Краткие сведения о некоторых физических явлениях

Принцип суперпозиции сил в механике. Реактивное движение как пример закона сохранения импульса. Внутренняя энергия термодинамической системы. Характеристики гравитационного поля. Акустические волны. Свойства бетта-излучения. Функции белков в организме.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 12.10.2013
Размер файла 56,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Роль науки в реформе высшего образования

В основе современного образовательного процесса лежит научная картина мира, и сфера образования опирается на научно апробированные и рекомендуемые методики.

Наука предполагает направленное воздействие на образовательный процесс и может санкционировать изменение структуры образования, т.к. распространяется на все его компоненты: цели, средства, результаты, принципы, формы и методы.

Образовательный процесс выступает в качестве «исходной территории», на которой происходит встреча индивида и науки. Образовательные модели опираются на научные достижения и предполагают наличие методик, программ, планов, методологических и дидактических материалов.

Изменения в науке и технике диктуют необходимость изменений в образовательной системе и внедрение новых образовательных технологий.

Влияние науки на образовательный процесс ведет к выделению следующих уровней:

- операционального (освоение логики учебного предмета); - межоперационального (совокупность дисциплин данного учебного курса); - тактического (отвечает за формирование содержания знания на основании пройденных дисциплин); - стратегического (ставит задачи интегрирования содержательного потенциала знания во внутреннюю смысловую структуру личности); - глобального (свидетельствует о сущностном ядре личности как результата интегративного и направленного образовательного процесса).

Актуальность темы исследования обусловлена стремительным темпом современных реформ в сфере образования и науки, проводимых на фоне глобализации экономики и готовности России войти в единое образовательное пространство. Это предполагает поиск адекватной определенному историческому моменту модели реформ образования и науки, учитывающих не только мировые процессы, но и интересы устойчивого развития России в ближайшей и долгосрочной перспективе. Проекты реформ, которые начали осуществляться, вызывают серьезную критику, как со стороны научной общественности, так и с позиций каждого заинтересованного в решении проблем образования гражданина. Перед законодателем возникают новые задачи, для решения которых необходимы «стартовые» разработки с позиций сегодняшнего дня.

В условиях глобализации, информационного и технологического бума образование и наука во многом определяют личное благополучие граждан и общества в целом, дальнейшее инновационное развитие страны, становление «экономики знаний», повышение научного потенциала нации в условиях сильного демографического спада и экономического кризиса, а, следовательно, повышение конкурентоспособности государства в мире. Концепция социального развития России на ближайшее будущее - движение к знаниям и преобразованиям..

Таким образом, имеются все основания утверждать, что в целом в настоящее время образованию и науке отводится значительное место. Ярким и позитивным примером здесь может служить приоритетный национальный проект «Образование», Национальная доктрина образования в Российской Федерации до 2025 г., вступление России в единое образовательное пространство и участие в болонском процессе.

2. Сила. Принцип суперпозиции сил

Сила в механике -- это величина, являющаяся мерой взаимодействия тел.

При механическом движении проявляются следующие виды сил: силы упругости, силы трения и гравитационные силы (всемирного тяготения). Действие одного тела на другое приводит как к изменению скорости всего тела как целого, так и к изменению скорости отдельных его частей.

Мерой этого действия является сила. Часто не указывают, какое тело и как действовало на данное тело. Просто говорят, что на тело действует сила, или к нему приложена сила.

Действие одного тела на другое может производиться как при непосредственном контакте (давление, трение), так и посредством создаваемых телами полей (электромагнитное поле, гравитационное поле).

Проявлением действия силы является изменение ускорения тела.

Сила, как и скорость, -- векторная величина, т. е. имеет не только численное значение, но и направление. Сила обычно обозначается буквой F , модуль силы -- буквой F (без стрелки). Прямая, вдоль которой направлена сила, называется линией действия силы. Когда говорят о силе, важно указать, к какой точке тела приложена действующая на него сила. Если речь идет об абсолютно твердом (недеформируемом) теле, то можно считать, что сила приложена к любой точке на линии ее действия.

