типы питания. Механизмы обмена веществ, ферменты. Дыхание: аэробы и анаэробы; редокс-потенциал. Рост и размножение, репликация ДНК. Некультивируемые формы бактерий.
презентация [2,4 M], добавлен 03.04.2012Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.
доклад [14,5 K], добавлен 30.04.2010Клетка как элементарная единица строения и жизнедеятельности организмов. Молекулярная масса белков, методы ее определения. Классификация белков по степени сложности. Виды нуклеиновых кислот, их биологическая роль. Витамины в питании человека и животных.
контрольная работа [1,1 M], добавлен 17.10.2015Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.
контрольная работа [28,1 K], добавлен 25.02.2012