Биология

Популяционно-видовой уровень организации жизни. Экологическая характеристика популяции. Биологический прогресс и биологический регресс. Эволюция почки и мочеполовых каналов. Химическая структура гормонов. Место человека в системе животного мира.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 13.11.2013
Размер файла 4,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

БИОЛОГИЯ

Под редакцией академика РАМН профессора В.Н. Ярыгина

В двух книгах

* Книга 2 *

Издание пятое исправленное и дополненное

Рекомендовано Министерством образования Российской Федерации

в качестве учебника для студентов медицинских специальностей

высших учебных заведений

Москва «Высшая школа» 2003

УДК 574/578

ББК 28.0 Б63

Авторы:

В.Н. Ярыгин, В.И. Васильева, И.Н. Волков, В.В. Синельщикова

Рецензенты:

кафедра медицинской биологии и генетики

Тверской государственной медицинской академии

(зав. кафедрой -- проф. Г. В. Хомулло);

кафедра биологии Ижевской государственной медицинской академии (зав. кафедрой -- проф. В.А. Глумова)

ISBN 5-06-004589-7 (кн. 2) © ФГУП «Издательство «Высшая школа», 2003

ISBN 5-06-004590-0

Оригинал-макет данного издания является собственностью издательства «Высшая школа», и его репродуцирование (воспроизведение) любым способом без согласия издательства запрещается.

ПРЕДИСЛОВИЕ

Настоящая книга -- продолжение учебника «Биология» для студентов медицинских специальностей. Она включает разделы, посвященные биологическим закономерностям, которые проявляются на популяционно-видовом и биогеоценотическом уровнях организации жизни на Земле.

Содержание учебника, как и в 1-й книге, включает изложение теоретических проблем, описание конкретных биологических объектов и оценку особенностей человека как биосоциального вида в процессах эволюции жизни на всех уровнях, вплоть до биосферного.

В данной книге есть некоторые подходы к изложению материала, не встречавшиеся ранее в подобных учебниках. К ним относятся более глубокое отображение и обоснование врожденных пороков развития человека, которые могут быть расценены как онто- и филогенетически обоснованные. Кроме того, дано описание экологических групп паразитов человека в соответствии с их адаптацией к специализированным условиям существования в разных органах.

Нумерация глав продолжает 1-ю книгу.

Авторы

РАЗДЕЛ IV. ПОПУЛЯЦИОННО-ВИДОВОЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ

Рассмотренные ранее биологические явления и механизмы, относящиеся к молекулярно-генетическому, клеточному и онтогенетическому уровням организации жизни, в пространственном отношении ограничивались отдельно взятым организмом (многоклеточным или, одноклеточным, прокариотическим или эукариотическим), а во временном -- его онтогенезом, или жизненным циклом. Популяционно-видовой уровень организации относится к категории надорганизменных.

Жизнь представлена отдельными видами, являющимися совокупностями организмов, которые обладают свойствами наследственности и изменчивости.

Эти свойства становятся основой эволюционного процесса. Механизмами, обусловливающими такой результат, являются избирательная выживаемость и избирательное размножение особей, принадлежащих к одному виду. В природных условиях особенно интенсивно размножение происходит в популяциях, которые являются минимальными самовоспроизводящимися группами особей внутри вида.

Каждый 'из некогда существовавших или ныне живущих видов представляет собой итог определенного цикла эволюционных преобразований на популяционно-видовом уровне, закрепленный изначально в его генофонде. Последний отличается двумя важными качествами. Во-первых, он содержит биологическую информацию о том, как данному виду выжить и оставить потомство в определенных условиях окружающей среды, а во-вторых, обладает способностью к частичному изменению содержания заключенной в нем биологической информации. Последнее является основой эволюционной и экологической пластичности вида, т.е. возможности приспособиться к существованию в иных условиях, меняющихся в историческом времени или от территории к территории. Популяционная структура вида, приводящая к распаду генофонда вида на генофонды популяций, способствует проявлению в исторической судьбе вида в зависимости от обстоятельств обоих отмеченных качеств генофонда -- консервативности и пластичности.

Таким образом, общебиологическое значение популяционно-видового уровня состоит в реализации элементарных механизмов эволюционного процесса, обусловливающих видообразование.

Значение происходящего на популяционно-видовом уровне для здравоохранения определяется наличием наследственных болезней, заболеваний с очевидной наследственной предрасположенностью, а также выраженными особенностями генофондов разных популяций людей. Процессы, происходящие на этом уровне, в сочетании с экологическими особенностями различных территорий составляют основу перспективного направления современной медицины -- эпидемиологии неинфекционных болезней.

ГЛАВА 10. БИОЛОГИЧЕСКИЙ ВИД. ПОПУЛЯЦИОННАЯ СТРУКТУРА ВИДА

10.1 ПОНЯТИЕ О ВИДЕ

Видом называют совокупность особей, сходных по основным морфологическим и функциональным признакам, кариотипу, поведенческим реакциям, имеющих общее происхождение, заселяющих определенную территорию (ареал), в природных условиях скрещивающихся исключительно между собой и при этом производящих плодовитое потомство.

Видовая принадлежность особи определяется по соответствию ее перечисленным критериям: морфологическому, физиолого-биохимическому, цитогенетическому, этологическому, экологическому и др. Наиболее важные признаки вида -- его генетическая (репродуктивная) изоляция, заключающаяся в нескрещиваемости особей данного вида с представителями других видов, а также генетическая устойчивость в природных условиях, приводящая к независимости эволюционной судьбы.

Со времен К. Линнея вид является основной единицей систематики. Особое положение вида среди других систематических единиц (таксонов) обусловливается тем, что это та группировка, в которой отдельные особи существуют реально. В составе вида в природных условиях особь рождается, достигает половой зрелости и выполняет свою главную биологическую функцию: участвуя в репродукции, обеспечивает продолжение рода. В отличие от вида таксоны надвидового ранга, такие, как род, отряд, семейство, класс, тип, не являются ареной реальной жизни организмов. Выделение их в естественной системе органического мира отражает результаты предшествующих этапов исторического развития живой природы. Распределение организмов по надвидовым таксонам указывает на степень их филогенетического родства.

Важнейшим фактором объединения организмов в виды служит половой процесс. Представители одного вида, скрещиваясь друг с другом, обмениваются наследственным материалом. Это ведет к перекомбинации в каждом поколении генов (аллелей), составляющих генотипы отдельных особей. В результате достигаются нивелировка различий между организмами внутри вида и длительное сохранение основных морфологических, физиологических и прочих признаков, отличающих один вид от другого. Благодаря половому процессу происходит также объединение генов (аллелей), распределенных по генотипам разных особей, в общий генофонд (аллелофонд)11 Объем генетической информации, которой располагает вид или популяция, обусловливается совокупностью наследственных задатков во всех аллельных формах. Таким образом, более полно объем наследственной информации отражает термин «аллелофонд», но более употребим --«генофонд». вида. Этот генофонд заключает в себе весь объем наследственной информации, которым располагает вид на определенном этапе его существования.

