Клетка как осмотическая система

Определение величины осмотического и водного потенциала клетки. Относительное изменение объема клетки. Поступление веществ в растительную клетку из внешней среды. Пассивное и активное поступление веществ в клетку. Анализ явлений плазмолиза и тургора.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 13.11.2013
Размер файла 584,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Клетка как осмотическая система

Растительная клетка представляет собой осмотическую систему. Пектоцеллюлозная оболочка хорошо проницаема как для воды, так и для растворенных веществ. Однако плазмалемма и тонопласт обладают избирательной проницаемостью, легко пропускают воду и менее проницаемы, а в некоторых случаях непроницаемы для растворенных веществ. В этом можно убедиться, рассмотрев явления плазмолиза и тургора. Если поместить клетку в раствор более высокой концентрации, чем в клетке, то под микроскопом видно, что цитоплазма отстает от клеточной оболочки. Это особенно хорошо проявляется на клетке с окрашенным клеточным соком. Клеточный сок остается внутри вакуоли, а между цитоплазмой и оболочкой образуется пространство, заполненное внешним раствором. Явление отставания цитоплазмы от клеточной оболочки получило название плазмолиза. Плазмолиз происходит в результате того, что под влиянием более концентрированного внешнего раствора вода выходит из клетки (от своего большего химического потенциала к меньшему), тогда как растворенные вещества остаются в клетке. При помещении клеток в чистую воду или в слабо концентрированный раствор вода поступает в клетку. Количество воды в клетке увеличивается, объем вакуоли возрастает, клеточный сок давит на цитоплазму и прижимает ее к клеточной оболочке. Под влиянием внутреннего давления клеточная оболочка растягивается, в результате клетка переходит в напряженное состояние -- тургор.

Наблюдения за явлениями плазмолиза и тургора позволяют изучить многие свойства клетки. Явление плазмолиза показывает, что клетка жива и цитоплазма сохранила полупроницаемость. В мертвых клетках мембрана не обладает полупроницаемостью, не контролирует потоки веществ, и осмотический выход воды не происходит. По скорости и форме плазмолиза можно судить о вязкости цитоплазмы. Наконец, явление плазмолиза позволяет определить величину осмотического потенциала в клетке (плазмолитический метод). Этот метод основан на подборе изоосмотического, или изотонического, раствора, т. е. имеющего осмотический потенциал (Шосм. р-ра) , равный осмотическому потенциалу клеточного сока (Шосм. кл.). Раствор, при котором в клетке начался плазмолиз, имеет осмотический потенциал, примерно равный осмотическому потенциалу клетки. Зная концентрацию этого наружного раствора в молях, можно вычислить его осмотический потенциал, а следовательно, осмотический потенциал клетки.

Определение величины осмотического потенциала имеет большое значение, в частности для экологических исследований. Величина осмотического потенциала позволяет судить о максимальной способности растения поглощать воду из почвы и удерживать ее, несмотря на иссушающее действие атмосферы. Осмотический потенциал колеблется в широких пределах, от --5 до --200 бар. Осмотический потенциал около --1 бара наблюдается у водных растений. Осмотический потенциал, равный --200 бар, обнаружен у выжатого сока талофта Atriplex confertifolia. В 1 л сока этого растения содержится 67,33 г хлоридов. У большинства растений средней полосы осмотический потенциал колеблется от --5 до --30 бар. Вместе с тем необходимо отметить, что факторы, действующие на изменение осмотического потенциала, чрезвычайно разнообразны. Даже соседние, рядом расположенные клетки могут отличаться по величине осмотического потенциала. Обычно отрицательная величина осмотического потенциала больше у мелких клеток по сравнению с крупными. Установлены определенные градиенты осмотического потенциала в пределах одной ткани. Так, в тканях стебля отрицательный осмотический потенциал возрастает от периферии к центру и от основания к верхушке. В корне отрицательный осмотический потенциал, наоборот, постепенно снижается от основания к верхушке. В проводящих элементах стебля и корня, как правило, отрицательная величина осмотического потенциала очень низка (от --1 до --1,5 бара). В листьях осмотический потенциал колеблется от -10 до -18 бар. Осмотический потенциал различен у разных жизненных форм. У древесных Пород он более отрицателен, чем у кустарников, а у кустарников более отрицателен, чем у травянистых растении. Разные экологические группы различаются по величине осмотического потенциала. У растений пустынь осмотический потенциал более отрицателен, чем у степных растений; у степных более отрицателен, чем у луговых. Еще меньше осмотическая концентрация у растений болотных и водных местообитаний (соответственно наименее отрицательный осмотический потенциал). У светолюбивых растений осмотический потенциал более отрицательный, чем у теневыносливых. На величину осмотического потенциала влияет концентрация растворенных веществ в клеточном соке -- это осмотически активные вещества (органические кислоты, соли, аминокислоты, сахара). Растение в определенной степени регулирует величину осмотического потенциала. Ферментативное превращение сложных нерастворимых веществ в растворимые (крахмала в сахара, белков в аминокислоты) приводит к возрастанию концентрации клеточного сока и повышению отрицательной величины осмотического потенциала. Увеличенное накопление растворимых солей также делает более отрицательным осмотический потенциал. Несмотря на то, что осмотический потенциал меняется в зависимости от внешних условий, все же для каждого вида эти изменения происходят в своих определенных пределах. Величину осмотического потенциала многие физиологи считают одной из характеристик данного вида растений.

