Основные этапы биосинтеза белка. Гормоны
Гормоны мозгового вещества надпочечников - адреналин и норадреналин. Роль гормонов в мышечной деятельности. Взаимосвязь углеводного и липидного обмена. Превращение углеводов в жиры. Структура, свойства и биологические функции белков. Биосинтез белка.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 12.11.2013 |
Размер файла | 19,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Гормоны мозгового вещества надпочечников - адреналин и норадреналин (катехоламины)
Адреналин и норадреналин являются производными аминокислот фенилаланина и тирозина. Эффект адреналина на метаболические процессы в 5-10 раз сильнее норадреналина.
Катехоламины активируют расщепление и окисление углеводов и жиров, усиливают тканевое дыхание, газообмен, усиливают ресинтезмакроэргических соединений. Такой эффект катехоламинов осуществляется при повышенных энергозатратах организма в условиях усиления двигательной активности. Катехоламинам принадлежит также важная роль в приспособлении организма к изменениям условий среды, к систематической мышечной деятельности.
Гормоны щитовидной железы (тиреоидные гормоны) тироксин и трийодтиронин являются производными аминокислоты тирозина и содержат в своем составе 4 и 3 атома йода соответственно. Тиреоидные гормоны регулируют активность ферментных систем обмена углеводов и липоидов, синтеза белка, интенсивность транспорта субстратов и кофакторов, биоэнергетические процессы. Тиреоидные гормоны разобщают окислительное фосфорилирование, в результате чего окислительные процессы активируются, а их эффективность падает. Поэтому при гиперфункции щитовидной железы (базедова болезнь) происходит усиление основного обмена, теплопродукции, стимулируется расщепление белков, жиров и углеводов. При гипофункции щитовидной железы происходит задержка роста, развития нервной системы и половых желез, что вызывает физическую и умственную отсталость (кретинизм), ожирение, слизистые отеки (микседермы).
Роль гормонов в мышечной деятельности
При физических нагрузках наблюдается изменение функций многих эндокринных желез, особенно тех, которые участвуют в формировании общей адаптации организма к воздействию стресса.
Величина и направленность изменения функций отдельных эндокринных желез зависит от интенсивности, длительности физических нагрузок, а также степени тренированности организма. При кратковременных однократных физических нагрузках секреторная функция многих желез усиливается. В кровь поступает большее количество гормонов, что стимулирует процессы энергообразования и физическую работоспособность организма. При длительной физической работе секреция гормонов снижается. Возможно истощение функций эндокринных желез, что сопровождается снижением физической работоспособности и развитием утомления.
Систематическая мышечная деятельность усиливает потенциальные возможности эндокринных желез, вызывает увеличение запасов гормонов, хотя уровень отдельных гормонов (тироксина, инсулина) в крови в состоянии покоя понижен. Однако под воздействием физических нагрузок в тренированном организме происходит усиление секреции гормонов и регулируемых ими процессов. При этом совершенствуются механизмы передачи действия гормонов, а также наблюдается увеличение количества вторичного передатчика -- цАМФ в мышцах, повышение чувствительности ферментов к передатчику либо рецепторов к гормонам, что способствует проявлению высокой физической работоспособности организма.
Направленность изменения концентрации отдельных гормонов в крови при мышечной деятельности и их участие в приспособительных реакциях. Видно, что одни гормоны усиливают мобилизацию и утилизацию (использование) углеводов и жиров, а это поддерживает нормальный уровень АТФ в клетках и улучшает приспособление организма к мышечной деятельности. Другие гормоны участвуют в поддержании водного баланса в организме, предотвращая его обезвоживание, третьи -- усиливают процессы адаптивного биосинтеза структурных белков и ферментов, обеспечивают процессы восстановления и адаптации организма к физическим нагрузкам.
Высокая физическая работоспособность и спортивный результат определяются согласованной работой всех эндокринных желез -- так называемым гормональным ансамблем. Нарушение функций какой-либо железы
Приводит к нарушению эффективности обменных процессов , что не позволяет спортсмену достичь высокого спортивного результата. Только правильно организованный тренировочный процесс позволяет улучшить функциональные возможности эндокринной системы, дает возможность избегать стадий истощения этой системы при больших физических нагрузках.
Взаимосвязь углеводного и липидного обмена
Углеводы в значительной степени могут превращаться в жиры при избыточном потреблении с пищей, а жиры могут использоваться для новообразования глюкозы и восполнения гликогена только при недостатке углеводов. Их обмены связаны такими общими промежуточными метаболитами, как глицерин, пировиноградная кислота и ацетил-КоА.
