Физиология растений

Условия внешней среды и элементы питания для развития растений. Фотосинтез как жизненная функция зеленых растений. Элементы структуры хлоропластов. Составляющие водного потенциала: осмотический, матричный, потенциал давления. Клеточные основы роста.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 12.10.2013
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Российский Государственный Аграрный Заочный Университет

Контрольная работа

"Физиология растений"

Выполнил: Труш Н.Н. Шифр 3773

Москва, 2012.

Содержание

  • 1. Физиология растений
  • Фотосинтез и дыхание
  • Основные элементы структуры хлоропластов. Онтогонез хлоропластов
  • Хлоропласты, их строение и образование
  • Онтогенез пластид
  • Составляющие водного потенциала: осмотический потенциал, матричный, потенциал давления
  • Строение устьиц и механизмы регуляции устьичных движений
  • Запасные и транспортные формы минерального и органического азота, накопление нитратов в тканях
  • Клеточные основы роста. Фазы роста клеток и их характеристики
  • Общие причины адаптивных реакций растений на экологический стресс (включение системы стрессовых, мембранных, структурных белков, перестройка физиологических процессов). Пути повышения устойчивости растений
  • Закаливание растений
  • Список литературы

1. Физиология растений

Для жизни растений необходимы определенные условия внешней среды. Основные из них - солнечный свет, тепло, вода, элементы питания из почвы, диоксид углерода и кислород из воздуха. Они влияют на все физиологические процессы, происходящие в тканях растений.

Фотосинтез и дыхание

Фотосинтез - важнейшая жизненная функция зеленых растений, результат которой - первичный синтез органического вещества. Для осуществления фотосинтеза необходим одновременный приток света, тепла, воды, диоксида углерода из воздуха и питательных веществ из почвы (элементов минерального питания). Сущность фотосинтеза заключается в том, что под действием энергии солнечного луча, поглощаемой хлоропластами листьев и других зеленых органов растений, вода разлагается (фотолиз воды). При этом образуется свободный кислород, который выделяется в окружающую среду, а водород присоединяется к углероду диоксида углерода, восстанавливает его и в результате образуются органические вещества: углеводы, белки, кислоты, витамины, фитогормоны и др. Фотосинтез - сложный многоступенчатый процесс, протекающий с участием многих ферментов. В нем выделяют световую и темновую фазы. Световая фаза осуществляется только на свету.

Одновременно с созданием органического вещества в растениях происходит противоположный процесс - дыхание. Дыхание сопровождается расходом органического вещества с высвобождением заключенной в нем энергии химических связей, необходимой растениям для поглощения из почвы воды вместе с растворенными в ней питательными веществами и подачи их к листьям, для осуществления процессов роста и многих других жизненных функций. При дыхании органы растений поглощают кислород и выделяют диоксид углерода.

В продуктивных посевах листья растений поглощают до 80 - 85% фотосинтетически активных лучей с длиной волн 380 - 710 нм (0,38-0,71 мкм). Эту часть солнечного спектра называют фотосинтетически активной радиацией. Лучи хорошо поглощаются зеленым пигментом хлоропластов - хлорофиллом и являются энергетической основой фотосинтеза. Однако на фотосинтез расходуется не более 1,5 - 3% поглощенной энергии ФАР. Фотосинтез у растений начинается при очень слабом освещении, затем возрастает и у многих сельскохозяйственных культур достигает максимальной величины при освещенности порядка трети - половины полной солнечной радиации (полная - около 100 тыс. лк в июне - июле). В условиях сильного затенения, а также в утренние и вечерние часы интенсивность фотосинтеза и дыхания растений выравниваются (световой компенсационный пункт). Световой компенсационный пункт у теневыносливых растений составляет примерно 1 % от полного света, у светолюбивых - около 3 - 5 % от полного солнечного света. При дальнейшем снижении освещенности дыхание превосходит фотосинтез, органическое вещество не накапливается, а расходуется. Подобное наблюдается в излишне загущенных и засоренных посевах. Количество (интенсивность) и качество (спектральный состав) света, длительность светового периода (длина дня) влияют не только на фотосинтез, но и на темпы роста и развития растений, сокращают или увеличивают время от посева до цветения и уборки урожая. Световые условия в посевах можно регулировать сроками сева, густотой стояния растений, составом травосмесей и другими приемами агротехники.