Определение вида, приведенное выше, не может быть применено к размножающимся бесполым путем агамным (некоторые микроорганизмы, синезеленые водоросли), самооплодотворяющимся и строго партеногетическим организмам. Группировки таких организмов, эквивалентные виду, выделяют по сходству фенотипов, общности ареала, близости генотипов по происхождению. Практическое использование понятия «вид» даже у организмов с половым размножением нередко затруднено. Это обусловлено динамичностью видов, проявляющейся во внутривидовой изменчивости, «размытости» границ ареала, образовании и распаде внутривидовых группировок различного объема и состава (популяций, рас, подвидов). Динамичность видов является следствием действия элементарных эволюционных факторов (см. гл. 11)

10.2 ПОНЯТИЕ О ПОПУЛЯЦИИ

В природных условиях организмы одного вида расселены неравномерно. Имеет место чередование участков повышенной и пониженной концентрации особей (рис. 10.1). В результате вид распадается на группировки или популяции, соответствующие зонам более плотного заселения. «Радиусы индивидуальной активности» отдельных особей ограничены. Так, виноградная улитка способна преодолеть расстояние в несколько десятков метров, ондатра --в несколько сотен метров, песец -- в несколько сотен километров. Благодаря этому размножение (репродуктивные ареалы) в основном приурочено к территориям с повышенной плотностью организмов.

Рис. 10.1. Неравномерное расселение особей по ареалу вида.

А--ленточный; Б--пятнистый; В--островной типы

Вероятность случайных скрещиваний (панмиксии), обусловливающих из поколения в поколение эффективную перекомбинацию генов, внутри «сгущений» оказывается выше, чем в зонах между ними и для вида в целом. Таким образом, в репродуктивном процессе генофонд вида представлен генофондами популяций.

Популяцией называют минимальную самовоспроизводящуюся группу особей одного вида, населяющих определенную территорию (ареал) достаточно долго (в течение многих поколений). В популяции фактически осуществляется сравнительно высокий уровень панмиксии, и она в определенной степени отделена от других популяций той или иной формой изоляции11 Определение справедливо для видов с половым размножением..

10.2.1 Экологическая характеристика популяции

Экологически популяция характеризуется величиной, оцениваемой по занимаемой территории (ареалу), численности особей, возрастному и половому составу. Размеры ареала зависят от радиусов индивидуальной активности организмов данного вида и особенностей природных условий на соответствующей территории. Численность особей в популяциях организмов разных видов различается. Так, количество стрекоз Leucorrhinia albifrons в популяции на одном из подмосковных озер достигало 30 000, тогда как численность земляной улитки Cepaea nemoralis оценивалась в 1000 экземпляров. Существуют минимальные значения численности, при которых популяция способна поддерживать себя во времени. Сокращение численности ниже этого минимума приводит к вымиранию популяции.

Величина популяции постоянно колеблется, что зависит от изменений экологической ситуации. Так, осенью благоприятного по кормовым условиям года популяция диких кроликов на одном из островов у юго-западного побережья Англии состояла из 10 000 особей. После холодной малокормной зимы число особей снизилось до 100.

Возрастная структура популяций организмов разных видов варьирует в зависимости от продолжительности жизни, интенсивности размножения, возраста достижения половой зрелости. В зависимости от вида организмов она может быть то более, то менее сложной. Так, у стадных млекопитающих, например дельфинов белух Delphinapterus leucas, в популяции одновременно находятся детеныши текущего года рождения, подросший молодняк прошлого года рождения, половозрелые, но, как правило, не размножающиеся животные в возрасте 2--3 лет, взрослые размножающиеся особи в возрасте 4--20 лет. С другой стороны, у землероек Sorex весной рождаются 1--2 приплода, вслед за чем взрослые особи вымирают, так что осенью вся популяция состоит из молодых неполовозрелых животных.

Половой состав популяций обусловливается эволюционно закрепленными механизмами формирования первичного (на момент зачатия), вторичного (на момент рождения) и третичного (во взрослом состоянии) соотношения полов. В качестве примера рассмотрим изменение полового состава популяции людей. На момент рождения оно составляет 106 мальчиков на 100 девочек, в возрасте 16--18 лет выравнивается, в возрасте 50 лет насчитывает 85 мужчин на 100 женщин, а в возрасте 80 лет -- 50 мужчин на 100 женщин.

10.2.2 Генетические характеристики популяции

Генетически популяция характеризуется ее генофондом (аллелофондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Генофонды природных популяций отличает наследственное разнообразие (генетическая гетерогенность, или полиморфизм), генетическое единство, динамическое равновесие доли особей с разными генотипами.

Наследственное разнообразие заключается в присутствии в генофонде одновременно различных аллелей отдельных генов. Первично оно создается мутационным процессом. Мутации, будучи обычно рецессивными и не влияя на фенотипы гетерозиготных организмов, сохраняются в генофондах популяций в скрытом от естественного отбора состоянии. Накапливаясь, они образуют резерв наследственной изменчивости. Благодаря комбинативной изменчивости этот резерв используется для создания в каждом поколении новых комбинаций аллелей. Объем такого резерва огромен. Так, при скрещивании организмов, различающихся по 1000 локусов11 Число локусов (генов) у человека превышает эту цифру в 30--50 раз., каждый из которых представлен десятью аллелями, количество вариантов генотипов достигает 101000, что превосходит число электронов во Вселенной.

Генетическое единство популяции обусловливается достаточным уровнем панмиксии. В условиях случайного подбора скрещивающихся особей источником аллелей для генотипов организмов последовательных поколений является весь генофонд популяции. Генетическое единство проявляется также в общей генотипической изменчивости популяции при изменении условий существования, что обусловливает как выживание вида, так и образование новых видов.

10.2.3 Частоты аллелей. Закон Харди -- Вайнберга

В пределах генофонда популяции доля генотипов, содержащих разные аллели одного гена; при соблюдении некоторых условий из поколения в поколение не изменяется. Эти условия описываются основным законом популяционной генетики, сформулированным в 1908 г. английским математиком Дж. Харди и немецким врачом-генетиком Г. Вайнбергом. «В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Допустим, что в генофонде популяции, удовлетворяющей описанным условиям, некий ген представлен аллелями А1 и А2, обнаруживаемыми с частотой р и q. Так как других аллелей в данном генофонде не встречается, то р+q = 1. При этом q = 1--р.

