Ходьба в норме
Очерки по физиологии активности. Функциональный анализ циклического локомоторного действия. Ходьба с позиции физического маятника. Ее основные задачи, общие параметры, биомеханическая структура. Кинематический анализ движений сегментов человеческого тела.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | русский |
Дата добавления | 25.10.2013 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ходьба в норме
Дубровский В.И.,
Федорова В.Н.
Ходьба - автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных мышц туловища и конечностей.
Отталкиваясь от почвы, нога приводит тело в движение - вперед и несколько вверх и вновь совершает размах в воздухе.
Последовательность положения конечности взрослого человека при ходьбе показана на рис. При ходьбе тело поочередно опирается то на правую, то на левую ногу.
Акт ходьбы отличается чрезвычайно точной повторяемостью отдельных его компонентов, так что каждый из них представляет точную копию в предыдущем шаге.
В акте ходьбы деятельное участие принимают также верхние конечности человека: при выносе вперед правой ноги правая рука движется назад, а левая - выносится вперед. Руки и ноги человека при ходьбе совершают движения в противоположных направлениях.
Движение отдельных звеньев свободной ноги (бедра, голени и стопы) определяется не только сокращением мышц, но и инерцией. Чем ближе звено к туловищу, тем меньше его инерция и тем раньше оно может последовать за туловищем. Так, бедро свободной ноги перемещается вперед раньше всего, поскольку оно ближе всего к тазу. Голень, будучи дальше от таза, отстает, что ведет к сгибанию ноги в колене. Точно так же отставание стопы от голени вызывает сгибание в голеностопном суставе.
Последовательное вовлечение мышц в работу и точная координация их сокращений при ходьбе обеспечиваются у человека ЦНС и главным образом корой больших полушарий головного мозга. С точки зрения нервного механизма, ходьба представляет собой автоматизированный цепной рефлекс, в котором афферентная импульсация, сопровождающая каждый предыдущий элемент движения, служит сигналом для начала следующего.
Функциональный анализ ходьбы
Ходьба - это сложное циклическое локомоторное действие, одним из основных элементов которого является шаг (рис.).
При ходьбе, как и при других видах локомоторного движения, перемещение тела в пространстве происходит благодаря взаимодействию внутренних (сокращение мышц) и внешних (масса тела, сопротивление опорной поверхности и др.) сил. В каждом шаге, совершаемом правой и левой ногой, различают период опоры и период маха. Наиболее характерной особенностью всех видов ходьбы по сравнению с бегом и прыжками является постоянное опорное положение одной ноги (период одиночной опоры) или двух ног (период двойной опоры). Соотношение этих периодов обычно равно 4:1. Как период опоры, так и период маха может быть разделен на две основные фазы, а именно: период опоры - на фазы переднего толчка и заднего толчка, разделенные моментом вертикали; маха - фазы заднего шага и переднего шага, между которыми также находится момент вертикали.
Рис. Ходьба в норме. Ширина и длина шага (а). Отклонение центра тяжести (ЦТ) во время ходьбы по вертикальной оси на 5 см (б). Отклонение ЦТ в сторону на 2,5 см (в) (по S. Hoppenfeld, 1983).
Рис. Степень сокращения мышц туловища и нижней конечности в течение двойного шага при обычной ходьбе (по данным электрокимографического анализа, произведенного B.C. Гурфинкелем в ЦНИИТе протезирования и протезостроения). Черным цветом показано максимальное сокращение, двойным штрихом - сильное сокращение, одинарным - среднее сокращение, точками - слабое сокращение, белым показано расслабление мышцы: 1 - прямая мышца живота; 2 - прямая мышца бедра; 3 - передняя большеберцовая мышца; 4 - длинная малоберцовая мышца; 5 - икроножная мышца; 6 - полусухожильная мышца; 7 - двуглавая мышца бедра; S - большая яго-дичная мышца; 9 - мышца, натягивающая широкую фасцию; 10 - средняя ягодичная мышца; 11 - крестовоостистая мышца.
Фаза переднего толчка. После заключительной фазы переднего шага начинается постановка стопы на почву при почти выпрямленном, но не закрепленном коленном суставе и согнутом, слегка отведенном и супинированном бедре. Стопа становится на опорную поверхность пяткой, после чего она совершает двойной перекат: с пятки на носок и снаружи внутрь. Этот перекат происходит под влиянием силы тяжести тела и последовательного включения в работу короткой малоберцовой мышцы, поднимающей наружу край стопы и далее мышц - длинной малоберцовой, задней большеберцовой, длинного сгибателя большого пальца стопы и длинного сгибателя пальцев, поддерживающих продольную дугу (свод) стопы. Такое движение стопы имеет двоякое значение: увеличение длины шага и растягивание мышц заднего отдела голени, участвующих в отталкивании тела. В начальном периоде опоры приобретает большое значение рессорная функция, выполняемая суставами стопы и незакрепленным суставом колена. Далее под действием тяжести и инерции тела нога несколько сгибается в коленном суставе и разгибается в голеностопном суставе при уступающей работе четырехглавой мышцы и мышц заднего отдела голени, что еще более повышает буферные свойства конечности.
Момент вертикали. К моменту вертикали нога выпрямляется и приводится за счет сокращения большей части мышц бедра и отчасти под влиянием силы тяжести. В это время стопа опирается на грунт всей подошвой, причем большинство ее мышц своим сокращением способствует сохранению сводов и участвует в функции удержания равновесия тела.
Фаза заднего толчка тела (отталкивание от опорной поверхности). В связи с этим контактирующая с грунтом конечность удлиняется за счет разгибания во всех ее суставах. В тазобедренном суставе вновь происходит некоторое отведение, но в отличие от переднего толчка, сопровождаемое небольшим поворотом бедра (внутрь). Ведущая роль в этой фазе принадлежит четырехглавой, полу сухожильной, полуперепончатой, длинной головке двуглавой и главным образом ягодичным мышцам.