Для начала фотосинтеза минимальная температура у большинства сельскохозяйственных культур составляет 0 - 5°С, хотя у некоторых растений северных широт фотосинтез идет и при более низких температурах (у сосны, ели при - 15°С). Наиболее благоприятная, или оптимальная, температура, при которой интенсивность фотосинтеза достигает максимального уровня, у разных групп растений колеблется в пределах 20-30°С. Дальнейшее повышение температуры снижает интенсивность фотосинтеза, а при 40 - 45°С он полностью прекращается.

В отличие от фотосинтеза дыхание практически у всех растений проходит при отрицательной температуре. У большинства растений нижний температурный предел дыхания составляет примерно - 10°С. У зимующих частей растений, например почек деревьев, хвои сосны и ели, заметное дыхание наблюдается даже при - 20-30°С. Максимальная интенсивность дыхания у большинства видов растений средних широт наблюдается при 35-40°С, т.е. на 5-10°С выше, чем при фотосинтезе. Максимальные (предельные) температуры для дыхания (45-55°С) определяются способностью белков растений к денатурации.

Основные элементы структуры хлоропластов. Онтогонез хлоропластов

Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т.е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7 нм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это - мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20 нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);

хлорофилл В (желто-зеленый) - 30 % (там же);

хлорофилл С, D и E встречается реже - у других групп водорослей;

Иногда зеленый цвет маскируется другими пигментами хлоропластов (у красных и бурых водорослей) или клеточного сока (у лесного бука). Клетки водорослей содержат одну или несколько различной форм хлоропластов.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Хлоропласты в листьях.

Хлоропласты, их строение и образование

Весь процесс фотосинтеза протекает в зеленых пластидах - хлоропластах. Различают три вида пластид: лейкопласты - бесцветные, хромопласты - оранжевые, хлоропласты - зеленые. Именно в хлоропластах сосредоточен зеленый пигмент хлорофилл.

Незеленые организмы, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий пластид еще нет, их роль выполняют внутрицитоплазматические мембраны (пурпурные бактерии) или особые структуры - хлоросомы, локализованные на мембранах (зеленые бактерии). Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд). Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза.

Рис. 1 Схема гранулярно-сетчатой структуры хлоропластов.

Рис. 2 Схема строения хлоропласта.

В строме хлоропластов имеются нити ДНК, рибосомы, крахмальные зерна. Зеленый пигмент хлорофилл в виде комплекса с белками (пигмент-белковые комплексы) сосредоточен главным образом в ламеллах гран и частично в ламеллах стромы. На поверхностях ламелл имеются округлые частицы, в которых локализован фермент, катализирующий синтез АТФ (АТФ-синтетаза). Этот фермент связан с белком, расположенным в самой мембране (рис.3).

Рис. 3. Поверхность ламелл хлоропластов.

Онтогенез пластид

Пластиды, так же как и митохондрии, не возникают вновь, а размножаются путем деления. В яйцеклетке имеются так называемые инициальные частицы, из которых в дальнейшем и развиваются как митохондрии, так и пластиды. Эта точка зрения подтверждается явлением так называемой цитоплазматической или пластидной (внехромосомной) наследственности. Как известно, у раздельнополых организмов женские и мужские гаметы вносят в зиготу одинаковый вклад в отношении генов. Однако женская гамета содержит во много раз больше цитоплазмы и инициальных частиц. Корренс показал, что окраска листьев у пестролистных растений наследуется исключительно по материнской линии. Так, оказалось, что цветки, развившиеся на зеленых побегах, дают семена, из которых вырастают растения с зелеными листьями. Цветки на ветвях с пестрыми листьями дают семена, из которых вырастают пестролистные растения. Окраска листьев растений, с цветков которых собиралась пыльца для опыления, не имеет значения для потомства. Эти опыты и привели к предположению, что хлоропласты представляют собой генетически автономные образования и их свойства наследуются по материнской линии. Хлоропласты содержат специфические молекулы ДНК и обладают белоксинтезирующей системой. Однако хлоропласты нельзя отнести к полностью автономным образованиям. В самом деле, количество находящейся в пластидах ДНК не может обеспечить все разнообразие пластидных белков. Частично белки хлоропластов образуются под контролем ядра (Ю.С. Насыров). Так же как и для митохондрий, начальной стадией роста хлоропластов являются инициальные частицы.

