Основы микробиологии
Значение медицинской микробиологии в деятельности врача. Открытие вирусов Д.И. Ивановским и его значение в возникновении и развитии вирусологии. Мутации, их разновидности. Взаимоотношения микробов и макроорганизма. Инфекция и инфекционное заболевание.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 23.11.2013 |
Размер файла | 283,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
I раздел
1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях
Микроорганизмы являются возбудителями инфекционных болезней, которые часто встречаются в практике врача. Для того чтобы правильно поставить диагноз инфекционного заболевания, необходимо хорошо знать морфологию микробов, их основные формы, уметь различать их под микроскопом. Каждый врач должен владеть методом микроскопии, для чего необходимо знать устройство микроскопа и правила работы с ним.
МИКРОБИОЛОГИЯ (греч.mikros -- малый, лат.bios -- жизнь) -- наука, предметом изучения которой являются микроскопические существа, названные микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком.
МИКРОБИОЛОГИЯ -- наука, которая изучает микробы во всем многообразии их отношений с организмом человека.
В процессе развития микробиологии были разработаны оригинальные методы исследования, многие заимствованы из других дисциплин -- биофизики, биохимии, генетики, цитологии и т.д.
За всю историю своего развития перед микробиологией так же, как и другими естественными науками, стояли определенные цели и задачи, успешное развитие которых способствовало научному и общественному прогрессу всего человечества. Это в свою очередь стимулировало развитие специализированных РАЗДЕЛОВ микробиологии.
Так сформировались общая, техническая, с\х, ветеринарная, медицинская, санитарная, морская, космическая микробиология.
ОБЩАЯ микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т.д.
Основной задачей ТЕХНИЧЕСКОЙ (промышленной) микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, витаминов, ферметов, спиртов, органических кислот, антибиотиков и др.
СЕЛЬСКО ХОЗЯЙСТВЕННАЯ микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для изготовления удобрений, вызывают заболевания растений, и другими проблемами.
ВЕТЕРИНАРНАЯ микробиоллгия изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, спецйифической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.
Предметом изучения МЕДИЦИНСКОЙ микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.
Однако с медицинской микробиологией сформировалась иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов и другими проблемами.
Предметом изучения САНИТАРНОЙ микробиологии, тесно связанной с медицинской и ветеринарной микрбиологией, является санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков.
2. Изобретение микроскопа и открытие микробов (А.Левенгук). Основные этапы развития микробиологии и их характеристика
Для микробиологических исследований используют несколько типов микроскопов (биологический, люминесцентный, электронный) и специальные методы микроскопии (фазово-контрастный, темнопольный).
Предельная разрешающая способность иммерсионного микроскопа 0,2 мкм. Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра.
ТЕМНОПОЛЬНАЯ МИКРОСКОПИЯ. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоид-конденсора, которые заменяют обычный конденсор в биологическом микроскопе.
ФАЗОВО-КОНТРАСТНАЯ МИКРОСКОПИЯ. Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения,которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным -- светлое изображение объекта на темном фоне.
ЛЮМИНЕСЦЕНТНАЯ (ИЛИ ФЛЮОРЕСЦЕНТНАЯ) МИКРОСКОПИЯ. Основана на явлении фотолюминесценции.
Люминесценция -- свечение веществ, возникающее после воздействия на них каких-либо источников энергии: световых, электронных лучей, ионизирующего излучения. Фотолюминесценция -- люминесценция объекта под влиянием света. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта. Длина волны излучаемого света (цвет люминесценции) зависит от физико-химической структуры люминесцирующего вещества.
Первичная (собственная) люминесценция наблюдается без предварительного окрашивания объекта, вторичная (наведенная) -- возникает после обработки препаратов специальными люминесцирующими красителями -- флюорохромами. Люминесцентная микроскопия по сравнению с обычными методами обладает рядом преимуществ: возможностью исследовать живые микроорганизмы и обнаруживать их в исследуемом материале в небольших концентрациях вследствие высокой степени контрастности.