Соответственно особи данной популяции образуют р гамет с аллелем А1 и q гамет с аллелем А2. Если скрещивания происходят случайным образом, то доля половых клеток, соединяющихся с гаметами А1, равна р, а доля половых клеток, соединяющихся с гаметами A2, -- q. Возникающее в результате описанного цикла размножения поколение F1 образовано генотипами AlA1, A1A2, A2A2, количество которых соотносится как (р + q) (р + q) = р2 + 2pq + q2 (рис. 10.2). По достижении половой зрелости особи AlAi и АгА2 образуют по одному типу гамет -- A1 или A2 -- с частотой, пропорциональной числу организмов указанных генотипов (р и q). Особи A1A2 образуют оба типа гамет с равной частотой 2pq/2.

Рис. 10.2. Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов (закон Харди--Вайнберга)

Таким образом, доля гамет A1 в поколении F1 составит р2 + 2pq/2 = р2 + р(1--р) = p, а доля гамет А2 будет равна q2 + 2pq/2 = q2 + + q(l-q) = q.

Так как частоты гамет с разными аллелями в поколении fi в сравнении с родительским поколением не изменены, поколение F2 будет представлено организмами с генотипами AlA1, A1A2 и А2А2 в том же соотношении р2 + 2pq + q2. Благодаря этому очередной цикл размножения произойдет при наличии р гамет A1 и q гамет А2. Аналогичные расчеты можно провести для локусов с любым числом аллелей. В основе сохранения частот аллелей лежат статистические закономерности случайных событий в больших выборках.

Уравнение Харди--Вайнберга в том виде, в котором оно рассмотрено выше, справедливо для аутосомных генов. Для генов, сцепленных с полом, равновесные частоты генотипов AlA1, A1A2 и А2А2 совпадают с таковыми для аутосомных генов: р2 + 2pq + q2. Для самцов (в случае гетерогаметного пола) в силу их гемизиготности возможны лишь два генотипа A1-- или А2 --, которые воспроизводятся с частотой, равной частоте соответствующих аллелей у самок в предшествующем поколении: р и q. Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с хромосомой Х генов, у самцов встречаются чаще, чем у самок.

Так, при частоте аллеля гемофилии, равной 0,0001, это заболевание у мужчин данной популяции наблюдается в 10 000 раз чаще, чем у женщин (1 на 10 тыс. у первых и 1 на 100 млн. у вторых).

Еще одно следствие общего порядка заключается в том, что в случае неравенства частоты аллеля у самцов и самок разность между частотами в следующем поколении уменьшается вдвое, причем меняется знак этой разницы. Обычно требуется несколько поколений для того, чтобы возникло равновесное состояние частот у обоих полов. Указанное состояние для аутосомных генов достигается за одно поколение.

Закон Харди -- Вайнберга описывает условия генетической стабильности популяции. Популяцию, генофонд которой не изменяется в ряду поколений, называют менделевской. Генетическая стабильность менделевских популяций ставит их вне процесса эволюции, так как в таких условиях приостанавливается действие естественного отбора. Выделение менделевских популяций имеет чисто теоретическое значение. В природе эти популяции не встречаются. В законе Харди -- Вайнберга перечислены условия, закономерно изменяющие генофонды популяций. К указанному результату приводят, например, факторы, ограничивающие свободное скрещивание (панмиксию), такие, как конечная численность организмов в популяции, изоляционные барьеры, препятствующие случайному подбору брачных пар. Генетическая инертность преодолевается также благодаря мутациям, притоку в популяцию или оттоку из нее особей с определенными генотипами, отбору.

10.2.4 Место видов и популяций в эволюционном процессе

Вследствие общей адаптивной (приспособительной) направленности эволюции виды, возникающие в результате этого процесса, являются совокупностями организмов, так или иначе приспособленных к определенной среде. Эта приспособленность сохраняется на протяжении длительного ряда поколений благодаря наличию в генофондах и передаче потомству при размножении соответствующей биологической информации. Из этого следует, что при мало меняющихся условиях обитания сохранность вида во времени зависит от стабильности, консерватизма его генофонда. С другой стороны, стабильные генофонды не обеспечивают выживания в случае изменения условий жизни в историческом развитии планеты. Такие генофонды дают меньше возможностей для расширения ареала вида и освоения новых экологических ниш в текущий исторический период.

Популяционная структура вида позволяет совместить долговременность приспособлений, сформировавшихся на предшествующих этапах развития, с эволюционными и экологическими перспективами. Генофонд вида фактически распадается на генофонды популяций, каждый из которых отличается собственным направлением изменчивости. Популяции -- это генетически открытые в рамках вида группировки организмов.

Межпопуляционные миграции особей, сколь бы незначительными они ни были, препятствуют углублению различий и объединяют популяции в единую систему вида. Однако в случае длительной изоляции некоторых популяций от остальной части вида первоначально минимальные различия нарастают. В конечном итоге это приводит к генетической (репродуктивной) изоляции, что и означает появление нового вида. В эволюционный процесс непосредственно включены отдельные популяции, а завершается он образованием вида.

Таким образом, популяция является элементарной эволюционной единицей, тогда как вид -- качественным этапом эволюции, закрепляющим ее существенный результат.

ГЛАВА 11. ВИДООБРАЗОВАНИЕ В ПРИРОДЕ. ЭЛЕМЕНТАРНЫЕ ЭВОЛЮЦИОННЫЕ ФАКТОРЫ

Согласно синтетической теории эволюции, элементарное эволюционное явление, с которого начинается видообразование, заключается в изменении генетического состава (генетической конституции, или генофонда) популяции. События и процессы, способствующие преодолению генетической инертности популяций и приводящие к изменению их генофондов, называют элементарными эволюционными факторами. Важнейшими из них являются мутационный процесс, популяционные волны, изоляция, естественный отбор.

11.1 МУТАЦИОННЫЙ ПРОЦЕСС

Изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно. Особое место принадлежит генным мутациям. Они приводят к возникновению серий аллелей и, таким образом, к разнообразию содержания биологической информации.

Вклад мутационного процесса в видообразование носит двоякий характер. Изменяя частоту одного аллеля по отношению к другому, он оказывает на генофонд популяции прямое действие. Еще большее значение имеет формирование за счет мутантных аллелей резерва наследственной изменчивости. Это создает условия для варьирования аллельного состава генотипов организмов в последовательных поколениях путем комбинативной изменчивости. Благодаря мутационному процессу поддерживается высокий уровень наследственного разнообразия природных популяций. Совокупность аллелей, возникающих в результате мутаций, составляет исходный элементарный эволюционный материал. В процессе видообразования он используется как основа действия других элементарных эволюционных факторов.