Фаза заднего шага. В начале этой фазы (непосредственно после окончания заднего толчка) маховая нога находится в положении разгибания, некоторого отведения и поворота внутрь, что приводит к повороту таза вместе с туловищем в противоположную сторону. Из этого положения нога, производящая шаг, начинает совершать сгибание в тазобедренном и коленном суставах, дополняемое незначительным поворотом ее наружу, что взаимосвязано с вращением таза в сторону маховой ноги. В это время основная нагрузка падает на мышцы: подвздошно-поясничную, приводящие, заднего отдела бедра и отчасти на разгибатели стопы.
Момент вертикали. Маховая нога выпрямлена в тазобедренном суставе и достигает максимального сгибания (по сравнению с другими фазами) в суставе колена. Сокращены главным образом мышцы заднего отдела бедра.
В фазе переднего шага мышцы заднего отдела бедра расслабляются и благодаря силе инерции и кратковременному баллистическому сокращению четырехглавой мышцы голень выбрасывается вперед. После этого начинается новый цикл движения.
Центр тяжести тела (ЦТ) при ходьбе (рис. а) наряду с поступательными движениями (вперед), совершает еще движения боковые и в вертикальном направлении. В последнем случае размах (вверх и вниз) достигает величины 4 см (у взрослого человека), при этом туловище опускается больше всего именно тогда, когда одна нога опирается всей подошвой, а другая вынесена вперед. Боковые движения (качания в стороны) центра тяжести доходят до 2 см.
Колебания ОЦТ тела в стороны связаны с перемещением на опорную ногу всей массы тела, благодаря чему траектория ОЦТ тела проходит непосредственно над площадью опоры. Чем ходьба быстрее, тем эти колебательные движения меньше, что объясняется влиянием инерции тела.
Размер шага в среднем принимается за 66 см, при спокойной ходьбе продолжительность его - около 0,6 сек.
Помимо мышц нижних конечностей при ходьбе включаются в динамическую работу почти все мышцы туловища, шеи и верхних конечностей.
В связи с последовательным чередованием растяжения, сокращения и расслабления различных мышечных групп, что происходит во время ходьбы, значительная нагрузка на всю мышечную систему обычно не вызывает выраженного утомления. В значительной мере это также объясняется тем, что ритмические движения всего тела облегчают нормальную вентиляцию легких и улучшают кровообращение всех органов, включая центральную нервную систему (ЦНС). Таким образом, ходьба - это наилучший вид физической тренировки.
Кинематические и динамические характеристики человека между продольными осями смежных сегментов конечности можно измерять (так называемые межзвенные углы). На рис. приведены графики межзвенных углов в тазобедренном суставе (ТБС), коленном (КС), голеностопном (ГСС) и плюснефаланговом (ПФС) при ходьбе в норме.
Характерной особенностью графиков этих углов (ангулограмм) является довольно стабильная периодичность. У разных людей меняются только продолжительность периода и диапазон изменений угла (амплитуда). В норме эти амплитуды составляют: в ТБС 26-30 °; в КС в опорный период шага 12-15 °; в переносный период - 55-62 °; в ГСС подошвенное сгибание равно 17-20 °; тыльное - 8-10 °. В ПФС всегда имеется тыльное сгибание при переносе (10-12 °), при опоре сначала идет выпрямление до 0 °, а при заднем толчке (от заднего толчка опорной ноги тело устремляется вперед) в ПФС снова происходит сгибание до 10-12 °.
При ходьбе человек взаимодействует с опорной поверхностью, при этом возникают силовые факторы, называемые главным вектором и главным моментом сил реакции опоры. Типичные графики вертикальной и продольной составляющих главного вектора опорной реакции при ходьбе в произвольном темпе в норме представлены на рис. Для графика вертикальной составляющей главного вектора опорной реакции характерно наличие двух вершин, соответствующих переднему (опора на пятку) и заднему (отталкивание передним отделом стопы) толчкам. Амплитуды этих вершин превышают массу человека и достигают 1,1-1.25 Р (Р - масса человека).
Рис. Перемещение общего центра тяжести (ОЦТ) тела при обычной ходьбе (а). Графики межзвенных углов и опорных реакций при ходьбе в норме: ТБС, КС, ГСС, ПФС - соответственно, тазобедренный, ко-ленный, голеностопный, плюснефаланговый суставы; Rz, Ry - вертикальная и продольная компоненты опорной реакции (б).
Продольная составляющая главного вектора сил реакции опор имеет тоже две вершины разных знаков: первая, соответствующая переднему толчку, направлена вперед; вторая, соответствующая заднему толчку, направлена назад. Так оно и должно быть - отталкиваясь опорной ногой, человек устремляет все тело вперед. Максимумы продольной составляющей главного вектора опорной реакции достигает 0,25 Р.
Есть еще одна составляющая главного вектора опорной реакции - поперечная. Она возникает при переступании с одной ноги на другую и ее максимум достигает 8-10 % от массы человека.
Временная структура шага. Локомоции человека - процесс периодический, в котором через приблизительно равные промежутки времени повторяются сходные положения тела. Наименьшее время, прошедшее от данного положения до его повторения, является временем цикла. При ходьбе и беге время цикла называют по числу сделанных шагов "временем двойного шага". Каждая нога в своем циклическом движении находится либо на опоре, либо переносится на новое место опоры (рис. ).
При беге момент опоры меньше момента переноса; наблюдается период свободного полета над опорой (см. рис).
Рис. 15.19. Кинограммы ходьбы (а) и бега (б) на протяжении одиночного шага и диаграммы времени двойного шага (по Е. Muybriage, 1887; Д.А. Семенову, 1939): а - начало, е - конец опоры ноги, а и е - левая, а'е' - правая нога, ае - время опоры левой ноги, а'е' - время опоры правой ноги; вверху ае' и а'е" - время двойных опор при ходьбе, внизу е'а и еа' - время полета при беге. Непрерывная линия - опора, штриховая - перенос ноги.
Ходьба человека - наиболее естественная локомоция человека.
1. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных мышц туловища и конечностей.