ЭЛЕКТРОННАЯ МИКРОСКОПИЯ. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов. Световые лучи в таких микроскопах заменяют поток электронов, имеющий при определенных ускорениях длину волны около 0,005 нм, т.е. Почти в 100000 раз меньше длины волны видимого света.
Открытие мира микроорганизмов произошло в XVII в. Первооткрывателем микробов явился АНТОНИЙ ЛЕВЕНГУК (1632 -- 1723), купец по профессии, который стал крупнейшим натуралистом своего времени. Овладев искусством шлифования стекол, он изготовил линзы, которые давали большие увеличения. С их помощью Левенгук обнаружил мельчайших «живых зверьков» animalculae vivae в дождевой воде, зубном налете, загнившем мясе и других предметах. Свои наблюдения он обобщил в книге «Тайны природы, открытые Антонием Левенгуком». (1695 г.)
Он создал микроскоп и первые рисунки бактерий из зубного налета (1676 г.)
ПЕРИОДЫ РАЗВИТИЯ микробиологии:
- эвристический
- морфологический
- физиологический
- иммунологический
- современный (молекулярно-генетический)
Исторические периоды:
1. Начальный период, который охватывает период второй половины XVIII в. - середины XIX в. Он связан с созданием А.Левенгуком простейшего микроскопа и открытием микроскопических существ, не видимых глазом человека.
2. Пастеровский период(вторая половина XIX в.), связанный с именем Луи Пастера, характеризуется становлением и развитием микробиологии и иммунологии как самостоятельной единой естественнонаучной дисциплины, имеющей свои объекты и оригинальные методы их исследования.
3. Третий период, охватывающий первую половину XX в., характеризуется дальнейшим развитием микробиологии и иммунологии и становлением вирусологии -- науки о виусах, особой форме живой материи.
4. Современный период, начало которому было положено в середине текущего столетия научно-технической революцией в естествознании.
3. Луи Пастер, его открытия в области микробиологии
1856 г. - болезнь пива и вина
1857 г. - брожение
1860 г. - самопроизвольное зарождение
1868 г. - болезнь шелковичных червей
1880-1885 гг. - метод приготовления вакцин
1885 г. - вакцинация против бешенства
Развивающаяся винодельческая промышленность Франции и других стран требовала решения ряда биотехнологических вопросов. В частности, выяснения и устранения причин скисания вина. Люди в течение двух тысячелетий получили виноградное вино с помощью спиртового брожения. Однако его природа оставалась загадкой. В области медицины также назрела необходимость установления причин нагноения ран и природы заразных заболеваний. История терпеливо ждала своего гниения, которым оказался молодой французский химик ЛУИ ПАСТЕР ( 1822 -- 1895).
Л.Пастер экспериментально доказал, что спиртовое брожение вызывается определенными видами микроорганизмов, а скисание вина связано с попаданием в виноградный сок посторонних видов, вызывающих уксусное брожение. Для борьбы с ним он предложил метод термической обработки виноградного сока.
Полученные данные позволили Пастеру допустить, что инфекционные болезни человека представляют по сути «брожение соков организма», вызванное определенными микроорганизмами. Они же являются виновниками гнойных послеоперационных осложнений.
Работая с микроорганизмами -- возбудителями куриной холеры, он получил культуры, потерявшие болезнетворные свойства. Прививка здоровым птицам такового штамма предохраняла их от последующего заражения болезнетворными возбудителями. Пастер назвал данный метод вакцинацией в честь Э.Дженнера, который еще в 1791 г. использовал прививки материала, взятого от больных оспой коров (осповакцины) для предупреждения заболеваний натуральной оспой среди людей.