Хотя отдельная мутация -- событие редкое, общее число мутаций значительно. Допустим, что некая мутация возникает с частотой 1 на 100 000 гамет, количество локусов в геноме составляет 10 000, численность особей в одном поколении равна 10 000, а каждая особь производит 1000 гамет. При таких условиях по всем локусам за поколение в генофонде вида произойдет 106 мутаций. За среднее время существования вида, равное нескольким десяткам тысяч поколений, количество мутаций составит 1010. Большинство мутаций первоначально оказывает на фенотип особей неблагоприятное действие. В силу рецессивности мутантные аллели обычно присутствуют в генофондах "популяций в гетерозиготных по соответствующему локусу генотипах.

Благодаря этому достигается тройственный положительный результат: 1) исключается непосредственное отрицательное влияние мутантного аллеля на фенотипическое выражение признака, контролируемого данным геном; 2) сохраняются нейтральные мутации, не имеющие приспособительной ценности в настоящих условиях существования, но которые смогут приобрести такую ценность в будущем; 3) накапливаются некоторые неблагоприятные мутации, которые в гетерозиготном состоянии нередко повышают относительную жизнеспособность организмов (эффект гетерозиса). Таким образом создается резерв наследственной изменчивости популяции.

Доля полезных мутаций мала, однако их абсолютное количество в пересчете на поколение или период существования вида может быть большим. Допустим, что одна полезная мутация приходится на 1 млн. вредных. Тогда в рассматриваемом выше примере среди 106 мутаций за одно поколение 104 будет полезной. За время существования вида его генофонд обогатится 104 полезными мутациями.

Мутационный процесс, выполняя роль элементарного эволюционного фактора, происходит постоянно на протяжении всего периода существования жизни, а отдельные мутации возникают многократно у разных организмов. Генофонды популяций испытывают непрерывное давление мутационного процесса. Это обеспечивает накопление мутаций, несмотря на высокую вероятность потери в ряду поколений единичной мутации.

11.2 ПОПУЛЯЦИОННЫЕ ВОЛНЫ

Популяционными волнами или волнами жизни (С.С. Четвериков) называют периодические или апериодические колебания численности организмов в природных популяциях. Это явление распространяется на все виды животных и растений, а также на микроорганизмы. Причины колебаний часто имеют экологическую природу. Так, размеры популяций «жертвы» (зайца) растут при снижении давления на них со стороны популяций «хищника» (рыси, лисицы, волка). Отмечаемое в этом случае увеличение кормовых ресурсов способствует росту численности хищников, что, в свою очередь, интенсифицирует истребление жертвы (рис. 11.1).

Вспышки численности организмов некоторых видов, наблюдавшиеся в ряде регионов мира, были обусловлены деятельностью человека. В XIX--XX вв. это относится к популяциям кроликов в Австралии, домовых воробьев в Северной Америке, канадской элодеи в Евразии. В настоящее время существенно возросли размеры популяций домовой мухи, находящей прекрасную кормовую базу в виде разлагающихся пищевых отбросов вблизи поселений человека. Напротив, численность 12 популяций домовых воробьев в городах падает вследствие прекращения широкого использования лошадей. Масштабы колебаний численности организмов разных видов варьируют. Для одной из зауральских популяций майских жуков отмечены изменения количества особей в 106 раз.

Рис. 11.1 Колебания численности особей в популяциях жертвы (заяц-беляк, сплошная линия) и хищников (А - рыси; B - лисицы; Д - волка)

Численность особей выражена в процентах к минимальному из зарегистрированных значений, принятому за 100%

Изменение генофондов популяций происходит как на подъеме, так и на спаде популяционной волны. При росте численности организмов наблюдается слияние ранее разобщенных популяций и объединение их генофондов. Так как популяции по своему генетическому составу уникальны, в результате такого слияния возникают новые генофонды с измененными по сравнению с исходными частотами аллелей. В условиях возросшей численности интенсифицируются межпопуляционные миграции особей, что также способствует перераспределению аллелей. Рост количества организмов обычно сопровождается расширением занимаемой территории.

На гребне популяционной волны некоторые группы особей выселяются за пределы ареала вида и оказываются в необычных условиях существования. В таком случае они испытывают действие новых факторов естественного отбора. Повышение концентрации особей в связи с ростом их численности усиливает внутривидовую борьбу за существование.

При спаде численности наблюдается распад крупных популяций. Возникающие малочисленные популяции характеризуются измененными генофондами. В условиях массовой гибели организмов редкие мутантные аллели могут быть генофондом потеряны. При сохранении редкого аллеля его концентрация в генофонде малочисленной популяции автоматически возрастает. На спаде волны жизни часть популяций, как правило, небольших по размерам, остается за пределами обычного ареала вида. Чаще они, испытывая действие необычных условий жизни, вымирают. Реже, при благоприятном генетическом составе, такие популяции переживают период спада численности. Будучи изолированными от основной массы вида, существуя в необычной среде, они нередко являются родоначальниками новых видов.

Популяционные волны -- это эффективный фактор преодоления генетической инертности природных популяций. Вместе с тем их действие на генофонды не является направленным. В силу этого они, так же как и мутационный процесс, подготавливают эволюционный материал к действию других элементарных эволюционных факторов.

11.3 ИЗОЛЯЦИЯ

Ограничение свободы скрещиваний (панмиксии) организмов называют изоляцией. Снижая уровень панмиксии, изоляция приводит к увеличению доли близкородственных скрещиваний. Сопутствующая этому гомозиготизация усиливает особенности генофондов популяций, которые создаются вследствие мутаций, комбинативной изменчивости, популяционных волн. Препятствуя снижению межпопуляционных генотипических различий, изоляция является необходимым условием сохранения, закрепления и распространения в популяциях генотипов повышенной жизнеспособности.

В зависимости от природы факторов ограничения панмиксии различают географическую, биологическую и генетическую изоляцию. Географическая изоляция заключается в пространственном разобщении популяций благодаря особенностям ландшафта в пределах ареала вида -- наличию водных преград для «сухопутных» организмов, участков суши для видов-гидробионтов, чередованию возвышенных участков и равнин. Ей способствует малоподвижный или неподвижный (у растений) образ жизни. Так, на Гавайских о-вах популяции наземных улиток занимают долины, разделенные невысокими гребнями. Сухость почвы и редколесье затрудняют преодоление этих гребней моллюсками. Выраженная, хотя и неполная, изоляция в течение многих поколений привела к ощутимым различиям фенотипов улиток из разных долин. В горах о-ва Оаху, например, один из видов улиток Achatinella mustelina представлен более чем сотней рас, выделяемых по морфологическим признакам.