2. Разновидность двуногого передвижения, при котором опора на одну ногу циклично сменяется двуопорным периодом, а затем опорой на другую ногу. При ходьбе контакт с опорой не теряется, в отличие от бега, при котором двуопорные периоды заменяются отрывом от опоры обеих ног - периодом полета.
3. Самый доступный вид физической нагрузки, разновидность аэробной нагрузки (К. Купер, 1980), форма оздоровительной тренировки.
Существуют и другие определения, характеризующие эту локомоцию:
· череда рефлекторно контролируемых падений. Ходьбу образно описывают как "управляемое падение". При каждом шаге человек наклоняется вперед и начинает падение, которому препятствует выдвинутая вперёд нога. После того как она касается земли, на нее переносится вес тела, колено подгибается, амортизируя падение, и выпрямляется, возвращая тело на исходную высоту;
· ходьбу рассматривают с позиции модели прямого и обратного маятника, рассматривая сегменты конечностей и тело как систему физических маятников.
По образному выражению Бернштейна, который объединил биомеханику и нейрофизиологию двигательного аппарата в единую науку физиологию движений, ходьба это:
· "…синергии, охватывающие всю мускулатуру и весь двигательный аппарат сверху донизу";
· "…циклический акт, то есть движение, в котором периодически повторяются вновь и вновь одни и те же фазы".
Рис. Ходьба с позиции физического маятника
· ходьба - это двигательное действие, результат реализации двигательного стереотипа, комплекса безусловных и условных рефлексов;
· ходьба - это двигательный навык, который представляет собой цепь последовательно закреплённых условно рефлекторных двигательных действий, которые выполняются автоматически без участия сознания.
как естественной локомоции |
как спортивной и оздоровительной локомоции: |
как военно-прикладной локомоции |
|
1. Ходьба нормальная. 2. Патологическая ходьба: · при нарушении подвижности в суставах; · при утрате или нарушении функции мышц; · при нарушении масс-инерционных характеристик нижней конечности; (например, ходьба на протезеголени, бедра); · ходьба с дополнительной опорой на трость (на две трости); |
· ходьба спортивная; · ходьба на лыжах; · ходьба оздоровительная; · терренкур; · ходьба нордическая (скандинавская ходьба) (eng.) (с опорой на палки); |
маршировка (eng.) (организованная ходьба, упражнение в мерном хождении правильными построенными рядами). |
Не следует путать виды ходьбы с видами походки. Ходьба - двигательный акт, разновидность двигательной активности.
Походка - особенность ходьбы человека, "манера ходить".
Задачи ходьбы как важной локомоторной функции:
· безопасное линейное поступательное перемещение тела вперёд (главная задача);
· удержание вертикального баланса, предотвращение падения при движении;
· сохранение энергии, использование минимального количества энергии за счёт её перераспределения в течение цикла шага;
· обеспечение плавности передвижения (резкие движения могут являться причиной повреждения);
· адаптация походки для устранения болезненных движений и усилий;
· сохранение походки при внешних возмущающих воздействиях или при изменении плана движений (стабильность ходьбы);
· устойчивость к возможным иннервационым и биомеханическим нарушениям;
· оптимизация передвижения, прежде всего, повышение эффективности безопасного перемещения центра тяжести с наименьшим расходом энергии.
Наиболее общими параметрами, характеризующими ходьбу, являются линия перемещения центра масс тела, длина шага, длина двойного шага, угол разворота стопы, база опоры, скорость перемещения и ритмичность.
· база опоры - это расстояние между двумя параллельными линиями, проведёнными через центры опоры пяток параллельно линии перемещения;
· короткий шаг - это расстояние между точкой опоры пятки одной ноги и центром опоры пятки контралатеральной ноги;
· разворот стопы - это угол, образованный линией перемещения и линией, проходящей через середину стопы: через центр опоры пятки и точку между 1 и 2 пальцем;
· ритмичность ходьбы - отношение длительности переносной фазы одной ноги к длительности переносной фазы другой ноги;
· скорость ходьбы - число больших шагов в единицу времени, измеряется в единицах: шаг в минуту или км. в час. для взрослого - 113 шагов в минуту.
Рис. Общие параметры ходьбы
Биомеханическая структура ходьбы
Ходьбу при различных заболеваниях изучает раздел медицины - клиническая биомеханика; ходьбу как средство достижения спортивного результата или повышения уровня физической подготовленности изучает раздел физической культуры - спортивная биомеханика. Ходьбу изучают многие другие науки: компьютерная биомеханика, театральное и балетное искусство, военное дело. Основой для изучения всех биомеханических наук является биомеханика ходьбы здорового человека в естественных условиях. Ходьбу рассматривают с позиции единства биомеханических и нейрофизиологических процессов, которые определяют функционирование локомоторной системы человека.
Временная структура ходьбы, обычно основана на анализе результатов подографии. Подография позволяет регистрировать моменты контакта различных отделов стопы с опорой. На этом основании определяют временные фазы шага.
Кинематику ходьбы изучают с использованием контактных и бесконтактных датчиков измерения углов в суставах (гониометрия), а также с применением гироскопов - приборов, позволяющих определить угол наклона сегмента тела относительно линии гравитации. Важным методом в исследовании кинематики ходьбы является методика циклографии - метод регистрации координат светящихся точек, расположенных на сегментах тела.
Динамические характеристики ходьбы изучают с применением динамографической (силовой) платформы. При опоре силовую платформу регистрируют вертикальную реакцию опоры, а также горизонтальные её составляющие. Для регистрации давления отдельных участков стопы применяют датчики давления или тензодатчики, вмонтированные в подошву обуви.
Физиологические параметры ходьбы регистрируют при помощи методики электромиографии - регистрации биопотенциалов мышц. Электромиография, сопоставленная с данными методик оценки временной характеристики, кинематики и динамики ходьбы, является основой биомеханического и иннервационного анализа ходьбы.
Временнамя структура ходьбы
Основной метод исследования временномй структуры - метод подографии. Например, исследование ходьбы с применением самой простой, двухконтактной электроподографии заключается в использовании контактов в подошве специальной обуви, которые замыкаются при опоре на биомеханическую дорожку. На рисунке изображена ходьба в специальной обуви с двумя контактами в области пятки и переднего отдела стопы.