Вершиной всей научной деятельности Пастера и апофеозом торжества микробиологической науки стали исследования, закончившиеся в 1886 г. изготовлением вакцины против бешенства. Хотя Пастеру не удалось обнаружить возбудителя бешенства у больных собак, он доказал, что последний находится в головном мозге больных животных. Из мозга зараженного бешенством кролика Пастер приготовил вакцину, которую случай помог ему испытать на мальчике, искусанном бешеном волком. Результат произошел все ожидания -- мальчик остался жив. В Париж из разных стран стали прибывать любди, искусанные бешеными животными. Они искали спасение в лаборатории Пастера, вследствие чего потребовались большие количества вакцин. Одной из первых стран, где было налажено производство антирабической вакцины по методу Пастера, оказалась Россия. В июне 1886 г. И.И.Мечников и Н.Ф.Гамалея организовали в Одессе лабораторию, в которой начали проводить прививки против бешенства.
Эта лаборатория в честь Пастера была названа Патеровской станцией.
Гениальные идеи и открытия Л.Пастера составили целую эпоху в биологии и медицине и нашли широкое практическое применение. Он явился основоположником микробиологии как фундаментальной науки, так и основателем французской школы микробиологов, которая оказала существенное влияние на развитие микробиологии в других странах и прежде всего в России.
4. Работы Р.Коха и их значение для микробиологии и инфекционной патологии
- введение в практику анилиновых красителей
- использование в микроскопии иммерсионной системы и конденсора
- разработка метода культивирования на биологических жидкостях и плотных питательных средах
- разработка метода дробных пересевов
- открытие возбудителя сибирской язвы, холеры, туберкулеза и туберкулина
Примерно в те же годы сформировалась и успешно работала немецкая школа микробиологов во главе с РОБЕРТОМ КОХОМ (1843 -- 1910). Кох начал свои исследования в то время, когда роль микроорганизмов в этиологии инфекционных заболеваний подвергалась серьезным сомнениям. Для ее доказательства требовались четкие критерии, которые были сформулированы Кохом и вошли в историю под названием «триады Генле -- Коха». Суть триады заключалась в следующем:
1) предполагаемый микроб-возбудитель всегда должен обнаруживаться только при данном заболевании, не выделяться при других болезнях и от здоровых лиц;
2) микроб-возбудитель должен быть выделен в чистой культуре;
3) чистая культура данного микроба должна вызвать у экспериментальных зараженных животных заболевание с клинической и патологической картиной, аналогичной заболеванию человека.
Практика показала, что все три пункта имеют относительное значение, поскольку далеко не всегда удается выделить возбудителя болезни в чистой культуре и вызвать у подопытных животных заболевание, свойственное человеку. Кроме того, болезнетворные микроорганизмы были найдены у здоровых людей, особенно после перенесенного заболевания. Тем не менее на ранних этапах развития и формирования медицинской микробиологии, когда из организма больных выделяли многих микроорганизмов, не имеющих отношения к данной болезни, триада сыграла важную роль для установления истинного возбудителя заболевания. Исходя из своей концепции, Кох оканчательно доказал, что ранее обнаруженный у животных, больных сибирской язвой, микроорганизм отвечает требованиям триады и является истинным возбудителем данного заболевания. Попутно Кох установил способность сибиреязвенных бактерий образовывать споры.
Велика роль Коха в разработке основных методов изучения микроорганизмов. Так, он ввел в микробиологическую практику метод выделения чистых культур бактерий на твердых питательных средах, впервые использовал анилиновые красители для окраски микробных клеток и применил для их микроскопического изучения иммерсионные объективы и микрофотографирование.
В 1882 г. Кох доказал, что выделенный им микроорганизм является возбудителем туберкулеза, который был впоследствии назван палочкой Коха. В 1883 г. Кох с сотрудниками выделил возбудителя холеры -- холерный вибрион (вибрион Коха).
С 1886 г. Кох полностью посвящает свои исследования поискам средств, эффективных для лечения или профилактики туберкулеза. В ходе этих исследований им был получен первый противотуберкулезный препарат -- туберкулин, представляющий собой вытяжку из культуры туберкулезных бактерий. Хотя туберкулин не обладает лечебным действием, его с успехом применяют для диагностики туберкулеза.