Водный потенциал клетки

осмотический клетка водный плазмолиз

Величина осмотического потенциала имеет большое значение для определения силы, которая вызывает поступление воды в клетку. Однако надо учесть, что клеточная оболочка, свободно пропуская воду и питательные вещества, обладает ограниченной растяжимостью. При поступлении в клетку воды, в ней развивается гидростатическое давление, которое заставляет плазмалемму прижиматься к клеточной оболочке. Клеточная оболочка растягивается и, в свою очередь, оказывает противодавление -- это потенциал давления; он тем больше, чем больше поступает воды в клетку. Благодаря ограниченной растяжимости клеточной оболочки наступает такой момент, когда давление оболочки целиком уравновешивает силу осмотического поступления воды. С термодинамической точки зрения направление движения воды определяется величиной водного потенциала. Водный потенциал -- это мера энергии, с которой вода поступает в клетку. Водный потенциал показывает, насколько активность воды в системе (клетке) меньше активности чистой воды. Водный потенциал чистой воды равен нулю. Присутствие растворимых веществ в водном растворе или в клетке уменьшает концентрацию воды, снижает ее активность. Когда на водный раствор действует давление (в случае клетки противодавление оболочки, или Шдавл) молекулы воды сближаются друг с другом, и это приводит к увеличению энергии системы, к возрастанию активности воды.

Относительное изменение объема клетки

Таким образом водный потенциал клетки зависит прежде всего от концентрации осмотически действующих веществ -- осмотического потенциала, который всегда отрицателен, и от потенциала давления в большинстве случаев положительного. Сказанное можно выразить следующим образом: Иначе говоря, водный потенциал показывает, насколько энергия воды в клетке меньше энергии чистой воды. В состоянии плазмолиза или завядания вода не давит на клеточную оболочку. Противодавление клеточной оболочки равно 0. Водный потенциал равен осмотическому потенциалу. По мере поступления воды в клетку появляется противодавление клеточной оболочки. В этом случае водный потенциал клетки будет равен разности между осмотическим потенциалом и противодавлением оболочки (потенциалом давления). Чем больше поступает воды в клетку, тем больше возрастает тургор и противодавление оболочки. Наконец наступает такой момент, при котором клеточная оболочка растягивается до предела, осмотический потенциал целиком уравновешивается противодавлением клеточной оболочки, а водный потенциал становится равным нулю. Из сказанного видно, что при переходе клетки из состояния плазмолиза к тургору водный потенциал меняется очень резко -- от всей величины осмотического потенциала до нуля. Вместе с тем нельзя не отметить, что при наступлении полного тургора величина осмотического потенциала в результате поступления воды также несколько изменяется, он становится менее отрицательным. Однако это изменение составляет всего 15--20%. В обычных условиях осмотический потенциал клетки не уравновешен полностью противодавлением. Это показывает, что клеточная оболочка еще не полностью растянута и вода может поступать в клетку. Разница между осмотическим потенциалом клеточного сока и противодавлением клеточной оболочки определяет поступление воды в каждый данный момент. Вода всегда поступает в сторону более отрицательного водного потенциала: от той системы, где ее энергия больше, к той, где ее энергия меньше. Необходимо еще раз подчеркнуть, что именно водный потенциал определяет направление передвижения воды. Так, если рядом находятся две клетки А и Б, то вода будет поступать по градиенту не осмотического, а водного потенциала, в сторону более отрицательной величины последнего, т. е. из клетки А в клетку Б. Это будет происходить до того момента, пока водные потенциалы соседних клеток не выравняются. При завядании в клетках листа цитоплазма не отстает от клеточной стенки, как при плазмолизе, а сжимается и тянет ее за собой. При этом клеточная оболочка прогибается (циторриз). Развивается натяжение, или отрицательное давление, и потенциал давления приобретает отрицательное значение.