Глицерин образуется при обмене углеводов в гликолитической фазе окисления глюкозы в виде фосфоглицеринового альдегида и может использоваться как исходный компонент синтеза жиров (рис. 102). Образуется он также при распаде нейтральных жиров, фосфолипидов и, превращаясь в фосфоглицериновый альдегид, может включаться в процесс синтеза глюкозы. Вторым промежуточным метаболитом, используемым для биосинтеза как углеводов, так и жиров, является пировиноградная кислота. Однако основным исходным соединением, используемым в тканях при взаимопревращении углеводов и жиров, является ацетил-КоА. Молекулы ацетил-КоА образуются из пировиноградной кислоты при аэробном окислении углеводов и распаде жирных кислот. Из них могут синтезироваться как жиры, так и углеводы. В процессе новообразования глюкозы ацетил-КоА активирует ферментативное превращение пировиноградной кислоты в фосфоэнолпировиноградную кислоту с участием щавелевоуксусной кислоты.
Новообразование глюкозы из продуктов распада жиров происходит при снижении ее уровня в крови, например при длительных физических нагрузках или голодании. На резкое снижение глюкозы в крови особенно остоо реагирует мозг, для которого глюкоза является основным энергетическим субстратом. Для предотвращения развития гипогликемической комы включаются адаптационные регуляторные механизмы восстановления уровня глюкозы из неуглеводных компонентов и подавляются процессы превращения ее в жирные кислоты и аминокислоты. Важную роль в этих процессах играет печень, регулирующая уровень глюкозы в крови, что будет рассмотрено ниже.
Превращение углеводов в жиры можно рассматривать как запасание энергии, которая будет освобождаться при окислении жиров. Известно, что в состоянии относительного покоя, при длительной физической работе, голодании в печени, скелетных мышцах и сердце важными энергетическими субстратами являются свободные жирные кислоты и кетоновые тела. При этом используются продукты распада жирных кислот -- кетоновые тела, которые образуются в печени, а утилизируются в мышцах и других тканях, в том числе и в мозге при длительном голодании. Таким образом организм регулирует необходимое количество энергетических резервов и использует разные источники энергии в зависимости от условий среды, а также осуществляет перераспределение энергетических источников между отдельными органами.
Основные этапы биосинтеза белка
гормон белок биосинтез липидный
Сложный процесс биосинтеза белка в тканях можно разделить на несколько основных этапов, включающих процессы транскрипции, активации аминокислот и трансляции.
Транскрипция -- это процесс синтеза молекулы информационной РНК на участке молекулы ДНК (гене), как на матрице, в котором закодирована информация о структуре белка. Сначала специфические ферменты (ДНК-полимеразы) разрывают водородные связи между азотистыми основаниями двух комплементарных цепей ДНК. Далее происходит раскручивание участка спирали ДНК, и на одной из двух ее цепей с участием фермента РНК-полимеразы синтезируется молекула иРНК по принципу комплементарности. Таким образом происходит переписывание информации о структуре белка. В комплексе с ядерными белками иРНК выходит из ядра в цитоплазму, а ДНК восстанавливает свою структуру. Этот этап происходит в ядре и является началом запуска синтеза конкретного белка, который осуществляется на рибосомах.
Активация аминокислот -- это процесс взаимодействия с молекулами тРНК. Поскольку существует 20 основных аминокислот, то существует и более 20 видов тРНК. Процесс активации протекает с участием аминоацил-тРНК-синтетазы и молекулы АТФ.
Для каждой аминокислоты имеются свои специфические ферменты, участвующие в ее активации. Они проявляют высокую активность в присутствии ионов Мд2+. Нарушение специфичности действия этих ферментов может вносить погрешности в первичную структуру белка при образовании полипептидной цепи, что влечет за собой мутационные изменения в организме.
Молекулы тРНК имеют по два специфических триплета. Один из них -- кодон, с которым связывается аминокислота, другой -- антикодон, который соответствует кодону данной аминокислоты в иРНК. Благодаря этому аминокислоты при синтезе белка располагаются в последовательности, диктуемой последовательностью кодонов иРНК. Активированные аминокислоты доставляются к рибосомам.