Научная деятельность Коха получила мировое признание, и в 1905 г. ему была присуждена Нобелевская премия по медицине.
Используя методы, разработанные Кохом, французские и немецкие бактериологи открыли многие бактерии, спирохеты, и простейшие -- возбудители инфекционных болезней человека и животных. Среди них возбудители гнойных и раневых инфекций: стафилококки, стрептококки, клостридии анаэробной инфекции, кишечная палочка и возбудители кишечных инфекций (брюшнотифозная и паратифозные бактерии, дизентерийные бактерии Шига), возбудитель кровяной инфекции -- спирохета возвратного тифа, возбудители респираторных и многих других инфекций, в том числе вызванных простейшими (плазмодии малярии, дизентирийная амеба, лейшмании). Этот период называют «золотым веком» микробиологии.
5. Роль отечественных ученых в развитии микробиологической науки (И.И.Мечников, Д.И.Ивановский, Г.Н.Габричевский, С.Н.Виноградский, В.Д.Тимаков, Н.Ф.Гамалея, Л.А.Зильбер, П.Ф.Здродовский, З.В.Ермольева)
Одним из основоположников иммунологии явился И.И.МЕЧНИКОВ (1845-1916) -- создатель фагоцитарной, или клеточной, теории иммунитета. В 1888 г. Мечников принял приглашение Пастера и возглавил лабораторию в его институте. Однако Мечниов не порвал тесных связей со своей родиной. Он неоднократно приезжал в Россию, а в его Парижской лаборатории работали многие русские врачи. Среди них Я.Ю.Бардах, В.А.Барыкин, А.М.Безредка, М.В.Вейнберг, Г.Н.Габричевский, В.И.Исаев, Н.Н.Клодницкий, И.Г.Савченко, Л.А.Тарасевич, В.А.Хавкин, Ц.В.Циклинская, Ф.Я.Чистович и другие, которые внесли существенный вклад в развитие отечественной и мировой микробиологии, иммунологии и патологии.
Несмотря на значительные успехи в области создания антиинфекционного иммунитета практически ничего не было известно о механизмах его развития. Поворотным моментом явилось открытие И.И. Мечникова (1845-1916), сделанное им в Мессине в 1882 г. при изучении реакции личинки морской звезды на введение в нее шипа розы. Это был тот счастливый случай, когда случайное наблюдение попало на подготовленный ум и привело И.И. Мечникова к созданию учения о фагоцитозе, воспалении и клеточном иммунитете.
В 1892 г. Мечников опубликовал свой труд «Лекции по сравнительной патологии воспаления», в котором как выдающийся мыслитель рассмотрел патологические процессы с позиций эволюционной теории. В 1901 г. появляется его новая книга «Невосприимчивость к инфекционным болезням», в которой подведены итоги многолетних исследований в области иммунитета.
Большое созидающее значение приобрела дискуссия, развернувшаяся между Мечниковым и его сторонниками с последователями гуморальной теории, видевшими в основе иммунитета действие антител. Начало учению об антителах положили работы П.Эрлиха, а затем Ж.Борде, выполненные в последнее десятилетие XIX в.
Вклад ПАУЛЯ ЭРЛИХА (1854-1915) в развитие иммунологии, так же как в становление и развитие химиотерапии, неоценим. Этот ученый впервые сформулировал понятия об активном и пассивном иммунитете и явился автором всеобъемлющей теории гуморального иммунитета, в котором объяснялось как происхождение антител, так и их взаимодействие с антигенами. Предсказанное Эрлихом существование рецепторов клеток, спецефически взаимодействующих с определенными группами антигенов, в течение многих лет подверглось уничтожающей критике. Однако она была возрождена во второй половине XX столетия в теории Бернета и на молеклярном уровне получила всеобщее признание.