Итак, результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Единицей силы в СИ является ньютон (Н). Один ньютон (1 Н) -- это сила, которая за 1 с изменяет скорость тела массой 1 кг на 1 м/с. Эта единица названа в честь великого английского ученого Исаака Ньютона (1642-1727). На практике применяются также килоньютоны и милли-ньютоны:

1 кН = 1000 Н, 1 мН = 0,001 Н.

Сила как векторная величина характеризуется модулем, направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами. В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы).

Одновременное механическое действие на данное тело двух других тел, приложенных к одной точке, всегда может быть заменено действием одного тела так, что сила F, описывающая результирующее воздействие, определяется векторной суммой сил F1 и F2, действующих со стороны каждого тела. Это называется принципом суперпозиции сил.

F - равнодействующая сил F1 и F2

Также используется понятие линия действия силы, обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Если, силы, действующие на данное тело не изменяются в присутствии третьего, то в этом случае составляющие сил определяются независимо от пристутвия какого-либо тела, а их суммарное воздействие равно сумме воздействий каждого тела системы на данное.

Принцип суперпозиций справедлив для сил различной природы. С учетом принципа суперпозиции возможно сложение гравитационной и электромагнитной сил.

3. Реактивное движение как пример закона сохранения импульса

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 1). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Рис. 1.

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Закомн сохранемния иммпульса (Закомн сохранемния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, -- однородность пространства.

4. Внутренняя энергия термодинамической системы и способы ее изменения

Термодинамика -- теория тепловых явлений, в которой не учитывается атомно-молекулярное строение тел. Изолированная термодинамическая система - совокупность физических тел, изолированных от взаимодействия с другими телами. Термодинамический процесс - любое изменение, происходящее в термодинамической системе.

Тело как система из составляющих его частиц обладает внутренней энергией -- суммой потенциальной энергии взаимодействия частиц тела, и кинетической энергии их беспорядочного теплового движения. Кинетическая энергия беспорядочного движения частиц пропорциональна температуре Т, потенциальная энергия взаимодействия зависит от расстояний между частицами, т. е. от объема V тела.

Закон сохранения и превращения энергии: при любых процессах в изолированной термодинамической системе внутренняя энергия остается неизменной: U = const или

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. При механическом взаимодействии тел мерой энергии, переданной от одного тела к другому, является работа А. При осуществлении теплопередачи от одного тела к другому мерой переданной энергии является количество теплоты Q. Совершение механической работы называется макроскопическим способом передачи энергии, а теплопередача -- микроскопическим.

5. Гравитационное поле и его характеристики

Гравитационное поле - область пространства, в которой оси вращения бионов направлены к центру масс объекта, а сами бионы синхронно вращаются с частотами, зависящими от удалённости от объекта.

Гравитация, то есть свойство материальных объектов притягивать другие тела, основаное на строении самих этих материальных объектов, и, следовательно, на том, какую структуру имеет физический вакуум в их окрестностях. Гравитация является следствием взаимодействия полей, создаваемых физическими объектами

Главной характеристикой гравитационного поля является закон всемирного тяготения, который характеризуется массой двух тел обратно пропорционаьных расстоянию. Чем больше масса тела, тем больше тягогтение. Чем больше расстояние между телами, тем меньше сила тяготения.

6. Акустические волны. Звук

Ощущение звука возникает благодаря механическим колебаниям барабанной перепонки уха. Эти колебания возбуждаются акустической волной, распространяющейся от источника звука к уху. Любой колеблющийся предмет может возбуждать акустическую волну, но ухо способно воспринимать лишь колебания в частотном диапазоне 20 Гц - 20кГц. Звуковые волны, лежащие выше этого частотного диапазона (ультразвук) и ниже него (инфразвук) могут регистрироваться лишь специальными приборами. Рассмотрим процесс генерации звука громкоговорителем. Переменный ток, протекая по катушке громкоговорителя, возбуждает колебания диффузора. В результате, воздух, расположенный вблизи диффузора, оказывается попеременно то сжатым, то разреженным. Области с избыточным давлением распространяются в пространстве в виде акустических волн. Когда такая волна достигает уха, она возбуждает колебания барабанной перепонки и мы слышим звук. Так как колебания молекул воздуха происходят в направлении распространения волны, акустическая волна в воздухе представляет собой типичный пример продольной волны.