Эти частицы - глобулярные образования, окруженные двойной мембраной значительно более плотной консистенции по сравнению с окружающей гиалоплазмой. Инициальные частицы увеличиваются в размере и приобретают форму двояко выпуклой линзы. Одновременно их внутренняя мембрана начинает разрастаться, образуя складки. От складок отшнуровываются пузырьки (тилакоиды), которые располагаются параллельно и пронизывают всю строму. На этой стадии развития частицы становятся видимыми в световой микроскоп (0,3-0,5 мкм) - это уже пропластиды.

Для дальнейшего развития структуры пропластид необходим свет. На свету образуется хлорофилл. Молекулы хлорофилла локализуются в мембранах. Именно на свету образуются два типа тилакоидов. Длинные тилакоиды тянутся через все продольное сечение пластид и образуют тилакоиды стромы. Короткие тилакоиды располагаются стопкой друг над другом и образуют тилакоиды гран. Пластиды достигают окончательного размера (рис.4). Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты).

Рис.4 Онтогонез хлоропластов.

Важным свойством хлоропластов является их способность к движению. Хлоропласта передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоропластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической

Основная функция хлоропластов - это процесс фотосинтеза.

Составляющие водного потенциала: осмотический потенциал, матричный, потенциал давления

Осмотический потенциал относится к так называемым коллигативным свойствам раствора, таким, как понижение точки замерзания или повышение точки кипения. Все эти показатели зависят от молярной концентрации.1 моль раствора любого недиссоциированного вещества имеет осмотический потенциал 22,7 бара. Поскольку уменьшение химического потенциала, или активности воды, пропорционально числу частиц, то при растворении диссоциированных веществ абсолютное значение осмотического потенциала будет больше, для чего вводится соответствующий (изотонический) коэффициент. Надо учесть, что осмотический потенциал любого раствора проявляется только в условиях системы раствор - полупроницаемая мембрана - растворитель.

Сказанное дает возможность измерить осмотический потенциал раствора (шосм). Присоединив манометр, можно измерить давление, которое надо приложить к

системе, чтобы предотвратить поступление воды в раствор. Оно будет по абсолютной величине равно, но противоположно по знаку осмотическому потенциалу раствора.

Таким образом, осмотический потенциал равен разности между химическим потенциалом раствора и химическим потенциалом чистой воды и всегда отрицателен. Осмотический потенциал показывает недостаток энергии в растворе по сравнению с чистой водой, вызванный взаимодействием вода - растворенное вещество. Иначе говоря, осмотический потенциал показывает, насколько прибавление растворенного вещества снижает активность воды.

Чтобы понять природу осмотического давления и вывести выражение, описывающее взаимосвязь между осмотическим давлением и активностью воды, обратимся к рис. 1

Осмотическая ячейка. Стрелками указано направление движения воды.

Два отсека камеры разделены полупроницаемой мембраной, пропускающей молекулы растворителя, но не пропускающей молекулы растворенного вещества. В левом открытом отсеке находится чистая вода (Aw = 1), в правом отсеке, который герметически закрыт, - раствор низкомолекулярного вещества, например сахарозы. Молекулы воды будут диффундировать через мембрану из отсека, где содержится чистая вода, в отсек с раствором сахарозы. Диффузия воды будет осуществляться по градиенту ее химического потенциала (химический потенциал чистой воды выше химического потенциала воды в растворе сахарозы). В то же время движение молекул сахарозы в обратном направлении, т.е. из правого отсека в левый, окажется невозможным, так как мембрана не проницаема для растворенного вещества. При диффузии воды через мембрану давление в правом отсеке будет возрастать, и при достижении им некоторого значения система придет в равновесное состояние (, Где индексы "л" и "пр" относятся к левому и правому отсеку соответственно), и поток воды через мембрану прекратится. На основании этого и в соответствии с уравнением можно записать

+ RTlnA + PЛ = + RTlnA + PNp.