Пространственная изоляция может происходить и в отсутствие видимых географических барьеров. Причины ее в таком случае кроются в ограниченных «радиусах индивидуальной активности». Так, у «береговой» рыбы бельдюги Zoarces viviparus от устья у концу фьорда уменьшается число позвонков и лучей некоторых плавников. Сохранение изменчивости объясняется оседлым образом жизни бельдюги. Такая изменчивость наблюдается и у подвижных видов животных, например перелетных птиц с гнездовым консерватизмом. Молодь ласточек, например, возвращается с зимовки на место своего рождения и гнездится в радиусе до 2 км от материнского гнезда. Скрещивания у ласточек ограничиваются группой близко селящихся особей. В отличие от разделения барьерами эту разновидность географической изоляции обозначают как разделение расстоянием.

Биологическая изоляция возникает вследствие внутривидовых различий организмов и имеет несколько форм. К экологической изоляции приводят особенности окраски покровов или состава пищи, размножение в разные сезоны, у паразитов -- использование в качестве хозяина организмов разных видов. Так, в Молдове есть две несмешивающиеся популяции мышей --желтогорлая лесная мышь и степная. Фактором разделения их является состав пищи. Разобщение популяций способствовало выявлению и усилению особенностей фенотипа степных мышей. Они мельче и имеют иную форму черепа. В описанном примере экологическая изоляция дополняется территориальной. Сезонные расы, выделяемые по месту и времени икрометания, описаны у лососевых, осетровых, карповых рыб.

Длительная экологическая изоляция способствует дивергенции популяций вплоть до образования новых видов. Так, предполагают, что человеческая и свиная аскариды, морфологически очень близкие, произошли от общего предка. Их расхождению, согласно одной из гипотез, способствовал запрет на употребление человеком в пищу свиного мяса, который по религиозным соображениям распространялся длительное время на значительные массы людей.

Этологическая (поведенческая) изоляция существует благодаря особенностям ритуала ухаживания, окраски, запахов, «пения» самок и самцов из разных популяций. Так, подвиды щеглов -- седоголовый Carduelis carduelis carduelis и черноголовый С. с. brevirostis -- имеют выраженные отметины на голове. Серые вороны Corvus corone cornix из крымской и североукраинской популяций, внешне неразличимые, отличаются карканьем.

При физической (механической) изоляции препятствием к скрещиванию являются различия в структуре органов размножения или просто разница в размерах тела. У растений такая форма изоляции возникает при приспособлении цветка к определенному виду опылителей.

Описанные формы изоляции, особенно в начальный период их действия, снижают, но не исключают полностью межпопуляционные скрещивания.

Генетическая (репродуктивная) изоляция создает более жесткие, иногда непреодолимые барьеры скрещиваниям. Она заключается в несовместимости гамет, гибели зигот непосредственно после оплодотворения, стерильности или малой жизнеспособности гибридов.

Иногда разделение популяции сразу начинается с генетической изоляции. К этому приводят полиплоидия или массивные хромосомные перестройки, резко изменяющие хромосомные наборы гамет мутантов по сравнению с исходными формами. Полиплоидия распространена среди растений (рис. 11.2). Разные виды плодовой мухи нередко различаются хромосомными перестройками. Гибриды от скрещивания близкородственных форм со сниженной жизнеспособностью известны для серой и черной ворон. Указанный фактор изолирует популяции этих птиц в Евразии (рис. 11.3). Чаще генетическая изоляция развивается вторично вследствие углубления морфологических различий организмов из популяций, длительно разобщенных другими формами изоляции -- географической, биологической. В первом случае генетическая изоляция предшествует дивергенции признаков и начинает процесс видообразования, во втором -- она его завершает.

Рис.11.2. Растения и наборы хромосом в соматических клетках Solanum nigrum:

а--г: 36, 72, 108 и 144 хромосомы

Изоляция в процессе видообразования взаимодействует с другими элементарными эволюционными факторами. Она усиливает генотипические различия, создаваемые мутационным процессом и генетической комбинаторикой. Возникающие благодаря изоляции внутривидовые группировки отличаются по генетическому составу и испытывают неодинаковое давление отбора.

Рис. 11.3. Сниженная жизнеспособность гибридов как фактор разделения популяций серой и черной ворон:

1 -- ареал серой вороны, 2 -- ареал черной вороны

11.4 ЕСТЕСТВЕННЫЙ ОТБОР

В природных популяциях организмов, размножающихся половым способом, существует большое разнообразие генотипов и, следовательно, фенотипов. Благодаря индивидуальной изменчивости в условиях конкретной среды обитания приспособленность разных генотипов (фенотипов) различна. В эволюционном контексте приспособленность определяют как произведение жизнеспособности в данной среде, обусловливающей большую или меньшую вероятность достижения репродуктивного возраста, на репродуктивную способность особи. Различия между организмами по приспособленности, оцениваемой передачей аллелей следующему поколению, выявляются в природе с помощью естественного отбора. Главный результат отбора заключается не просто в выживании более жизнеспособных, а в относительном вкладе таких особей в генофонд дочерней популяции.

Необходимой предпосылкой отбора является борьба за существование -- конкуренция за пищу, жизненное пространство, партнера для спаривания. Естественный отбор происходит на всех стадиях онтогенеза организмов. На дорепродуктивных стадиях индивидуального развития, например в эмбриогенезе, преобладающим механизмом отбора служит дифференциальная (избирательная) смертность. В конечном итоге отбор обеспечивает дифференциальное (избирательное) воспроизведение (размножение) генотипов. Благодаря естественному отбору аллели (признаки), повышающие выживаемость и репродуктивную способность, накапливаются в ряду поколений, изменяя генетический состав популяций в биологически целесообразном направлении. В природных условиях естественный отбор осуществляется исключительно по фенотипу. Отбор генотипов происходит вторично через отбор фенотипов, которые отражают генетическую конституцию организмов.

Как элементарный эволюционный фактор естественный отбор действует в популяциях. Популяция является полем действия, отдельные особи -- объектами действия, а конкретные признаки -- точками приложения отбора.

Эффективность отбора по качественному и количественному изменению генофонда популяции зависит от величины давления и направления его действия. Величину давления отбора выражают коэффициентом отбора S, который характеризует интенсивность устранения из репродуктивного процесса или сохранения в нем соответственно менее или более приспособленных форм по сравнению с формой, принятой за стандарт приспособленности. Так, если некий локус представлен аллелями A1 и А2, то популяция по генотипам делится на три группы: A1A1; A1A2; A2A2. Обозначим приспособленность этих генотипов W0, W1, W2. Выберем в качестве стандарта первый генотип, относительная приспособленность которого максимальна и равна 1. Тогда приспособленности других генотипов составят доли этого стандарта:

AlA1 A1A2 A2A2

W0 W1 W2

или W0/W0 = 1, W1/W0=l--S1, W2/W0=l--S2.