И.И.Мечников одним из первых понял, сто гуморальная и фагоцитарная теории иммунитета не являются взаимоисключающими, а только дополняют друг друга. В 1908 г. Мечникову и Эрлиху совместно была присуждена Нобелевская премия за работы в области иммунологии.
Открытия Эрлиха:
1. использование в практике лечения малярии метиленового синего
2. использование трипанового красного для лечения трипаносома
3. открытие сальварсана (1907 г.)
4. разработка метода определения активности антитоксических сывороток и изучение взаимодействия антиген-антитела
5. теория гуморального иммунитета.
Конец XIX в. ознаменовался эпохальным открытием царства Vira. Первым представителем этого царства явился вирус табачной мозаики, поражающий листья табака, открытый 12 февраля 1892 г. сотрудником кафедры ботаники Петербургского университета Д.И.ИВАНОВСКИМ, вторым -- вирус ящура, вызывающий одноименное заболевание у домашних животных, открытый в 1898 г. Ф.Леффлером и П.Фрошем. Однако эти открытия не могли быть в то время по достоинству оценены и остались едва замеченными на фоне блестящих успехов бактериологии.
Главой московской бактериологической школы и одним из лидеров российских бактериологов Г.Н.ГАБРИЧЕВСКИЙ (1860-1907), который в 1895 г. возглавил открытый на частные средства Бактериологический институт при Московском университете. Он работал в области специфического лечения и профилактики скарлатины, возвратного тифа. Его стрептококковая теория происхождения скарлатины в конечном итоге завоевала всеобщее признание. Габричевский является автором «Руководства к клинической бактериологии для врачей и студентов» (1893) и учебника «Медицинская бактериология», который выдержал четыре издания. Г.Н. Габричевский (1860-1907) ввел в России серотерапию, изучал механизмы невосприимчивости к возвратному тифу, дифтерии, скарлатине.
Главным центром Перербургской бактериологической школы стал Институт экспериментальной медицины. Заведующим бактериологическим отделом был утвержден С.Н.ВИНОГРАДСКИЙ, получивший мировую известность своими работами в области общей микробиологии. С помощью разработанного им метода элективных культур. Виноградский открыл серо- и железобактерии, нитрифицирующие бактерии -- возбудители процесса нитрификации в почве. Он основал роль микроорганизмов в сельском хозяйстве.
В.Д. ТИМАКОВ (1905-1977) является одним из основателей учения о микоплазмах и L-формах бактерий, занимался генетикой микроорганизмов, бактериофагией, профилактикой инфекционных болезней.
В 1934 году В.Д. Тимакова пригласили в Турменский институт микробиологии и эпидемиологии, где он возглавил отдел по производству вакцин и сывороток. В республике тогда еще высокой была заболеваемость кишечными инфекциями. В.Д. Тимаков защищает кандидатскую диссертацию, посвященную профилактическим препаратам против кишечных инфекций. Свои первые исследования по изучению бактериофагов и фильтрующихся вирусов молодой ученый проводит также в Туркмении.
Под руководством В.Д. Тимакова было начато создание нового раздела медицинской микробиологии - учения об L-формах бактерий и микоплазмах. Это направление явилось логическим продолжением изучения фильтрующихся форм, с которого В.Д. Тимаков начал свою научную деятельность. За цикл исследований по выяснению роли L-форм бактерий и семейства микоплазм в инфекционных заболеваниях В.Д. Тимакову совместно с профессором Г.Я. Каган в 1974 г. была присуждена Ленинская премия.
Одно из основных направлений научной деятельности В.Д. Тимакова посвящено генетике микроорганизмов. В.Д. Тимаков считал необходимым использовать генетические пути анализа для решения медицински значимых микробиологических и эпидемиологических проблем. И в настоящее время направление работ по генетике бактерий является основным в Институте эпидемиологии и микробиологии им. Гамалея. Деятельность В.Д. Тимакова по воссозданию генетики далеко не ограничивалась проведением собственных исследований. Он сделал чрезвычайно много для воссоздания генетики в масштабах всей нашей страны.