Так как после установления равновесия A Остается равным 1, а РЛ, В соответствии с выбранной нами точкой отсчета давления, равным 0, то RTln A, = 0 и PЛ = 0. Тогда в соответствии с равенством

RTlnA + PNp = 0.

Матричный потенциал определяется влиянием на поступление воды высокомолекулярных компонентов клетки: белков цитоплазмы, полисахаридов клеточной стенки, и особенно пектиновых веществ. Матричный потенциал всегда отрицателен. Хорошо известно, что если сухие семена положить в воду, то они будут увеличиваться в размере. Сила набухания у сухих семян достигает - 1000 бар. Большое значение имеет не только для семян, но и для молодых меристематических клеток, в которых отсутствуют вакуоли и которые заполнены цитоплазмой.

В водном обмене растений большое значение имеет взаимодействие воды с биомолекулами. Такое взаимодействие осуществляется как внутри клеток, так и в апопласте и происходит в основном за счет образования водородных связей между молекулами воды и биополимерами. Водородные связи постоянно распадаются и образуются вновь. Связывание части молекул воды функциональ­ными группами биополимеров понижает ее термодинамическую активность. Таким образом, биомолекулы наряду с низкомолекулярными растворенными веществами участвуют в снижении активности воды и вносят вклад в снижение ее химического потенциала. В связи с этим фактически измеряемое в экспериментах осмотическое давление в клетках, равное - , Можно представить в виде суммы р = р S + ф, где р S - осмотическое давление, вызываемое присутствием низкомолекулярных растворенных веществ; ф - матричное дав­ление, являющееся результатом взаимодействия воды с биополимерами. Принимая во внимание наличие двух составляющих осмотического давления, мы можем переписать выражение (5.8) следующим образом:

Ш = Р - р S - ф. (5.10)

Часто в физиологии водного обмена водный потенциал представляют в виде суммы потенциалов:

Ш = шS + шP + ш, (5.11)

Где шP - потенциал давления, равный Р; шS - осмотический потенциал давления, равный - р S; шM - Матричный потенциал, равный - ф.

Направление движения воды из наружной среды в клетку или обратно будет определяться направлением градиента водного потенциала. Условием поступления воды в клетку является более высокий водный потенциал наружной среды, чем водный потенциал клетки. Направление движения воды в системе целого растения также определяется направлением градиента водного потенциала.

растение фотосинтез водный потенциал

Строение устьиц и механизмы регуляции устьичных движений

Схема строения устьиц листа растений (А - вид на эпидерму сверху, Б - поперечный разрез устьичного аппарата).

1 - замыкающие клетки, 2 - устьичная щель, 3 - побочные клетки, 4 - дыхательная полость, 5 - эпидермальные клетки, 6 - кутикула, 7 - клетки мезофилла, заполненные хлоропластами.

Устьице - это отверстие (щель), ограниченная двумя замыкающими клетками. Устьица встречаются у всех наземных органов растения, но больше всего у листьев. Каждая замыкающая клетка устьица имеет хлоропласты, в отличие от клеток эпидермиса. В них осуществляется фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла.

Устьица - одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу стенки более толстые, а внешние - более тонкие. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель.

Для движения устьиц большое значение имеет также радиальное расположение микрофибрилл целлюлозы.

Запасные и транспортные формы минерального и органического азота, накопление нитратов в тканях

В почве азот содержится в виде органических и минеральных соединений. Минеральные соединения представлены аммиачными (аммонийными) и нитратными солями.

Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. Основная масса азота в почве - это органический азот. Он представлен продуктами разложения органики (компостов, навоза, естественных растительных остатков) мочевиной, аминокислотами, гуминовыми кислотами, витаминами, ауксинами. Наиболее легко усваиваются растениями мочевина и аспарагиновая кислота, другие аминокислоты более трудноусвояемы для растений, так же как и гуминовые кислоты, ауксины, витамины, однако они поглощаются растениями с помощью специфических механизмов поглощения, например ионофорных каналов.

Азот транспортируется по растению от клеток корня в основном в форме глутаминовой кислоты, глутамина, аспарагиновой кислоты и аспарагина.

В процессе ассимиляционной денитрификации поглощенные корнем растения нитраты восстанавливаются до аммиака с помощью фермента нитратредуктазы. При этом, если необходимых для синтеза аминокислот углеводов не хватает, нитраты могут накапливаться в клетках растений.

Характерной особенностью растений является способность к синтезу всех входящих в состав белков аминокислот непосредственно за счет неорганических азотистых соединений - аммиака и нитратов. Свободный аммиак ядовит для растений, поэтому растения сразу используют его на синтез аминокислот. Нитраты же могут накапливаться в тканях растений и в довольно больших количествах. Нитраты, прежде, чем вступить во взаимодействие с углеводами, подвергаются восстановлению до нитритов, а затем до аммиака. Промежуточным продуктом при этом является гидроксиламин.

Клеточные основы роста. Фазы роста клеток и их характеристики

1-деление клетки, 2-растяжение клетки, 3-дифференциация клетки.

В основе роста многоклеточных организмов лежит увеличение числа и размеров клеток, сопровождаемое их дифференциацией, т.е. возникновением и накоплением различий между клетками, образовавшимися в результате деления. Еще со времени Ю. Сакса рост клеток принято делить на три фазы: эмбриональную, растяжения, дифференцировки. Такое разделение носит условный характер. За последнее время внесены изменения в само понимание основных особенностей, характеризующих эти фазы роста. Если прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фазу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления и накопления внутренних физиологических различий между ними, проходит на протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно. Эмбриональная фаза. Клетка возникает в результате деления другой эмбриональной клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы, достигает размеров материнской клетки и снова делится. Таким образом, эмбриональная фаза делится на два периода: период между делениями - интерфаза продолжительностью 15-20 ч и собственно деление клетки - 2-3 ч. Время это колеблется в зависимости от вида растений и условий (температуры).

Несколько типов роста клеточной оболочки:

1) вновь образовавшиеся микрофибриллы целлюлозы внедряются в промежутки между сетью старых микрофибрилл (интусессцепция);

2) сетка вновь образовавшихся микрофибрилл целлюлозы, между которыми образуются новые связи, накладывается на старую.

При этом происходит и переориентировка старых молекул: они становятся в более вертикальное положение. Общая толщина стенки при этом не изменяется, оставаясь около 0,3-0,5 мкм. Этот особенный тип аппозиционного роста получил название многосетчатого роста. Таким образом, рост растяжением включает следующие этапы:

1) разрыхление связей между компонентами клеточной оболочки и увеличение ее пла­стичности;

2) поступление воды, которая давит на стенки, вызывает растяжение и увеличивает объем клетки;

3) закрепление увеличения объема путем многосетчатого роста оболочки.

Фаза дифференциации.

На этой фазе процесс дифференцировки уже проявляется в определенных структурных признаках, т.е. меняется форма, внутренняя и внешняя структура клетки. Процесс функциональной дифференциации клеток, или накопление физиологических различий между ними, происходит на всех фазах роста. Определенные различия имеются уже между появившимися в период деления дочерними клетками, из которых в дальнейшем будут образовываться различные ткани. Это проявляется в их химическом составе, морфологических особенностях. Значительно варьируют число и структура митохондрий, и особенно пластид, обилие и локализация эндоплазматической сети. Очень видоизменяются клетки проводящей системы. При дифференциации члеников ситовидных трубок большинство органелл разрушается. В сосудах ксилемы почти полностью исчезает цитоплазма. Происходит образование вторичной клеточной оболочки. Этот процесс сопровождается наложением новых слоев микрофибрилл целлюлозы на старые. При этом ориентация фибрилл целлюлозы в каж­дом новом слое другая. Клеточная оболочка утолщается и теряет способность к росту.