Если размер источника звука много меньше длины волны, то будет возбуждаться сферическая волна, а источник звука может быть рассмотрен как точечный источник. В ином случае, когда размер источника много больше, чем длина волны, будет возбуждаться плоская звуковая волна. Скорость акустической волны зависит от свойств среды, в которой она распространяется.

Звук - это колебания, т.е. периодическое механическое возмущение в упругих средах - газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Область физики, рассматривающая вопросы возникновения, распространения приема и обработки звуковых волн, называется акустикой. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука - лишь одна сторона акустики.

7. в-излучение и его свойства

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в?), положительно заряженные -- позитронами (в+).

Бета-лучи следует отличать от вторичных и третичных электронов, образующихся в результате ионизации воздуха -- так называемые дельта-лучи и эпсилон-лучи.

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

8. Валентность

Валентность - это свойства атомов одного химического элемента присоединять определённое число атомов другого. Это понятие было введено в химию в 1853 г. английским химиком-органиком Франклендом для обоснования количественных отнощений атомов элементов в химических соединениях. Развитие учения о валентности в большой степени связано с открытием Д.И. Менделеевым Периодического закона. Им была установлена связь между валентностью элемента и его положением в периодической системе, введено понятие о переменной валентности. Учение о строении атомов и молекул способствовало разработке электронной теории валентности. Для расчётов, для составления формул веществ неоходимо знать количественные соотношения атомов различных элементов, в которых они соединяются. Валентность показывает, со сколькими атомами одновалентного элемента соединяется атом данного элемента. Одновалентными считают все элементы, атомы которых в двухэлементных соединениях всегда связаны с одним атомом другого элемента.Примером одновалентного элемента является водород. Поэтому считается, что валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например:в HCl хлор-одновалентен, в H2O кислород-двухвалентен,в NH3 азот-трёхвалентен. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается всегда двухвалентным. Постоянная валентность: I-H, Na, Li, K, Rb, Cs II-O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd III-B, Al, Ga, In.

Используя валентности можно составить формулу соединения. Химическая формула-это условная запись состава вещества посредством химических знаков и индексов.

Например: H2O-формула воды, где Н и О-химические знаки элементов, 2-индекс, который показывает число атомов данного элемента, входящих в состав молекулы воды.

При названии веществ с переменной валентностью обязательно указывается его валентность, которая ставится в скобки. Например, Р2О5- оксид фосфора (V).

9. Функции белков в живом организме

механика гравитационный белок термодинамический

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы. Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.

Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин. Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы. Регуляторную функцию выполняют белки-гормоны. Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость.

Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000. Одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление.

Вазопрессин - это октапептид циклического строения с боковой цепью: Регуляторную функцию выполняют и белки, содержащиеся в щитовидной железе - тиреоглобулины, молекулярная масса которых около 600000. Эти белки содержат в своем составе йод. При недоразвитии железы нарушается обмен веществ. Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией. В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть рецепторы звуковые, вкусовые, световые и др. рецепторы. Следует упомянуть и о существовании белковых веществ, тормозящих действие ферментов. Такие белки обладают ингибиторными функциями. При взаимодействии с этими белками фермент образует комплекс и теряет свою активность полностью или частично. Многие белки - ингибиторы ферментов - выделены в чистом виде и хорошо изучены. Их молекулярные массы колеблются вшироких пределах; часто они относятся к сложным белкам - гликопротеидам, вторым компонентом которых является углевод. Если белки классифицировать только по их функциям, то такую систематизацию нельзя было бы считать завершенной, так как новые исследования дают много фактов, позволяющих выделять новые группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за жизненно важные процессы: сна, памяти, боли, чувства страха, тревоги).

Размещено на Allbest.ru

...