Величины S1 и S2 означают пропорциональное снижение в очередном поколении воспроизводства генотипов A1A2 и А2А2 сравнительно с генотипом AlA1.

Отбор особенно эффективен в отношении доминантных аллелей при условии их полного фенотипического проявления и менее эффективен в отношении рецессивных аллелей, а также в условиях неполной пенетрантности. На результат отбора влияет исходная концентрация аллеля в генофонде. При низких и высоких концентрациях отбор происходит медленно. Изменение доли доминантного аллеля в сравнении с рецессивным при коэффициенте отбора 0,01 приведено ниже.

Возрастание, %

Число поколений

0,1-1

250

1-50

500

50-98

5000

98-99,9

90000

В теории, упрощая ситуацию, допускают, что отбор через фенотипы действует на генотипы благодаря различиям в приспособительной ценности отдельных аллелей. В реальной жизни приспособительная ценность генотипов зависит от влияния на фенотип и взаимодействия всей совокупности генов. Оценка величины давления отбора по изменению концентрации отдельных аллелей технически часто невыполнима. Поэтому расчет проводят по изменению концентрации организмов определенного фенотипа.

Пусть в популяции присутствуют организмы двух фенотипических классов А и В в отношении СA/СB = U1. Вследствие различий по приспособленности происходит естественный отбор (селекция), который изменяет соотношение особей с фенотипами А и В. В следующем поколении оно станет СA/СB = U2 = U1 (1 + S), где S -- коэффициент отбора. Отсюда S = U2/U1 -- 1. При селективном преимуществе фенотипа А U2 > U1, a S > 0. При селективном преимуществе фенотипа В U2 < U1 и S < 0. Если приспособленность фенотипов А и В сопоставима и U2 = U1, a S=0. В рассмотренном примере при S > 0 отбор сохраняет в популяции в ряду поколений фенотипы А и устраняет фенотипы В, при S < 0 имеет место обратная тенденция. Отбор, сохраняющий определенные фенотипы, по своему направлению является положительным, тогда как отбор, устраняющий фенотипы из популяции,-- отрицательным.

В зависимости от результата различают стабилизирующую, движущую и дизруптивную формы естественного отбора (рис. 11.4). Стабилизирующий отбор сохраняет в популяции средний вариант фенотипа или признака. Он устраняет из репродуктивного процесса фенотипы, уклоняющиеся от сложившейся адаптивной «нормы», приводит к преимущественному размножению типичных организмов. Так, сотрудник одного из университетов США подобрал после снегопада и сильного ветра 136 оглушенных воробьев Passer domesticus. Из них 72 выживших воробья имели крылья средней длины, тогда как 64 погибшие птицы были либо длиннокрылыми, либо короткокрылыми. Стабилизирующая форма соответствует консервативной роли естественного отбора. При относительном постоянстве условий среды благодаря этой форме сохраняются результаты предшествующих этапов эволюции.

Движущий (направленный) отбор обусловливает последовательное изменение фенотипа в определенном направлении, что проявляется в сдвиге средних значений отбираемых признаков в сторону их усиления или ослабления. При смене условий обитания благодаря этой форме отбора в популяции закрепляется фенотип, более соответствующий среде. После того как новое значение признака придет в оптимальное соответствие условиям среды, движущая форма отбора сменяется стабилизирующей. Примером такого отбора является замещение в популяции гавани Плимут (Англия) крабов Carcinus maenas с широким головогрудным щитком животными с узким щитком в связи с увеличением количества ила.

Рис. 11.4. Формы естественного отбора:

I--стабилизирующая, II--движущая, III--дизруптивная;

F1--F3--последовательные поколения особей

Рис. 11.5. Изменение массы тела мышей из двух популяций в последовательных поколениях вследствие отбора по этому признаку

1 -- тяжелые животные, 2 -- легкие животные

Направленный отбор составляет основу искусственного отбора. Так, в одном эксперименте на протяжении ряда поколений из популяции шестинедельных мышей отбирали для скрещивания наиболее тяжелых и наиболее легких животных. Избирательное воспроизведение по признаку массы тела привело к образованию двух самостоятельных популяций, соответственно с возрастающей и убывающей массой тела (рис. 11.5). По окончании опыта, занявшего 11 поколений, ни одна из этих популяций не вернулась к первоначальной массе.

Дизруптивный (разрывающий) отбор сохраняет несколько разных фенотипов с равной приспособленностью. Он действует против особей со средним или промежуточным значением признаков. Так, в зависимости от преобладающего цвета почвы улитки Cepaea nemoralis имеют раковины коричневой, желтой, розовой окраски. Дизруптивная форма отбора «разрывает» популяцию по определенному признаку на несколько групп. Она поддерживает в популяции состояние генетического полиморфизма.

В зависимости от формы отбор сокращает масштабы изменчивости, создает новую или сохраняет прежнюю картину разнообразия. Как и другие элементарные эволюционные факторы, естественный отбор вызывает изменения соотношений аллелей в генофондах популяций. Особенность его действия состоит в том, что эти изменения направленны. Отбор приводит генофонды в соответствие с критерием приспособленности. Он осуществляет обратную связь между изменениями генофонда и условиями обитания, накладывает на эти изменения печать биологической целесообразности (полезности). Естественный отбор действует совместно с другими эволюционными факторами. Поддерживая генотипическое разнообразие особей в ряду поколений, мутационный процесс, а также популяционные волны, комбинативная изменчивость создают для него необходимый материал.

Естественный отбор нельзя рассматривать как «сито», сортирующее генотипы по приспособленности. В эволюции ему принадлежит творческая роль. Исключая из размножения генотипы с малой приспособительной ценностью, сохраняя благоприятные генные комбинации разного масштаба, он преобразует картину генотипической изменчивости, складывающуюся первоначально под действием случайных факторов, в биологически целесообразном направлении. Результатом творческой роли отбора является процесс органической эволюции, идущей в целом по линии прогрессивного усложнения морфофизиологической организации (арогенез), а в отдельных ветвях -- пути специализации (аллогенез).