Рис. Простая двухконтактная подограмма
Период замыкания контакта регистрируется и анализируется прибором: замыкание заднего контакта - опора на пятку, замыкание заднего и переднего - опора на всю стопу, замыкание переднего контакта - опора на передний отдел стопы. На этом основании строят график длительности каждого контакта для каждой ноги.
Рис. Временная структура шага
График самой простой двухконтактной подограммы изображается в виде подограммы правой ноги и подограмма левой ноги. Красным цветом выделена подограмма правой ноги. То есть той ноги, которая в данном случае начинает и заканчивает цикл ходьбы - двойной шаг. Тонкой линией обозначают отсутствие контакта с опорой, затем мы видим время контакта на задний отдел стопы, на всю стопу и на передний отдел. Локомоторный цикл состоит из двух двуопорных и двух переносных фаз. По подограмме определяют интервал опоры на пятку, на всю стопу и на ее передний отдел. Временные характеристики шага выражают в секундах и в процентах к продолжительности двойного шага, длительность которого принимают за 100 %.
Все остальные параметры ходьбы (кинематические, динамические и электрофизиологические) привязывают к подограмме - основному методу оценки временной характеристики ходьбы.
Кинематика ходьбы
Рис. Исследование динамики ходьбы
Проводя кинематический анализ ходьбы, прежде всего, определяют перемещение общего центра масс тела и угловые перемещения в крупных суставах нижних конечностей и в суставах стопы.
Кинематический анализ проводят, исследуя эти движения в трех основных анатомических плоскостях тела: в сагиттальной, в горизонтальной и во фронтальной плоскости. Движения сегментов тела соотносят с фазами временной характеристики ходьбы.
Регистрация движений сегментов тела проводится как контактным, так и бесконтактным методом. Исследуют линейные и угловые перемещения, скорость и ускорение.
Основные методы исследования: циклография, гониометрия и оценка движения сегмента тела при помощи гироскопа.
Метод циклографии позволяет регистрировать изменение координат светящихся точек тела в системе координат.
Гониометрия - изменение угла ноги прямым методом с применением угловых датчиков и неконтактным по данным анализа циклограммы.
Кроме того, применяют специальные датчики гироскопы и акселерометры. Гироскоп позволяет регистрировать угол поворота сегмента тела, к которому он прикреплен, вокруг одной из осей вращения, условно названной осью отсчета. Обычно гироскопы применяют для оценки движения тазового и плечевого пояса, при этом последовательно регистрируют направление движения в трех анатомических плоскостях - фронтальной, сагиттальной и горизонтальной.
Оценка результатов позволяет определить в любой момент шага угол поворота таза и плечевого пояса в сторону, вперед или назад, а также поворот вокруг продольной оси. В специальных исследованиях применяют акселерометры для измерения в данном случае тангенциального ускорения голени.
Для исследования ходьбы используют специальную биомеханическую дорожку, покрытую электропроводным слоем.
Важную информацию получают при проведении традиционного в биомеханике циклографического исследования, которое, как известно, основано на регистрации методом видео-, кинофотосъёмки координат светящихся маркеров, расположенных на теле испытуемого.
Динамика ходьбы
Динамика ходьбы не может быть изучена методом прямого измерения силы, которая продуцируется работающими мышцами. До настоящего времени отсутствуют доступные для широкого использования методики измерения момента силы живой мышцы, сухожилия или сустава. Хотя следует отметить, что прямой метод, метод имплантации датчиков силы и давления непосредственно в мышцу или сухожилие применяется в специальных лабораториях. Прямой метод исследования вращающего момента осуществляется также при использовании датчиков в протезах нижних конечностей и в эндопротезах суставов.
Представление о силах, воздействующих на человека при ходьбе, может быть получено или в определении усилия в центре масс всего тела, или путём регистрации опорных реакций.
Практически, силы мышечной тяги при циклическом движении можно оценить, только, решая задачу обратной динамики. То есть зная скорость и ускорение движущегося сегмента, а также его массу и центр масс, мы можем определить силу, которая вызывает это движение, следуя второму закону Ньютона (сила прямо пропорциональна массе тела и ускорению).
Реальные силы при ходьбе, которые можно измерить - это силы реакции опоры. Сопоставление силы реакции опоры и кинематики шага позволяют оценить величину вращающего момента сустава. Расчет вращающего момента мышцы может быть произведён исходя из сопоставления кинематических параметров, точки приложения реакции опоры и биоэлектрической активности мышцы.
Сила реакции опоры
Сила реакции опоры - сила, действующая на тело со стороны опоры. Эта сила равна и противоположна той силе, которую оказывает тело на опору.
Сила реакции опоры это сила, действующая на тело со стороны опоры. Эта сила равна и противоположна той силе, которую оказывает тело на опору. Если при стоянии сила реакции опоры равна весу тела, то при ходьбе к этой силе прибавляются сила инерции и сила, создаваемая мышцами при отталкивании от опоры.
Для исследования силы реакции опоры обычно применяют динамографическую (силовую) платформу, которая вмонтирована в биомеханическую дорожку. При опоре в процессе ходьбы на эту платформу регистрируют возникающие силы - силы реакции опоры.Силовая платформа позволяет регистрировать результирующий вектор силы реакции опоры.
Динамическая характеристика ходьбы оценивается путём исследования опорных реакций, которые отражают взаимодействие сил, принимающих участие в построении локомоторного акта: мышечных, гравитационных и инерционных. Вектор опорной реакции в проекции на основные плоскости разлагается на три составляющие: вертикальную, продольную ипоперечную. Эти составляющие позволяют судить об усилиях, связанных с вертикальным, продольным и поперечным перемещением общего центра масс. Сила реакции опоры включает в себя вертикальную составляющую, действующую в направлении вверх-вниз, продольную составляющую, направленную вперед-назад по оси Y, и поперечную составляющую, направленную медиально-латерально по оси X. Это производная от силы мышц, силы гравитации и силы инерции тела.