Кроме увлеченности делом, Владимиру Дмитриевичу были присущи ясный ум, понимание жизни и смелость. Последнее качество в полной мере проявилось в его борьбе с антинаучными «великими» открытиями, наподобие тех, в которых утверждалось, что вирусы могут превращаться в бактерии.
Выдающийся русский микробиолог Н.Ф.ГАМАЛЕЯ (1859-1949), который еще в 1886 г. работал у Пастера по бешенству, совместно с Мечниковым и Бардахом основал первую в России бактериологическую станцию, где изготавливалась антирабическая вакцина и проводилась вакцинация людей против бешенства. Н.Ф.Гамалея -- автор многих научных работ, посвященных бешенству, холере и другим проблемам микробиологии и иммунологии.
Л.А.ЗИЛЬБЕР (1894-1966) является основателем вирусной теории происхождения опухолей, выделил возбудителя дальневосточного клещевого энцефалита.
Успехи в изучении опухолевых антигенов воодушевляют Л.А.Зильбера на попытки противоопухолевой вакцинации, которые он начал около 1950г. вместе с 3.Л.Байдаковой и Р.М.Радзиховской на двух моделях: на опухоли Брауна-Пирс у кроликов и спонтанном раке молочной железы у мышей.
П.Ф. ЗДРОДОВСКИЙ (1890-1976) занимался проблемой риккетсиозов, малярии, бруцеллеза и регуляции иммунитета.
Зинаида Виссарионовна ЕРМОЛЬЕВА -- создатель первого отечественного антибиотика. Из всех достижений научно-технического прогресса наибольшее значение для сохранения здоровья людей и увеличения продолжительности их жизни имеет, несомненно, открытие антибиотиков и в первую очередь пенициллина. Среди видных ученых нашей страны, внесших большой вклад в развитие этой области медицины, одно из ведущих мест по праву принадлежит создателю первого отечественного антибиотика, выдающемуся микробиологу, талантливому организатору здравоохранения, известному общественному деятелю, замечательному педагогу, академику АМН СССР, заслуженному деятелю науки РСФСР, лауреату Государственной премии СССР Зинаиде Виссарионовне Ермольевой. Наряду с другими учеными она стояла у истоков медицинской бактериохимии и изучения антибиотиков в нашей стране, была человеком большого организаторского таланта и неиссякаемой энергии, неутомимая деятельность которой и исключительные личные качества снискали ей всеобщее уважение и признание.
Одним из важных направлений научной деятельности Зинаиды Виссарионовны является изучение холеры. На основании глубоких, всесторонних исследований морфологии и биологии холерных и холероподобных вибрионов З. В. Ермольева предложила новый метод дифференциальной диагностики этих микроорганизмов.
В 1942 г. вышла в свет монография З. В. Ермольевой "Холера", в которой подведены итоги почти 20-летнего изучения холерного вибриона. В этой монографии были даны новые методы лабораторной диагностики, лечения и профилактики холеры.
Значительную часть своей научной работы Зинаида Виссарионовна посвятила выделению и изучению веществ, оказывающих антибактериальное действие. Первое такое вещество под названием "лизоцим" было выделено З. В. Ермольевой совместно с И. С. Буяновской еще в 1929 г. Как показали результаты дальнейших исследований, лизоцим встречается во многих тканях, как животного, так и растительного происхождения.
В 1960 г. группа ученых, возглавляемая З. В. Ермольевой, впервые в нашей стране получила противовирусный препарат интерферон. Этот препарат был применен впервые для лечения тяжелой формы гриппа в 1962 г. и как профилактическое средство. Препарат применяется и в настоящее время для профилактики гриппа и других острых респираторных вирусных инфекций, а также для лечения ряда вирусных заболеваний в глазной и кожной практике.
Более 30 лет жизни (1942--1974) Зинаида Виссарионовна посвятила изучению антибиотиков.