11.5 ГЕНЕТИКО-АВТОМАТИЧЕСКИЕ ПРОЦЕССЫ (ДРЕЙФ ГЕНОВ)

Мутации и комбинативная изменчивость, периодические колебания численности организмов, изоляция изменяют генофонды популяций случайным образом. Их совместное действие с естественным отбором в процессе видообразования придает биологической изменчивости в целом приспособительный характер. Выполнению отбором упорядочивающей роли препятствуют изменения частот аллелей, зависящие от случайных причин. Таковыми в данном случае являются причины, обусловливающие преимущественное размножение генотипов вне связи с их приспособительной ценностью. Так как динамика частот аллелей в генофондах последовательных поколений носит статистический характер (см. закон Харди -- Вайнберга), размах случайных колебаний этого показателя возрастает по мере снижения численности особей в популяции.

Расчеты показывают, что при воспроизведении 5000 потомков родительской популяции с частотой некоего аллеля р = 0,50 колебания концентрации этого аллеля в 99,994% вариантов дочерних популяций в силу случайных причин (в отсутствие отбора по этому аллелю) не выйдут за пределы 0,48--0,52. Если же родительская популяция мала и воспроизводит 50 потомков, то размах случайных колебаний концентрации наблюдаемого аллеля в том же проценте вариантов дочерних популяций составит 0,30--0,70. Случайные, но не обусловленные действием естественного отбора колебания частот аллелей называют генетико-автоматическими процессами или дрейфом генов.

При значительном размахе колебаний в последовательных поколениях создаются условия для потери популяцией некоторых аллелей и закрепления других. В результате происходят гомозиготизация особей и затухание изменчивости. Предположим, что популяция состоит из четырех особей и имеет аллель с частотой р = 0,125. Это означает, что указанный аллель присутствует в генофонде данной популяции в единственном экземпляре у одной из особей, гетерозиготной по соответствующему локусу. Любое случайное стечение обстоятельств, исключающее такую особь из размножения (лесной пожар, выстрел охотника и т.п.), приведет к утрате аллеля. Генофонд дочерней популяции будет его лишен. Вероятность утраты составит 1/2 в случае одного, 1/4 -- двух, 1/8 -- трех потомков у данной особи. В популяции из 4000 организмов при р = 0,125 минимум 500 особей имеют соответствующий аллель, причем в гомозиготном состоянии. Вероятность исключения всех этих особей из размножения в силу случайных обстоятельств ничтожно мала. Это гарантирует переход аллеля в генофонд следующего поколения и его сохранение.

Дрейф генов обусловливает утрату (р = 0) или закрепление аллелей в гомозиготном состоянии у всех членов популяции (р = 1) вне связи с их приспособительной ценностью. Он играет важную роль в формировании генофондов малочисленных групп организмов, изолированных от остальной части вида.

11.6 ВИДООБРАЗОВАНИЕ

Процесс образования видов осуществляется в результате взаимодействия элементарных эволюционных факторов. Видообразование в типичных случаях заключается в разделении первоначально единого вида на два или более новых. Это связано с возникновением межпопуляционных изоляционных барьеров и углублением различий между генофондами популяций под действием естественного отбора вплоть до генетической изоляции. Такой процесс, ведущий к увеличению количества видов, называют дивергентным или истинным видообразованием. Выделяют также филетическое видообразование. Оно заключается в постепенном превращении во времени одного вида в другой. Этот способ наблюдается, если изменения условий захватывают весь ареал. Известны примеры видообразования путем гибридизации. Перечисленные способы видообразования схематически изображены на рис. 11.6.

Рис. 11.6. Основные способы видообразования:

I--филетическое, II--дивергентное (истинное), III--путем гибридизации

Существуют аллопатрический и симпатрический пути образования видов. При аллопатрическом видообразовании, называемом также географическим, препятствия к скрещиванию первично обусловлены пространственным разобщением популяций. Генетическая изоляция развивается вторично. Так, некогда в Австралии существовал один вид попугайчиков рода Pachycephala. В условиях засушливого периода единый ареал разделился на западную и восточную зоны. Со временем особи двух популяций приобрели морфофизиологические различия, которые сделали невозможным скрещивание, когда ареал вновь стал общим. Произошло образование из одного предкового вида двух новых.

При симпатрическом видообразовании новый вид образуется внутри ареала исходного вида. С самого начала изоляция является генетической. Такое положение создается в результате полиплоидии вследствие нарушений нормального хода мейоза, при крупных хромосомных перестройках или межвидовой гибридизации. Аллопатрическое видообразование происходит медленно и дает виды, как правило, отличающиеся по морфофизиологическому критерию от вида-родоначальника. Симпатрический путь относительно быстрый и дает виды, близкие к исходному по морфофизиологическим показателям.

Большинство видов, особенно животных, возникают аллопатрическим путем. Симпатрическое видообразование на основе полиплоидии характерно для растений. Так, разные виды пшениц составляют ряд с наборами 14, 28, 42 хромосомы. В клетках дикого хлопчатника 26 хромосом, культурного -- 52. Культурная слива возникла путем гибридизации терна с алычой. Примером гибридогенного вида является рябинокизильник, распространенный в лесах центральной Сибири. Симпатрический путь видообразования у паразитов часто связан с освоением популяцией новых хозяев. Анализ генного состава и межхромосомных различий между человеком и человекообразными обезьянами дает повод предположить, что разделение этих двух ветвей могло идти симпатрическим путем.

11.7 НАСЛЕДСТВЕННЫЙ ПОЛИМОРФИЗМ ПРИРОДНЫХ ПОПУЛЯЦИЙ. ГЕНЕТИЧЕСКИЙ ГРУЗ

Процесс видообразования с участием такого фактора, как естественный отбор, создает разнообразие живых форм, приспособленных к условиям обитания. Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и перекомбинации аллелей, лишь ограниченное число обусловливает максимальную приспособленность к конкретной среде. Можно предположить, что дифференциальное воспроизведение этих генотипов в конце приведет к тому, что генофонды популяций будут представлены лишь «удачными» аллелями и их комбинациями. В итоге произойдет затухание наследственной изменчивости и повышение уровня гомозиготности генотипов.

В природных популяциях, однако, наблюдается противоположное состояние. Большинство организмов являются высокогетерозиготными. Отдельные особи гетерозиготны частично по разным локусам, что повышает суммарную гетерозиготность популяции. Так, методом электрофореза на 126 особях рачка Euphausia superba, представляющего главную пищу китов в антарктических водах, изучали 36 локусов, кодирующих первичную структуру ряда ферментов. По 15 локусам изменчивость отсутствовала. По 21 локусу имелось по 3--4 аллеля. В целом в этой популяции рачков 58% локусов были гетерозиготными и имели по 2 аллеля и более. В среднем у каждой особи по 5,8% гетерозиготных локусов. Средний уровень гетерозиготности у растений составляет 17%, беспозвоночных -- 13,4, позвоночных -- 6,6%. У человека этот показатель равен 6,7%. Столь высокий уровень гетерозиготности нельзя объяснить только мутациями в силу относительной их редкости.