Вертикальная составляющая вектора опорной реакции. График вертикальной составляющей опорной реакции при ходьбе в норме имеет вид плавной симметричной двугорбой кривой. Первый максимум кривой соответствует интервалу времени, когда в результате переноса тяжести тела на опорную ногу происходит передний толчок, второй максимум (задний толчок) отражает активное отталкивание ноги от опорной поверхности и вызывает продвижение тела вверх, вперёд и в сторону опорной конечности. Оба максимума расположены выше уровня веса тела и составляют соответственно при медленном темпе примерно 100 % от веса тела, при произвольном темпе - 120 %, при быстром - 150 % и 140 %.
Рис. Вертикальная составляющая силы реакции опоры
Минимум опорной реакции расположен симметрично между ними ниже линии веса тела. Возникновение минимума обусловлено задним толчком другой ноги и последующим ее переносом; при этом появляется сила, направленная вверх, которая вычитается из веса тела. Минимум опорной реакции при разных темпах составляет от веса тела соответственно: при медленном темпе - примерно 100 %, при произвольном темпе 70 %, при быстром - 40 %.
Таким образом, общая тенденция при увеличении темпа ходьбы состоит в росте значений переднего и заднего толчков и снижении минимума вертикальной составляющей опорной реакции.
Продольная составляющая силы реакции опоры. Продольная составляющая вектора опорной реакции это, по сути, срезывающая сила равная силе трения, которая удерживает стопу от переднезаднего скольжения. На рисунке изображён график зависимости продольной опорной реакции в зависимости от длительности цикла шага при быстром темпе ходьбы (оранжевая кривая), при среднем темпе (пурпурная) и медленном темпе (синяя).
Рис. Продольная составляющая силы реакции опоры
График продольной составляющей опорной реакции имеет также два, но разнонаправленных максимума, соответствующих переднему и заднему толчкам и минимум равный нулю между ними. Величина этих максимумов при медленном темпе составляет 12 % и 6 %, при произвольном темпе - 16°/ и 24 %, при быстром - 21 % и 30 %.
Продольная составляющая характеризуется аналогичной тенденцией увеличения переднего и заднего толчков при повышении темпа ходьбы.
Поперечная (медиолатеральная) составляющая вектора опорной реакции, так же как и продольная, порождена силой трения.
График поперечной составляющей опорной реакции по форме напоминает перевернутый график вертикальной составляющей. Кривая также располагает двумя максимумами, приуроченными к фазам переднего и заднего толчков и направленными медиально. Однако в самом начале цикла выявлен еще один максимум, имеющий противоположное направление. Это короткий период опоры на наружный отдел пятки.
Рис. Поперечная составляющая силы реакции опоры
При увеличении темпа ходьбы все максимумы возрастают (красная линия), их значения составляют от веса тела: при медленном темпе - 7 % и 5 %, при произвольном темпе - 9 % и 8 %, при быстром - 13 % и 7 %. Зависимости этих величин от темпа ходьбы показаны на рисунке. Таким образом, чем выше темп ходьбы, тем больше сила и соответственно энергия, которая расходуется на преодоление силы трения.
Рис. Точка приложения силы реакции опоры
Реакция опоры - эти силы приложенные к стопе. Вступая в контакт с поверхностью опоры, стопа испытывает давление со стороны опоры, равное и противоположное тому, которое стопа оказывает на опору. Это и есть реакция опоры стопы. Эти силы неравномерно распределяются по контактной поверхности. Как и все сила такого рода их можно изобразить в виде результирующего вектора, который имеет величину и точку приложения.
Точка приложения вектора реакции опоры на стопу иначе называется центром давления. Это важно, для того чтобы знать, где находится точка приложения сил, действующих на тело со стороны опоры. При исследовании на силовой платформе эта точка называется точкой приложения силы реакции опоры.
Рис. Траектория приложения силы реакции опоры
Траектория силы реакции опоры в процессе ходьбы изображается в виде графика: "зависимость величины силы реакции опоры от времени опорного периода". График представляет собой перемещение вектора реакции опоры под стопой. Нормальный паттерн, траектория перемещения реакции опоры при нормальной ходьбе представляет собой перемещение от наружного отдела пяти вдоль наружного края стопы в медиальном направлении к точке между 1 и 2 пальцем стопы. Траектория перемещения вариабельна и зависит от темпа и типа ходьбы, от рельефа поверхности опоры, от типа обуви, а именно от высоты каблука и от жёсткости подошвы. Паттерн реакции опоры во многом определяется функциональным состоянием мышц нижней конечности и иннервационной структурой ходьбы.
Иннервационная структура ходьбы
Графики электрической активности некоторых мышц в течение цикла ходьбы здорового человека. Внизу электрическая активность сопоставлена с подограммой. Сплошным цветом на графиках обозначена работа мышц в уступающем режиме, штриховыми линиями - преодолевающая. Красным цветом выделены мышцы-разгибатели, синим - мышцы-сгибатели. Мышцы работают то в уступающем, то в преодолевающем режиме. Мышцы разгибатели активны, главным образом, в опорную фазу цикла (их называют мышцы опорной фазы), а мышцы сгибатели в переносную фазу (их называют мышцы переносной фазы).
Определение внешних вращающих моментов суставов главным образом, нижней конечности является на сегодня единственным объективным методом оценки внутреннего вращающего момента, который определяется мышечным усилием в различные фазы ходьбы (наряду с другими факторами: эластичность связок, сухожилий, геометрия суставной поверхности). А вот о распределении усилий различных групп мышц, о пространственно-временной характеристике работы мышц судят по данным электромиографического исследования. Эти данные соотносят с временной и силовой характеристикой каждой фазы шага и получают достаточно полное представление о работе основного двигателя человека и об управлении этим процессом.
Многоканальная миография с компьютерной обработкой полученного сигнала является традиционным объективным методом изучения иннервационой и биомеханической структуры ходьбы.