Таким образом, клетка проявляет себя как саморегулирующаяся система. Величина водного потенциала определяется степенью насыщенности клетки водой: чем меньше клетка насыщена водой, тем более отрицателен ее водный потенциал. Существует ряд методов, позволяющих определить. Наиболее простой метод заключается в том, что подбирается раствор, в котором размер клетки не меняется, а следовательно, вода не уходит из клетки и не поступает в нее. Зная молярную концентрацию раствора, можно рассчитать водный потенциал клетки. Говоря о поступлении воды в клетку, надо учитывать, что наряду с осмотическими силами в клетках существуют силы набухания. Набухание связано со способностью гидрофильных коллоидов притягивать к себе молекулы воды. Набухание может рассматриваться как особый вид диффузии, так как движение воды также идет по градиенту концентрации. Водный потенциал клеток становится более отрицательным благодаря присутствию органических веществ, связывающих воду. Силу набухания обозначают термином «матричный потенциал» ). Матричный потенциал определяется влиянием на поступление воды высокомолекулярных компонентов клетки: белков цитоплазмы, полисахаридов клеточной стенки, и особенно пектиновых веществ. Матричный потенциал всегда отрицателен. Хорошо известно, что если сухие семена положить в воду, то они будут увеличиваться в размере. Сила набухания у сухих семян достигает --1000 бар. Большое значение имеет не только для семян, но и для молодых меристематических клеток, в которых отсутствуют вакуоли и которые заполнены цитоплазмой. При поднятии воды на относительно большую высоту (например, у высоких деревьев) на величину давления оказывает влияние сила тяжести. В этом случае в уравнение водного потенциала вводят гравитационный потенциал Шграв. Поскольку действие силы тяжести снижает активность воды, гравитационный потенциал всегда отрицателен. Возможным механизмом поступления воды является также электроосмос. Секреция воды является следствием разности электрических потенциалов, возникающих с наружной и внутренней стороны мембраны (тонопласта). При этом движение воды может быть вызвано накоплением катионов (К+, Na+), что в свою очередь происходит под влиянием разности электрических потенциалов. Может иметь значение также заглатывание воды клеткой в процессе пиноцитоза.

Поступление веществ в растительную клетку

Из внешней среды в клетку растения непрерывно поступают питательные вещества. Это естественный процесс, без которого жизнедеятельность клетки была бы невозможна. Причем клетка осуществляет поглощение, несмотря на ограниченную проницаемость плазмалеммы. Живая клетка обладает способностью к избирательному накоплению питательных веществ. Клетка накапливает калий в концентрации, превышающей его содержание в морской воде в десятки раз. Вместе с тем морская вода содержит значительно большее количество натрия по сравнению с клеткой. Таким образом, клетка, несмотря на наличие полупроницаемой мембраны, обладает способностью к избирательному накоплению растворенных веществ. На протяжении истории физиологии растений учеными были созданы многочисленные теории относительно механизмов проникновения растворенных веществ в клетку. Многие из этих теорий оказались несостоятельными, в частности из-за того, что под проникновением веществ в клетку понималось только их поступление в клеточный сок.