Имя З. В. Ермольевой неразрывно связано с созданием первого отечественного пенициллина, становлением науки об антибиотиках, с их широким применением в нашей стране. Большое число раненых в первом периоде Великой Отечественной войны требовало интенсивной разработки и немедленного введения в медицинскую практику высокоэффективных препаратов для борьбы с раневой инфекцией. Именно в это время (1942) З. В. Ермольевой и ее сотрудниками во Всесоюзном институте эпидемиологии и микробиологии был найден активный продуцент пенициллина и выделен первый отечественный пенициллин -- крустозин. Уже в 1943 г. лаборатория начала готовить пенициллин для клинических испытаний.
Позже под руководством З. В. Ермольевой были созданы и внедрены в производство многие новые антибиотики и их лекарственные формы, в том числе экмолин, экмоновоциллин, бициллин, стрептомицин, тетрациклин; комбинированные препараты антибиотиков (дипасфен, эрициклин и др.). Следует подчеркнуть, что Зинаида Виссарионовна всегда активно участвовала в организации промышленного производства антибиотиков в нашей стране.
6. Открытие вирусов Д.И. Ивановским и его значение в возникновении и развитии вирусологии. Этиологическая роль вирусов в патологии человека
История вирусологии началась в конце 19 в. после микробиологии - открытий Л. Пастера, Р. Коха и их сотрудников. Первооткрывателем вирусов был Д. И. ИВАНОВСКИЙ (1892), который показал, что возбудитель мозаичной болезни табака способен проходить через фильтр, задерживающий самые мелкие бактерии, и не растёт на искусств, питательных средах.
Начав в 1887 изучение заболеваний табака на территории Бессарабии и Никитского ботанического сада, различил ранее смешиваемые так называемые рябуху и мозаичную болезнь. Выяснил (1892), что возбудитель последней, в отличие от бактерий, невидим в микроскоп при самом сильном увеличении, проходит через фарфоровые фильтры и не растет на обычных питательных средах. Обнаружил в клетках больных растений кристаллические включения («кристаллы Ивановского»), открыв, таким образом, особый мир возбудителей заболеваний небактериальной и непротозойной природы, названных впоследствии вирусами. Ивановский рассматривал их как мельчайшие живые организмы. Кроме того, Ивановский опубликовал работы об особенностях физиологических процессов в больных растениях, влиянии кислорода на спиртовое брожение у дрожжей, состоянии хлорофилла в растениях, его устойчивости к свету, значении каротина и ксантофилла, по почвенной микробиологии.
Основные итоги наблюдений и изучеия анатомии и физиологии больных растений ( “О болезнях табачных растений”-Труды С. Петербургского общества естествоиспытателей , т. 19 ) были доложены Д. И. Ивановским в 1888 году на заседании С. Петербургского общества естествоиспытателей и изложены в статье Д. И. Ивановского и В. В. Половцева,а также опубликованы в Трудах императорского Вольного экономического общества в 1889 году, а затем в брошюре “Рябуха-болезнь табака, ее причины средства борьбы с нею'' ( Спб.,1890 ) в том же году переизданной на немецком языке Российской академией наук. В результате этих наблюдений Д.И. Ивановский и В.В. Половцов впервые высказали предположение, что болезнь табака, описанная в 1886 году А. Mayer в Голландии под названием мозаичной, представляет не одно, а два совершенно различных заболевания одного и того же растения; одно из них-рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. На основе опыта крестьян, собственных наблюдений и изучения больных растений Д.И.Ивановский и В.В.Половцев пришли к заключению, что болезнь рябуха поражает растения, высаженные на старых плантациях табака, и дали рекомендации по введению севооборота и повышению культуры земляделия. и средство борьбы с нею”.