В ходьбе участвуют многие мышцы и группы мышц, однако для ходьбы наиболее значимыми мышцами являются мышцы разгибатели (трехглавая мышца голени, четырехглавая мышца бедра, большая и средняя ягодичная), и мышцы-сгибатели (подколенные сгибатели: полуперепончатая и полуперепончатая и бицепс бедра и передняя большеберцовая мышца).
Работа мышц-разгибателей является основным силовым источником для перемещения общего центра масс. Активность мышц разгибателей обусловлена также необходимостью притормаживания движения сегментов в фазу переноса. Сокращение мышц сгибателей направлено на коррекцию положения или движения конечности в переносную фазу. При обычных условиях ходьбы корригирующая функция мышц минимальна. Прямая мышца в составе четырёхглавой бедра обеспечивает амортизацию переднего толчка и последующее разгибание в коленном суставе в фазу опоры. Большая ягодичная мышца обеспечивает разгибание бедра в фазу опоры. Икроножная мышца - отталкивание от опорной поверхности и вертикальное перемещение общего центра масс. Подколенные сгибатели - регуляция скорости движения в коленном суставе. Передняя большеберцовая - коррекцию положения стопы. физиология ходьба биомеханическая кинематический
Чередование различных режимов деятельности мышц заключает в себе определённый биомеханический смысл: во время уступающей работы увеличивается напряжение мышцы и её рефлекторная активация, кинетическая энергия переходит в потенциальную энергию упругой деформации мышц. При этом эффективность уступающей (отрицательной) работы мышц превышает в 2-9 раз эффективность их преодолевающей (положительной) работы.
Во время преодолевающего режима мышца производит механическую работу, при этом потенциальная энергия упругой деформации мышц превращается в кинетическую энергию всего тела или его отдельных частей. На первый взгляд, преодолевающий режим работы мышц обусловливает возникновение и ускорение движений, а уступающий режим - их замедление или прекращение. На самом деле уступающий режим деятельности мышц имеет более глубокое содержание. "Когда тело человека при ходьбе уже приобрело известную скорость, торможение движений отдельного звена приводит к перераспределению кинетического момента и, следовательно, к ускорению движений смежного звена. Благодаря многозвенной структуре двигательного аппарата такой опосредованный способ управления движениями нередко оказывается энергетически более выгодным, чем прямой, ибо позволяет лучше утилизировать ранее накопленную кинетическую энергию".
Основные биомеханические фазы
Анализ кинематики, опорных реакций и работы мышц различных частей тела убедительно показывает, что в течение цикла ходьбы происходит закономерная смена биомеханических событий. "Ходьба здоровых людей, несмотря на ряд индивидуальных особенностей, имеет типичную и устойчивую биомеханическую и иннервационную структуру, то есть определённую пространственно-временную характеристику движений и работы мышц".
Полный цикл ходьбы - период двойного шага - слагается для каждой ноги из фазы опоры и фазы переноса конечности.
При ходьбе человек последовательно опирается то на одну, то на другую ногу. Эта нога называется опорной. Контралатеральная нога в этот момент выносится вперед (Это - переносная нога). Период переноса ноги называется "фаза переноса". Полный цикл ходьбы - период двойного шага - слагается для каждой ноги из фазы опоры и фазы переноса конечности. В опорный период активное мышечное усилие конечностей создаёт динамические толчки, сообщающие центру тяжести тела ускорение, необходимое для поступательного движения. При ходьбе в среднем темпе фаза опоры длится примерно 60 % от цикла двойного шага, фаза переноса примерно 40 %.
Началом двойного шага принято считать момент контакта пятки с опорой. В норме приземление пятки осуществляется на её наружный отдел. С этого момента эта (правая) нога считается опорной. Иначе эту фазу ходьбы называют передний толчок - результат взаимодействия силы тяжести движущегося человека с опорой. На плоскости опоры при этом возникает опорная реакция, вертикальная составляющая которой превышает массу тела человека. Тазобедренный сустав находится в положении сгибания, нога выпрямлена в коленном суставе, стопа в положении лёгкого тыльного сгибания. Следующая фаза ходьбы - опора на всю стопу. Вес тела распределяется на передний и задний отдел опорной стопы. Другая, в данном случае - левая нога, сохраняет контакт с опорой. Тазобедренный сустав сохраняет положение сгибания, колено подгибается, смягчая силу инерции тела, стопа принимает среднее положение между тыльным и подошвенным сгибанием. Затем голень наклоняется вперёд, колено полностью разгибается, центр масс тела продвигается вперед. В этот период шага перемещение центра масс тела происходит без активного участия мышц, за счёт силы инерции. Опора на передний отдел стопы. Примерно через 65 % времени двойного шага, в конце интервала опоры, происходит отталкивание тела вперёд и вверх за счёт активного подошвенного сгибания стопы - реализуется задний толчок. Центр масс перемещается вперёд в результате активного сокращения мышц.
Следующая стадия - фаза переноса характеризуется отрывом ноги и перемещением центра масс под влиянием силы инерции. В середине этой фазы, все крупные суставы ноги находятся в положении максимального сгибания. Цикл ходьбы завершается моментом контакта пятки с опорой.
В циклической последовательности ходьбы выделяют моменты, когда с опорой соприкасаются только одна нога ("одноопорный период") и обе ноги, когда вынесенная вперед конечность уже коснулась опоры, а расположенная сзади ещё не оторвалась ("двуопорная фаза"). С увеличением темпа ходьбы "двуопорные периоды" укорачиваются и совсем исчезают при переходе вбег. Таким образом, по кинематическим параметрам, ходьба от бега отличается наличием двуопорной фазы.
Эффективность ходьбы
Основной механизм, определяющий эффективность ходьбы - это перемещение общего центра масс.
Перемещение общего центра масс (ОЦМ) представляет собой типичный синусоидальный процесс с частотой соответствующей двойному шагу в медиолатеральном направлении, и с удвоенной частотой в передне-заднем и вертикальном направлении. Перемещение центра масс определяют традиционным циклографическим методом, обозначив общий центр масс на теле испытуемого светящимися точками.