В настоящее время не вызывает сомнений, что поступление солей происходит в виде ионов и это проходит в несколько этапов. Питательные вещества могут поступать и накапливаться в клеточной оболочке, цитоплазме, вакуоли. Особенно важным этапом является поступление веществ в цитоплазму. Экспериментально показано, что питательные вещества могут поступать в цитоплазму и не проникать в вакуоль. Это хорошо видно из опытов Н.Г. Холодного по влиянию солей на форму плазмолиза. В растворах разных солей форма плазмолиза различна. Кальций повышает вязкость цитоплазмы, и, как следствие, форма плазмолиза в растворах его солей вогнутая. Калий снижает вязкость -- форма плазмолиза выпуклая. Изменение вязкости цитоплазмы свидетельствует о том, что ионы проникли в нее. Вместе с тем наличие плазмолиза показывает, что сони если и проникли в вакуоль, то в малой степени.

Пассивное и активное поступление веществ в клетку

Поглощение питательных веществ клеткой может быть пассивным и активным. Пассивное поглощение -- это поглощение, не требующее затраты энергии. Оно связано с процессом диффузии и идет по градиенту концентрации данного вещества. Как уже рассматривалось выше, с термодинамической точки зрения направление диффузии определяется химическим потенциалом вещества. Чем выше концентрация вещества, тем выше его химический потенциал. Передвижение идет в сторону меньшего химического потенциала. Необходимо заметить, что направление движения ионов определяется не только химическим, но также электрическим потенциалом. Следовательно, пассивное передвижение ионов может идти по градиенту химического и электрического потенциала. Таким образом, движущей силой пассивного транспорта ионов через мембраны является электрохимический потенциал. Электрический потенциал на мембране -- трансмембранный потенциал -- может возникать в силу разных причин:

1. Поступление ионов идет по градиенту концентрации (градиенту химического потенциала), однако благодаря разной проницаемости мембраны с большей скоростью поступает либо катион, либо анион. В силу этого на мембране возникает разность электрических потенциалов, что, в свою очередь, приводит к диффузии противоположно заряженного иона.

2. При наличии на внутренней стороне мембраны белков, фиксирующих определенные ионы. За счет фиксированных зарядов создается дополнительная возможность поступления ионов противоположного заряда (доннановское равновесие).

3. В результате активного (связанного с затратой энергии) транспорта либо катиона, либо аниона. В данном случае противоположно заряженный ион может передвигаться пассивно по градиенту электрического потенциала.

Активный транспорт -- это транспорт, идущий против градиента электрохимического потенциала, т. е. по направлению от меньшего к большему его значению. Активный транспорт не может происходить самопроизвольно и требует затраты энергии, выделяющейся в процессе метаболизма. Активный перенос имеет решающее значение, поскольку обеспечивает избирательное концентрирование необходимых для жизнедеятельности клетки веществ. Имеется ряд доказательств существования активного транспорта ионов. В частности, это опыты по влиянию внешних условий. Так, оказалось, что поступление ионов зависит от температуры. В определенных пределах с повышением температуры скорость поглощения веществ клеткой возрастает. В отсутствие кислорода, в атмосфере азота, поступление ионов резко тормозится и может даже наблюдаться выход солей из клеток корня наружу. Под влиянием дыхательных ядов, таких, как KCN, СО, поступление ионов также затормаживается. С другой стороны, увеличение содержания АТФ усиливает процесс поглощения. Все это указывает на то, что между поглощением солей и дыханием существует тесная связь. Как известно дыхание является основным поставщиком энергии в клетке. Многие исследователи приходят к выводу о тесной взаимосвязи между поглощением солей и синтезом белка. Так, хлорамфеникол -- специфический ингибитор синтеза белка -- подавляет и поглощение солей. Способность клетки к избирательному накоплению питательных солей, зависимость поступления от интенсивности обмена служат доказательством того, что наряду с пассивным имеет место и активное поступление ионов. Оба процесса часто идут одновременно и бывают настолько тесно связаны, что их трудно разграничить.

Размещено на Allbest.ru

...

Подобные документы

  • Компоненты бактериальной клетки, их функции. Энергетический обмен микробов. Способы получения энергии – брожение, дыхание. Типы дыхания бактерий. Влияние на микробную клетку ядовитых веществ. Стафилококковая интоксикация, возбудитель и его токсин.