Наличие в популяции нескольких равновесно сосуществующих генотипов в концентрации, превышающей по наиболее редкой форме 1%11 Наличие в популяций аллея с частотой менее 1% может быть объяснено только мутациями и комбинативной изменчивостью, без влияния естественного отбора., называют полиморфизмом. Наследственный полиморфизм создается мутациями и комбинативной изменчивостью. Он поддерживается естественным отбором и бывает адаптационным (переходным) и гетерозиготным (балансированным).

Адаптационный полиморфизм возникает, если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок Adalia bipunctata при уходе на зимовку преобладают черные жуки, а весной--красные (рис. 11.7). Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период.

...

Подобные документы

  • Проблема направлений эволюции в работе А.А. Северцова "Главные направления эволюционного процесса". Биологический прогресс, биологический регресс и биологическая стабилизация. Работа И.И. Шмальгаузера "Пути и закономерности эволюционного процесса".

    презентация [527,7 K], добавлен 20.03.2012

  • Эволюция человека, ее отличие от эволюции животных и движущие силы. Гипотезы естественного происхождения человека. Признаки человека и его место в системе животного мира. Основные этапы антропогенеза и характерные черты развития предков человека.

    контрольная работа [27,6 K], добавлен 03.09.2010

  • Причины приспособленности организмов к среде обитания. Географическое (аллопатрическое) видообразование. Действие мутационного процесса на популяцию в природе. Биологический прогресс и регресс. Ароморфоз как направление эволюции. Примеры идиоадаптаций.

    презентация [2,5 M], добавлен 21.01.2011

  • Научное определение жизни по Ф. Энгельсу. Молекулярно-генетический, организменный, популяционно-видовой уровень организации жизни. Прокариоты как одноклеточные доядерные организмы. Строение метафазной хромосомы. Уровни упаковки генетического материала.

    реферат [30,3 K], добавлен 29.05.2013

  • Характеристика и специфика уровней организации живой материи, их закономерности и методы исследования. Биологический потенциал вида. Изменение численности популяции. Опустынивание, эрозия и засоление почв как результат хозяйственной деятельности людей.

    контрольная работа [22,0 K], добавлен 07.01.2011

  • Биологический возраст — понятие, отражающее степень морфологического и физиологического развития организма. Основные критерии биологического возраста мужчин и женщин, его соотношение с хронологическим: методы определения и управление возрастом человека.

    презентация [1,2 M], добавлен 08.02.2012

  • Особенности современного биологического знания. Изучение физико-химических основ жизни. Структура и функции гена. Прокариоты как объект микробиологии. Клеточная теория и ее формирование. Эволюция и физиология животных и человека. Роль учения о биосфере.

    книга [22,7 M], добавлен 27.03.2011

  • Возраст человека: абсолютный, биологический, паспортный, психический, социальный. Критерии биологического возраста. Эволюция человека. Характеристика австралопитека. Расизм, его социальные корни. Прогрессивная общественность в борьбе против расизма.

    реферат [33,0 K], добавлен 31.10.2008

  • Анализ представлений людей эпохи Cредневековья о месте человека в системе природы. Исследование биологических и социальных предпосылок генезиса человека. Влияние внешних условий на эволюцию предков человека. Изучение сущности проблемы антропогенеза.

    контрольная работа [25,1 K], добавлен 04.06.2013

  • Рассмотрение гипотезы Опарина о возникновении жизни на Земле. Ознакомление с теориями происхождения и становления человека как биологического вида. Изучение свойств, границ, условий и плотности жизни в биосфере, круговорота веществ и энергии в ней.

    реферат [21,6 K], добавлен 08.07.2010

  • Молекулярно-генетические гипотезы старения. Феномен долгожителей горных народов культурными и средовыми факторами. Понятие геронтологии и гериатрии, возрастные изменения. Прогерия, симптомы заболевания. Критерии оценки биологического возраста человека.

    презентация [1,8 M], добавлен 21.02.2014

  • Зачатки эволюционных представлений о происхождении человека в трудах античных философов. Положение человека в системе животного мира. Основные стадии эволюции человека: древнейшие люди; древние люди; современные люди. Современный этап эволюции человека.

    контрольная работа [19,6 K], добавлен 22.12.2009

  • Гидрогеографическая характеристика Вислинского залива. Видовой состав, динамика численности и биомассы фитопланктона. Схема пищевой цепи и потоков энергии, биологическая характеристика, экологические особенности плотвы, её размножение и анализ популяции.

    курсовая работа [263,9 K], добавлен 22.07.2015

  • Развитие взглядов на происхождение человека. Центр происхождения человека. Доказательства происхождения человека от животных. Влияние окружающей среды на появление человека. Эволюция гоминид. Биологический, социальный и трудовой факторы эволюции.

    реферат [37,7 K], добавлен 26.04.2006

  • Биологический круговорот веществ, их абиогенные циклы. Показатели биогеохимического круговорота: биомасса, продукция, зольность. Уровни биогеохимических циклов, позволяющие выявить долю участия различных организмов в круговороте химических элементов.

    презентация [57,7 K], добавлен 10.08.2015

  • Уровни организации живой материи: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный. Биология и экология моллюсков и позвоночных животных. Строение, размножение и развитие паука-крестовика.

    контрольная работа [17,0 K], добавлен 12.03.2011

  • Основные черты сходства и различия Homo sapiens в системе животного мира. Морфологическая характеристика, география расселения, экология и демография Homo sapiens. Система уровней организации структуры тела животных на современном этапе эволюции.

    контрольная работа [25,0 K], добавлен 26.11.2010

  • Характеристика основных структурных уровней организации живой материи: молекулярного, клеточного, организменного, популяционно-видового, биогеоценотического, биосферного. Их компоненты, основные процессы. Науки, ведущие исследования на данных уровнях.

    презентация [687,0 K], добавлен 09.11.2012

  • Изучение принципа электромеханического преобразования энергии. Сущность биологического электропривода. Движение бактерий - одно из самых поразительных явлений природы. Строение бактериального жгутика и базального тела. Особенности работы мышц человека.

    реферат [828,6 K], добавлен 02.06.2013

  • Учение В.И. Вернадского о биосфере. Ноосфера как новая стадия эволюции биосферы. Статические и динамические показатели популяции. Продолжительность жизни, рост численности популяции. Изучение процесса урбанизации. Экологические обязанности граждан.

    контрольная работа [43,7 K], добавлен 24.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.