Однако можно поступить проще, математическим способом, зная вертикальную составляющую силы реакции опоры.
Рис. Перемещение ОЦМ, трансформация кинетической (Tk) и потенциальной (Ep) энергии
Из законов динамики ускорение вертикального перемещения равно отношению силы реакции опоры к массе тела, скорость вертикального перемещения равна отношению произведению ускорения на интервал времени, а само перемещение произведению скорости на время. Зная эти параметры, можно легко рассчитать кинетическую и потенциальную энергию каждой фазы шага. Кривые потенциальной и кинетической энергии представляют собой как бы зеркальное отражение друг друга и имеют фазовый сдвиг примерно в 180 °.
Известно, что маятник имеет максимум потенциальной энергии в высшей точке и превращает её в кинетическую, отклоняясь вниз. При этом некоторая часть энергии расходуется на трение. Во время ходьбы, уже в самом начале периода опоры, как только ОЦМ начинает подниматься, кинетическая энергия нашего движения превращается в потенциальную, и наоборот, переходит в кинетическую, когда ОЦМ опускается. Таким образом, сохраняется около 65 % энергии. Мышцы должны постоянно компенсировать потерю энергии, которая составляет около тридцати пяти процентов. Мышцы включаются для перемещения центра масс из нижнего положения в верхнее, восполняя утраченную энергию.
Эффективность ходьбы связана с минимизацией вертикального перемещения общего центра масс. Однако увеличение энергетики ходьбы неразрывно связано с увеличением амплитуды вертикальных перемещений, то есть при увеличении скорости ходьбы и длины шага неизбежно увеличивается вертикальная составляющая перемещения центра масс.
На протяжении опорной фазы шага наблюдается постоянные компенсирующие движения, которые минимизируют вертикальные перемещения и обеспечивают плавность ходьбы.
К таким движениям относят:
· поворот таза относительно опорной ноги,
· наклон таза в сторону неопорной конечности,
· подгибание колена опорной ноги при подъеме ОЦМ,
· разгибание при опускании ОЦМ.
Интересные факты
Таблица. Характеристика ходьбы здоровых людей в разном темпе
Параметры: |
Медленный темп |
Замедленный темп |
Произвольный темп |
Ускоренный темп |
Быстрый темп |
|
Средняя скорость (м/с) / (км/ч) |
0,61 / 2,196 |
0,91 / 3,276 |
1,43 / 5,148 |
1,90 / 6,840 |
2,28 / 8,208 |
|
Темп (шаг/мин) |
67,8 |
84,5 |
109,1 |
125,0 |
137,9 |
|
Длина шага (метр) |
0,51 |
0,6 |
0,74 |
0,84 |
0,88 |
|
Отношение темпа к длине шага (метр*с)-1 |
2,22 |
2,35 |
2,46 |
2,48 |
2,61 |
· При произвольном темпе ходьбы активность мышц минимальна. Этот феномен объясняется совпадением частоты действия вынуждающих мышечных сил к собственной частоте колебаний нижней конечности.
· Оптимальный темп ходьбы запрограммирован частотными характеристиками тела человека, то есть геометрией нижней конечности и упругостью связочно-мышечного аппарата. Он приблизительно равен резонансной частоте нижней конечности.
· При ходьбе устойчивость тела увеличивается в несколько раз по сравнению с устойчивостью при стоянии. Этот биомеханический феномен до настоящего времени не изучен. Существует гипотеза, которая объясняет устойчивость тела при ходьбе колебательными движениями центра голеностопного сустава. Тело человека представляется с позиции перевернутого маятника с центром в области голеностопных суставов, который приобретает устойчивость в вертикальном положении, если его центр совершает колебание вверх-вниз с достаточно высокой частотой (маятник Капицы).
· Победитель Кубка мира в спортивной ходьбе в 1983 г. прошел 20 км со средней скоростью 15,9 км/ч.
· Локомоции детей в возрасте до 6 лет неустойчивы, что связано с несформированным двигательным стереотипом. По словам Н. Бернштейна это и не ходьба и не бег, а нечто ещё не определившееся.
· Спортивный врач Кеннет Купер считал, что для достижения удовлетворительной тренированности нужно проходить расстояние не менее 6,5 км в ускоренном темпе.
· Рецепт здоровья от Николая Михайловича Амосова (1913-2002): "Ходить нужно только быстро, всегда быстро, чтобы пульс учащался хотя бы до 100, покрывая расстояние 4-5 км".
· Риск развития постменопаузального остеопороза существенно ниже, если женщина проходит более 12 километров в неделю.
Примечания
1. Дубровский В.И. Федорова В.Н. Биомеханика. Учебник для ВУЗов. - М.: ВЛАДОС, 2003. - ISBN 5-305-00101-3. - С. 388.
2. Орешкин Ю.А. К здоровью через физкультуру. - М., 1990.
3. Бернштейн Н.А. Очерки по физиологии движений и физиологии активности. - М., 1966.
4. Бернштейн Н.А. Исследования по биодинамике ходьбы, бега, прыжка. - М.: Физкультура и спорт, 1940.
5. Маршировка // Энциклопедический словарь Брокгауза и Ефрона.
6. Походка // Толковый словарь русского языка Ушакова.
7. Витензон А.С. Закономерности нормальной и патологической ходьбы человека. - Москва: ООО "Зеркало-М". - 271 с. - ISBN 5-89853-006-1.
8. Витензон А.С. Закономерности нормальной и патологической ходьбы человека. - Москва: ООО "Зеркало-М". - ISBN 5-89853-006-1. - С. 83.
9. Витензон А.С., Петрушанская К.А. От естественного к искусственному управлению локомоцией. - М.: Научно-медицинская фирма МБН, 2003. - 448 с.: ил.
10. Cavagna, G. A., H. Thys, and A. Zamboni. The sources of external work in level walking and running. J. Physiol. Lond. 262: 639-57, 1976.
11. Витензон А.С. Зависимость биомеханических параметров от скорости ходьбы // Протезирование и протезостроение. - М.: ЦНИИПП, 1974. - С. 53-65.