    контрольная работа [27,3 K], добавлен 08.08.2009

  • Многообразие клеток в природе. Принципы строения организмов. Структуры, ограничивающие клетки и внутриклеточные органоиды. Поверхностный полисахаридный слой мембраны. Сигнальные углеводы и рецепторные белки. Механизм поступления веществ в клетку.

    презентация [4,8 M], добавлен 26.05.2012

  • Характеристика строения бактериальной клетки. Механизмы поступления питательных веществ к клетку. Описание биохимической структуры микроорганизмов. Генетический материал бактерий, изображение их ядерной структуры. Симбиотические отношения микроорганизмов.

    курсовая работа [391,9 K], добавлен 24.05.2015

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

  • Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация [35,1 M], добавлен 11.11.2013

  • Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.

    реферат [39,6 K], добавлен 14.05.2011

  • Концентрация хлора внутри клетки, механизмы его переноса. Хлор-бикарбонатный обменник, калий-хлорный ко-транспорт. Механизмы накопления веществ, участвующих в синаптической передаче. Закачка медиатора в клетку. Молекулы переносчиков нейромедиаторов.

    реферат [18,1 K], добавлен 24.10.2009

  • Изучение программы Виргилио Лью и Роберта Букчина о неидеальном осмотическом поведении гемоглобина. Построение математической модели динамики изменения объема и потенциала клетки (липосомы) в зависимости от концентраций вне- и внутриклеточных ионов.

    курсовая работа [586,8 K], добавлен 15.03.2012

  • Характеристика сущности клетки - элементарной единицы строения и жизнедеятельности всех живых организмов (кроме вирусов), обладающей собственным обменом веществ, способной к самостоятельному существованию, самовоспроизведению и развитию. Строение клетки.

    реферат [607,1 K], добавлен 13.11.2010

  • Латенция и вирогения как типы взаимодействия вируса с клеткой. Процесс адсорбции вируса и его проникновения в клетку, синтез вирусных белков. Этапы созревания дочерних вирусных частиц, способы их выхода из клетки, общие принципы сборки вирионов.

    реферат [18,6 K], добавлен 29.09.2009

  • Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.

    реферат [36,2 K], добавлен 13.12.2007

  • Основные положения нейронной теории. Структурные элементы нервной клетки. Обмен веществ в нейроне, кровоснабжение нервных клеток. Особенности питания нервных клеток и обмена веществ. Основные функции нервной клетки: воспринимающая функция нейрона.

    контрольная работа [28,9 K], добавлен 16.02.2010

  • Клетка как структурная единица организма. Основные компоненты клетки. Нуклеиновые кислоты, их структура и функциональные группы. Транспирация и ее биологическое значение. Верхний "двигатель" водного потока. Понятие об углеродном питании растений.

    курсовая работа [375,4 K], добавлен 24.06.2015

  • Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.

    презентация [4,1 M], добавлен 13.12.2015

  • Виды, функции и особенности тканей. Эпителиальная, соединительная и нервная ткань. Понятие и функции клетки. Связь человека и всех живых существ между собой соединительными структурами. Питание и обмен веществ клетки. Кровь как внутренняя среда организма.

    конспект урока [549,4 K], добавлен 22.01.2011

  • Необратимость действия ионизирующей радиации на организм. Биохимические изменения в облученной клетке. Хромосомные аберрации (перестройки) как проявление лучевого поражения клеток. Продвижение клетки по циклу, задержка деления под влиянием радиации.

    реферат [32,9 K], добавлен 27.06.2011

  • Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация [12,3 M], добавлен 03.11.2013

  • Свойство мембранной клетки проводить ионные токи и накапливать заряд на своей внешней или внутренней поверхности, емкость мембраны. Нарастание и спад потенциала, время, необходимое для достижения его устойчивого состояния, сенситизация и S интернейроны.

    реферат [157,7 K], добавлен 26.10.2009

  • Клетки-продуценты цитокинов. Рецепторы цитокинов и механизм действия цитокинов на клетку. Классификация цитокинов по механизму действия. Гнойно-воспалительные заболевания: фурункулез и остеомиелит. Определение уровня гамма-интерферона в сыворотке крови.

    дипломная работа [712,1 K], добавлен 15.12.2008

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.