Общие причины адаптивных реакций растений на экологический стресс (включение системы стрессовых, мембранных, структурных белков, перестройка физиологических процессов). Пути повышения устойчивости растений

Территория России включает различные климатические зоны. Значительная их часть приходится на районы неустойчивого земледелия, для которых характерны недостаток или избыток осадков, низкие зимние или высокие летние температуры, засоленность или заболоченность, закисленность почв и др. В этих условиях урожайность сельскохозяйственных культур во многом определяется их устойчивостью к неблагоприятным факторам среды конкретного сельскохозяйственного региона.

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивости, наследственности, отбора). На протяжении филогенеза каждого вида растений в процессе эволюции выработались определенные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

В природе в одном географическом регионе каждый вид растений занимает экологическую нишу, соответствующую его биологическим особенностям: влаголюбивые - ближе к водоемам, теневыносливые - под пологом леса и т.д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельскохозяйственных культур, испытывая действие тех или иных неблагоприятных факторов, проявляют устойчивость к ним как результат приспособления к условиям существования, сложившимся исторически, что отмечал еще К.А. Тимирязев. Способность к эффективной защите от действия неблагоприятных абиотических и биотических факторов среды, устойчивость к ним возделы­ваемых видов и сортов - обязательные свойства районированных в данном регионе сельскохозяйственных культур.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) - благодаря механизмам генетической изменчивости, наследственности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

Стресс - общая неспецифическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений

1. физические - недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия.

2. химические - соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.)

3. биологические - поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приводят к подавлению функции запасания энергии этими органоидами, что способствует нарушению энергетического обмена растения в целом. Основной причиной повреждающего действия низкой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в состояние геля, а также общие изменения процессов обмена веществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-ет) осевой градиент потенциалов покоя (ПП), активный транспорт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изменения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Закаливание растений

Морозоустойчивость - не постоянное свойство растений. Она зависит от физиологическо­го состояния растений и условий внешней среды. Растения, выращенные при относительно низких положительных температурах, более устойчивы, чем выращенные при относительно вы­соких осенних температурах. Свойство морозоустойчивости формируется в процессе онтогенеза растения под влиянием определенных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

Засухоустойчивости. - Разработаны методы предпосевного закаливания к засухе. Наклюнувшиеся семена, подвергая их подсушиванию от одного до трех раз. В результате повышается засухоустойчивость растений и увеличивается их урожайность в засушливых условиях (пшеница и другие культуры). Закаленные растения приобретают анатомо-морфологическую структуру, свойственную засухоустойчивым растениям, имеют более развитую корневую систему.

Список литературы

1. Веретенников, А.В. Физиология растений; Учебник. - /А.В. Веретенников. - М.: Академический Проект. 2006.

2. Физиология растений: Учебник для студентов вузов. / Н.Д. Алехина, Ю.В. Балнокин, В.Ф. Гавриленко и др.; Под ред. И.П. Ермакова. - М.: Издательский центр "Академия", 2005.

3. Полевой, В.В. Физиология растений / В.В. Полевой. - М.: Высшая школа, 2006.

4. Беликов, П.С. Физиология растений: Учебное пособие. / П.С. Беликов, Г.А. Дмитриева. - М.: Изд-во РУДН, 2002.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие жизненной формы в отношении растений, роль внешней среды в ее становлении. Габитус групп растений, возникающий в результате роста и развития в определенных условиях. Отличительные черты дерева, кустарника, цветковых и травянистых растений.

    реферат [18,9 K], добавлен 07.02.2010

  • Закономерности жизнедеятельности растительных организмов. Рациональное размещение растений в почвенно-климатических условиях. Механизмы онкопрофилактического действия фитостеринов. Физические и химические компоненты физиологии растений, фотосинтез.