Трансляция - это процесс синтеза полипептидной цепи белка на рибосомах, в ходе которого происходит передача информации из молекулы иРНК в определенную последовательность аминокислот синтезирующегося белка. Молекула иРНК передвигается между двумя субъединицами рибосомы -- малой (30 S) и большой (50 S). К малой субъединице присоединяется иРНК, а к большой -- фермент, синтезирующий белок (пептидил-трансфераза). При передвижении иРНК между двумя субъединицами рибосом кодоны иРНК взаимодействуют с антикодонами тРНК по принципу комплементарности. При этом специальные ферменты катализируют присоединение аминокислотного остатка к нарастающей полипептидной цепи. Этот процесс активирует рРНК.
Завершение биосинтеза белка обеспечивается кодонами терминации (стоп-сигналом) в иРНК -- УАА, УАГ и УГА, с которыми не может связаться ни одна тРНК. Поэтому процесс завершения биосинтеза белка называется терминацией. Затем включается фактор освобождения и полипептидная цепь белка отделяется от рибосом. Вновь синтезированный белок принимает определенную пространственную структуру, характерную для данного белка. Сложная третичная структура молекулы белка формируется самопроизвольно в цитоплазме и определяется характером первичной структуры белка, а также условиями его окружения.
Синтез белка требует затрат огромного количества АТФ, так как только для присоединения одной аминокислоты к полипептидной цепи синтезирующегося белка используется, по меньшей мере, пять молекул АТФ. Следовательно, процесс синтеза белка зависит от скорости восстановления уровня АТФ в клетках.
Белки, структура, свойства и биологические функции
Белки -- высокомолекулярные азотсодержащие вещества, при гидролизе которых образуются аминокислоты. Иногда белки называют протеинами (от греч. proteus -- первый, главный), определяя тем самым их важнейшую роль в жизнедеятельности всех организмов. Белок в организме человека составляет в среднем 45 % сухой массы тела (12--14 кг). Содержание его в отдельных тканях различное (табл. 18). Наибольшее количество белка содержится в мышцах, костях, коже, пищеварительном тракте и других плотных тканях.
Суточная потребность в белке взрослого человека, не занимающегося спортом, составляет в среднем 1,3 г на 1 кг массы тела или около 80 г. При больших энерготратах потребность в них увеличивается примерно на 10 г на каждые 2100 кДж увеличивающихся затрат энергии.
Белки поступают в организм преимущественно с пищей животного происхождения. В растениях белков содержится значительно меньше: в овощах и фруктах -- всего 0,3--2,0 % массы свежей ткани; наибольшее количество белков -- в бобовых -- 20--30 %, злаках -- 10--13 и грибах -- 3--6 %.
Элементарный состав белков. Важнейшими химическими элементами всех белков являются углерод (50--55 %), кислород (21--23 %), водород (6,5-- 7,3%), азот (15--18%), сера (0,3--2,5%). В составе белков обнаружены также фосфор, железо, йод, медь, марганец и другие химические элементы.
Количественный и качественный состав отдельных белков различен. Общее представление о сложности химического состава белка дает молекулярная формуле* гемоглобина -- белка, транспортирующего газы в организме: C3032H4816O872N780S8Fe4.
Все белки содержат постоянное количество азота, равное в среднем 16%. Поэтому по количеству азота, поступившего с пищей (процентное содержание азота пищи умножают на пересчетный коэффициент 6,25), определяют потребление белка организмом. Аминокислотный состав. Белки состоят из аминокислот. Известно около 200 различных аминокислот, однако для построения белков в животных и растительных тканях используются только 20. Называются эти аминокислоты основными.
Наряду с основными в состав отдельных белков входят другие аминокислоты -- неосновные. Каждая такая аминокислота происходит от одной из 20 основных аминокислот. Например, 4-гидроксипролин и 5-дигидро-ксилизин являются производными пролина и лизина и входят в состав коллагена -- белка соединительной ткани.
Биологические функции белков
* Структурная (пластическая). В комплексе с липидами белки составляют структуру всех клеточных мембран и основу цитоплазмы клеток. Структурной основой соединительной ткани являются такие белки, как коллаген (входит в состав хрящей и сухожилий), кератин (входит в состав кожи), эластин (входит в состав связок и стенок сосудов).
* Каталитическая. Эту функцию выполняют специфические белки-ферменты , регулирующие обмен веществ и энергии в организме. Если ферменты не работают в клетке, то биохимические реакции не протекают и живая клетка может погибнуть.
* Сократительная. Все виды сокращения и движения скелетных мышц, миокарда и других сокращающихся тканей обеспечивают сократительные белки актин и миозин.