Подобные документы

  • Принцип суперпозиции волн, понятие продольных и поперечных волн. Законы сохранения массы и электрического заряда, их проявления в жизни. Гипотезы квантовой механики. Первое начало термодинамики и внутренняя энергия системы. Типология живых организмов.

    контрольная работа [121,1 K], добавлен 07.05.2011

  • Трактовка понятия "живая сила" в научных работах Декарта, Лейбница, Ньютона, Юнга. Ознакомление с содержанием закона сохранения и превращения энергии в механике. Рассмотрение теплородной и кинетической теорий процессов превращения работы в теплоту.

    реферат [35,5 K], добавлен 30.07.2010

  • История открытия закона сохранения и превращения энергии. Фундаментальные законы природы. Закон сохранения и превращения энергии. Количественное соотношение теплоты и механической работы, механический эквивалент тепла. Смысл закона сохранения энергии.

    контрольная работа [44,0 K], добавлен 03.10.2011

  • Регистрация собственных физических полей человека: перенос с их помощью информации о работе внутренних органов. Акустические, электрические и магнитные поля. Магнитокардиография: ферромагнитные частицы в организме. Тепловидение в биологии и медицине.

    курсовая работа [40,7 K], добавлен 22.09.2009

  • Характеристика излучения крайне высоких частот, его особенности и свойства. Общее описание d-элементов (железо, цинк, медь и т.д.): атомный радиус, активность, значимость в организме. Процессы обмена d-элементов в организме, влияние излучения на них.

    курсовая работа [389,5 K], добавлен 18.07.2014

  • Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.

    реферат [227,7 K], добавлен 17.11.2014

  • Белки как источники питания, их основные функции. Аминокислоты, участвующие в создании белков. Строение полипептидной цепи. Превращения белков в организме. Полноценные и неполноценные белки. Структура белка, химические свойства, качественные реакции.

    презентация [896,5 K], добавлен 04.07.2015

  • Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа [765,3 K], добавлен 08.11.2009

  • Органические соединения в организме человека. Строение, функции и классификация белков. Нуклеиновые кислоты (полинуклеотиды), особенности строений и свойства РНК н ДНК. Углеводы в природе и организме человека. Липиды - жиры и жироподобные вещества.

    реферат [403,4 K], добавлен 06.09.2009

  • Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация [564,0 K], добавлен 07.04.2014

  • Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация [322,6 K], добавлен 11.04.2013

  • Организм как биологическая система, его основные структурные единицы. Источники энергии жизнедеятельности, строение белков и их роль в организме. Нуклеиновые кислоты и сущность синтеза белков. Взаимоотношения организма со средой и механизмы теплоотдачи.

    реферат [403,3 K], добавлен 20.09.2009

  • Детерминизм как учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Общая характеристика законов сохранения, история открытия закона сохранения вещества. Эволюция закона сохранения энергии.

    реферат [23,5 K], добавлен 29.11.2009

  • Физические, биологические и химические свойства белков. Синтез и анализ белков. Определение первичной, вторичной, третичной и четвертичной структуры белков. Денатурация, выделение и очистка белков. Использование белков в промышленности и медицине.

    реферат [296,5 K], добавлен 10.06.2015

  • Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация [5,0 M], добавлен 14.04.2014

  • Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация [23,8 M], добавлен 28.11.2013

  • Физические поля и излучения функционирующего организма человека. Механизм взаимодействия излучений человека и окружающей среды и возможности медицинской диагностики и лечения. Физические поля биологических объектов. Метод газоразрядной визуализации.

    доклад [67,1 K], добавлен 15.12.2009

  • Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат [4,0 M], добавлен 15.05.2007

  • Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.

    презентация [368,2 K], добавлен 14.12.2014

  • Процесс синтеза белков и их роль в жизнедеятельности живых организмов. Функции и химические свойства аминокислот. Причины их нехватки в организме человека. Виды продуктов, в которых содержатся незаменимые кислоты. Аминокислоты, синтезируемые в печени.

    презентация [911,0 K], добавлен 23.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.