12. Саранцев А.В., Витензон А.С. Явления резонанса при ходьбе человека // Протезирование и протезостроение. Сб. трудов. Вып. 31. - М.: ЦНИИПП, 1973. - С. 62-71.
13. Уткин В.М. Биомеханика физических упражнений. - М.: Просвещение, 1989. - 210 с, ил.
14. Клиническая биомеханика / Под ред. В.И. Филатова. - Л.: Медицина, 1980. - С. 50-52.
15. Купер К. Новая аэробика: Система оздоров. физ. упражнений для всех возрастов / пер. с англ. С. Шенкмана. - 2-е изд. - М.: Физкультура и спорт, 1979. - 125 с.
16. Амосов Н.М. Моя система здоровья. - К.: Здоров'я, 1997. - 56 с. - ISBN 5-311-02742-8.
Размещено на Allbest.ru
...Подобные документы
Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.
курсовая работа [63,3 K], добавлен 02.01.2013Систематический перечень анатомических терминов. Оси и плоскости человеческого тела. Верхняя боковая поверхность полушария, главные борозды и извилины. Локализация функций связанных с нервной системой. Орган обоняния. Проводящий путь органа обоняния.
реферат [716,9 K], добавлен 31.10.2008Физиология как наука о функциях и процессах, протекающих в организме, ее разновидности и предметы изучения. Возбудимые ткани, общие свойства и электрические явления. Этапы исследования физиологии возбуждения. Происхождение и роль мембранного потенциала.
контрольная работа [533,3 K], добавлен 12.09.2009Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.
контрольная работа [400,1 K], добавлен 06.06.2012Внутренности как органы, которые преимущественно расположены в полостях тела: лица, шеи, грудной, брюшной и тазовой. Их классификация, расположение внутри человеческого тела и физиологическое значение, функции. Структура мышечных и слизистых оболочек.
доклад [29,6 K], добавлен 04.03.2015Ферменты: биохимическое строение и физиологическая роль. Анализ методики определения активности ферментов и ферментативного спектра в жидкостях организма. Основные ферменты в моче в норме и при патологии. Ферментный спектр мочи при заболеваниях почек.
доклад [153,2 K], добавлен 10.03.2015Движение плода как один из первых важнейших признаков роста и развития эмбриона. Виды двигательной активности плода: висцеральная, нейромышечная. Значение компактных и размашистых типов движений эмбриона. Основные этапы развития дыхательной функции.
презентация [1,7 M], добавлен 19.01.2013Описание морфологии положения или движения тела в спортивных танцах латиноамериканской программы. Анатомическая характеристика положений с точки зрения механики и сил, которые действуют на звенья тела. Работа двигательного аппарата и органов дыхания.
реферат [594,8 K], добавлен 16.03.2012Структура молекулы тайтина. Структура и функции молекул С-белка, Х-белка и Н-белка. Белки семейства тайтина в норме, при адаптации и патологии. Амилоидозы. Современные представления о строении, формировании амилоидных фибрилл. Патологические проявления.
дипломная работа [975,8 K], добавлен 15.12.2008Исследование физиологии биологического процесса постепенной деградации частей и систем тела человека. Изучение основных средств профилактики преждевременного старения. Анализ характерных особенностей в физическом и психическом состоянии долгожителей.
презентация [561,1 K], добавлен 05.11.2014Особенности морфологии и физиологии грибов. Извлечение питательных веществ всей поверхностью тела. Классы плазмидов в зависимости от структуры молекулы и наличия гомологии с мтДНК. Преимущества дрожжей в сравнении с прокариотическими микроорганизмами.
презентация [5,0 M], добавлен 27.03.2014Сущность понятия "антропометрия". Соматометрия, краниометрия, остеометрия. Особенности проведения регрессионного анализа. Типовая схема измерительной системы. Линейная, бинарная и множественная логистическая регрессия. Пробит-анализ, весовая оценка.
презентация [67,3 K], добавлен 15.05.2016Методика морфофизиологических исследований в антропологии с целью установления возрастных, половых, этнических, расовых особенностей физического строения тела человека. Характеристика, измерительные и описательные признаки антропологических фенотипов.
презентация [4,2 M], добавлен 27.11.2014Работа Анохина "Проблема центра и периферии в физиологии нервной деятельности". Свойства функциональной системы, связанные со способностью удерживать любой процесс в пределах, обеспечивающих нормальную жизнедеятельность. Стадии поведенческого акта.
презентация [228,3 K], добавлен 05.11.2014Классификация типа Членистоногие. Основные признаки: гетерономная сегментация тела, разделение членистых конечностей на отделы, покрытие тела хитиновой кутикулой, поперечно-полосатая структура мышечных волокон, незамкнутая кровеносная система.
презентация [919,6 K], добавлен 27.02.2012Изучение основных критериев оценки физического развития ребенка. Способы определения нормативных показателей физического развития плода. Правила измерения массы и длины тела ребенка первого года жизни. Возрастные показатели увеличения окружности головы.
презентация [3,4 M], добавлен 25.02.2017Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.
реферат [21,1 K], добавлен 29.09.2009Предмет и содержание анатомии и физиологии. Анатомическое строение клетки. Ткани, их виды и свойства. Понятие о внутренней среде организма. Наследственность и среда, их влияние на развитие организма. Понятие генотипа и фенотипа, онтогенеза и филогенеза.
шпаргалка [135,3 K], добавлен 09.11.2010Особенности строения зубочелюстных сегментов нижней челюсти человека. Резцово-челюстные, клыково-челюстные, премолярно-челюстные и молярно-челюстные сегменты. Высота альвеолярной части сегментов. Высота зубочелюстных сегментов и зубов нижней челюсти.
презентация [1,2 M], добавлен 18.05.2012Этапы развития физиологии. Гуморальная, нервная и метаболическая регуляция функций организма. Электрические явления в возбудимых тканях. Распространение возбуждения по нервным волокнам. Современные представления о мышечном сокращении и расслаблении.
презентация [3,0 M], добавлен 16.10.2012