* Транспортная. Белки способны связывать и транспортировать с током крови или через клеточные мембраны отдельные молекулы и ионы. Например, гемоглобин эритроцитов крови переносит кислород от легких к тканям и углекислый газ -- от тканей к легким; миоглобин мышц переносит кислород в мышечной ткани к местам его использования. Отдельные белки крови транспортируют жирные кислоты, липиды, железо, некоторые гормоны. * Защитная. Белки иммунной системы гаммаглобулины "узнают" й связывают чужеродные вещества, поступающие в организм, защищая тем самым его от вирусов, бактерий и клеток других организмов. Защитную функцию выполняет также белок интерферон. Белки плазмы крови фибриноген и тромбин участвуют в процессах свертывания крови, предотвращая кровопотери при ранениях.
* Гормональная, или регуляторная. Высокоспецифические белки-гормоны регулируют обмен веществ .
* Рецепторная. Многие белки являются рецепторами гормонов, нейро-медиаторов, других биологически активных веществ. Они осуществляют избирательное узнавание, связывание и передачу их регуляторного действия.
* Передача наследственной информации. Белки входят в состав хромосом и участвуют в воспроизведении генетической информации, в регуляции процессов роста и размножения.
* Опорная. Упругость и прочность костей скелета, кожи, сухожилий обеспечивают преимущественно белкм коллаген v\ эластин.
* Энергетическая. Около 10--15% энергопотребления организма обеспечивается белками. При окислении 1 г белков выделяется 17 кДж (4,1 ккал) энергии.
Размещено на Allbest.ru
...Подобные документы
Гормоны коры и мозгового вещества надпочечников. Механизм действия стероидных гормонов. Функциональные взаимодействия в системе "гипоталамус - гипофиз - кора надпочечников". Гормоны щитовидной железы и их синтез. Синдромы нарушения выработки гормонов.
презентация [1,9 M], добавлен 08.01.2014Функции и строение надпочечников, распределение коркового и мозгового вещества. Кровоснабжение надпочечников от артерий. Гормоны мозгового вещества, их химическая природа. Синтез и выделение гормонов "острого" стресса - адреналина и норадреналина.
презентация [904,5 K], добавлен 18.06.2013Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.
курсовая работа [769,0 K], добавлен 18.02.2010Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.
презентация [2,3 M], добавлен 21.12.2013Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.
презентация [5,3 M], добавлен 03.12.2013Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.
презентация [201,8 K], добавлен 21.10.2014Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.
курсовая работа [261,6 K], добавлен 12.11.2014Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.
презентация [5,9 M], добавлен 21.11.2013Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.
презентация [322,6 K], добавлен 11.04.2013Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.
контрольная работа [26,8 K], добавлен 10.06.2015Белок – неотъемлемая составляющая нашего организма, нарушение которой может вызвать его разрушение. Исторический анализ открытия и исследований белков. Свойства белка, выделение. Биосинтез и химический синтез белка - практическое применение и значение.
реферат [23,5 K], добавлен 18.05.2008Изучение кодирования аминокислотной последовательности белков и описание процесса синтеза белка в рибосомах. Генетический код и синтез рибонуклеиновой кислоты. Построение цепи матричной РНК и синтез протеина. Трансляция, сворачивание и транспорт белков.
реферат [3,5 M], добавлен 11.07.2015История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.
контрольная работа [471,6 K], добавлен 28.04.2014Сущность и основные свойства гормонов, выделяемых эндокринными железами млекопитающих и человека. Типы реализации гормонального действия, регулирование активности клеток организма. Главные эндокринные железы и их свойства, мужские и женские гормоны.
презентация [776,9 K], добавлен 04.03.2013Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.
презентация [250,9 K], добавлен 01.11.2015Структура молекулы тайтина. Структура и функции молекул С-белка, Х-белка и Н-белка. Белки семейства тайтина в норме, при адаптации и патологии. Амилоидозы. Современные представления о строении, формировании амилоидных фибрилл. Патологические проявления.
дипломная работа [975,8 K], добавлен 15.12.2008Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.
презентация [23,8 M], добавлен 28.11.2013Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.
контрольная работа [843,8 K], добавлен 12.07.2010История исследования белков. Белки: строение, классификация, обмен. Биосинтез белка. Функции белков в организме. Роль в жизнедеятельности организма. Высокомолекулярные органические соединения. Болезни, связанные с нарушением выработки ферментов.
реферат [29,2 K], добавлен 05.10.2006Система гормональной регуляции. Номенклатура и классификация гормонов. Принципы передачи гормонального сигнала клеткам-мишеням. Строение гидрофильных гормонов, механизм их действия. Метаболизм пептидных гормонов. Представители гидрофильных гормонов.
реферат [676,8 K], добавлен 12.11.2013