    реферат [42,6 K], добавлен 15.12.2009

  • Понятие питания растений. Важнейшие элементы, используемые в питательных растворах, принцип их действия на растение. Фотосинтез как основной процесс, приводящий к образованию органических веществ. Корневое питание, роль удобрений в развитии растений.

    реферат [30,9 K], добавлен 05.06.2010

  • История развития исследований в области физиологии растений. Принципы происхождения и развития хлоропласта из пропластиды в клетке растений. Основные функции, строение, фотосинтез и генетический аппарат хлоропластов. Характеристика продукции фотосинтеза.

    реферат [23,9 K], добавлен 11.12.2008

  • Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.

    курсовая работа [90,0 K], добавлен 23.04.2015

  • Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат [998,2 K], добавлен 07.05.2015

  • Факторы среды, влияющие на рост и развитие растений. Основные этапы органогенеза. Физиологическая сущность покоя растений, методы повышения зимостойкости. Способы уменьшения предуборочного опадания плодов. Физиология накопления белков в зерне злаковых.

    контрольная работа [97,2 K], добавлен 05.09.2011

  • Физиологически активные вещества растительной клетки. Элементы, получаемые растением из почвы через корневую систему, их роль в жизни растений. Морфологическое строение побега, расположение листьев. Элементы древесины и луба голосеменных растений.

    контрольная работа [665,7 K], добавлен 13.03.2019

  • Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа [194,8 K], добавлен 17.04.2019

  • Физиологическая роль основных клеточных органоидов. Макроэргические соединения, их роль в метаболизме клетки. Условия, необходимые растению для нормального водообмена. Источники углерода для растений. Лист как орган фотосинтеза. Роль ферментов оксидазы.

    контрольная работа [179,1 K], добавлен 12.07.2010

  • Общая характеристика клеточного строения и его функции разных групп растений. Клеточные оболочки водорослей, грибов, высших споровых растений. Особенность одноклеточных форм. Молекулы белка и липидов. Форма, размеры и местоположение ядра в клетке.

    курсовая работа [1,8 M], добавлен 27.05.2013

  • Общая характеристика водного обмена растительного организма. Структура и свойства воды, ее функции в метаболизме растений. Значение транспирации и влияние внешних условий на степень открытости устьиц. Физические основы устойчивости растений к засухе.

    курсовая работа [673,5 K], добавлен 12.09.2011

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Фотосинтез как процесс синтеза органических веществ за счет энергии света. Специальные структуры и комплексы химических веществ растений, которые позволяют улавливать энергию солнечного света. Масштабы фотосинтеза. Роль хлоропластов в фотосинтезе.

    презентация [627,3 K], добавлен 18.04.2012

  • Характеристика жизненных форм растений. Система жизненных форм растений Теофраста, Гумбольдта, Раункиера, И.Г. Серебрякова. Характерные представители жизненных форм растений Еврейской автономной области, факторы, влияющие на произрастание растительности.

    курсовая работа [1,8 M], добавлен 07.05.2012

  • Биология - наука о живой природе. Cпоры растений, споровиков и грибов. Хлорофилл - зелёный пигмент, обусловливающий окраску хлоропластов растений в зелёный цвет. Сапрофиты - растения, питающиеся мертвыми и гниющими тканями растений или животных.

    презентация [4,3 M], добавлен 25.04.2012

  • Теория водного питания растений Яна Баптиста Ван-Гельмонта, ее сильные и слабые стороны, обоснование. Этапы исследования механизма выделения растениями кислорода с поглощением углекислого газа. Опыты Тимирязева с хлорофиллом, связь с солнечным светом.

    контрольная работа [48,2 K], добавлен 16.01.2010

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Особенности изучения проблемы интродукции, акклиматизации, вопросов устойчивости и адаптации растений в городских зеленых насаждениях. Обзор свойств декоративных, диких растений семейства цветковых. Морфогенез микроспор в культуре пыльников подсолнечника.

    реферат [22,2 K], добавлен 12.04.2010

  • Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа [47,1 K], добавлен 15.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.