Д.И.Ивановский показал, что заболевание табака - табачная мозаика - может быть перенесено от больных растений к здоровым, если их заразить соком больных растений, предварительно пропущенным через специальный фильтр, задерживающий бактерии. Возбудитель мозаичной болезни называется Д. И. Ивановским то «фильтрующимися бактериями», то микроорганизмами, и это понятно, так как сформулировать сразу существование особого мира вирусов было весьма трудно. В 1898 году М. Бейеринк подтвердил данные Д.И.Ивановского и высказал гипотезу о том, что заболевание вызывается не бактерией, а принципиально новым, отличным от бактерий, инфекционным агентом. Он назвал его contagium vivum fluidum (жидкое заразное начало), другими словами - фильтрующийся вирус (термин «virus» - от лат. «яд», «ядовитое начало» - употребляли тогда для обозначения инфекционного начала любой болезни).
Помимо капитальных выводов, подтверждающих существование нового, неизвестного ранее класса микроорганизмов, в диссертации Ивановского содержатся и другие важные данные. Так им описано цитопатитическое действие возбудителя табачной мозаики и дана характеристика кристаллов, которые позже, в 1935 году были идентифицированы как кристаллы вируса табачной мозаики. Здесь же имеется описание внутриклеточных включений, положившее начало учению о включениях при вирусных инфекциях, которые и в настоящее время сохранило свое значение для диагностики вирусных заболеваний.
Наряду с работами по вирусологии, принесшими ему мировую известность, он проводил и другие исследования. Его перу принадлежит 180 публикаций, в том числе ряд работ в области почвенной микробиологии, физиологии и анатомии растений и 30 статей в энциклопедическом словаре Брокгауза. Научная деятельность Ивановского сочеталась с педагогической: он был прекрасным лектором и педагогом, воспитавшим не одно поколение студентов Петербургского, Варшавского и Донского университетов.
ЭТИОЛОГИЯ - учение о причинах и условиях возникновения и развития заболеваний и патологических процессов.
ЭТИОЛОГИЧЕСКИЙ ФАКТОР (ЭФ) - главный, ведущий, вызывающий фактор, без наличия которого не было бы заболевания (например, палочка Коха при туберкулезе). Этиологический фактор бывает простым (механическое воздействие) или комплексным (поражающие факторы ядерного взрыва), действующим длительно, в течение всего заболевания (микробы, вирусы, токсины), или только запускающим патологический процесс (тепловой фактор при ожоге).
ПАТОГЕНЕЗ ЗАБОЛЕВАНИЯ - диалектически противоречивый процесс, включающий в себя две противоположные тенденции: с одной стороны, это механизмы полома, повреждения, отклонения от нормы, а с другой - механизмы защиты, адаптации, компенсации и репарации.
Примеры, ВПЧ - мелкие ДНК-вирусы, характерная особенность которых заключается в способности вызывать пролиферацию эпителия кожи и слизистых оболочек.
Еще в 1986 году Я.В. Бохман сформулировал общие принципы лечения фоновых заболеваний шейки матки: оно должно предусматривать ликвидацию этиологического фактора и тех воспалительных, дисгормональных, иимунодепрессивных и дисметаболических изменений в организме, которые способствуют его возникновению и поддержанию длительного течения.
В настоящее время этиопатогенетическая терапия патологии шейки матки имеет два основных направления - воздействие на этиологический фактор - вирус папилломы человека и блокирование основных механизмов канцерогенеза, а именно гормонального канцерогенеза, связанного с повышенным образованием агрессивного метаболита эстрадиола - 16а-гидроксиэстрона (16а-ОН) на фоне гиперэстрогенемии и ВПЧ-инфицирования.
Этиологическая роль в патологии человека вируса герпеса человека 6 типа доказана в отношении двух самостоятельных заболеваний: внезапной экзантемы у детей раннего возраста и синдрома хронической усталости у взрослых.
Позднее была доказана этиологическая роль ВГЧ-6 в возникновении данного синдрома. Хотя до настоящего времени остается неясным, связан ли синдром хронической усталости этиологически с инфицированием вирусом герпеса человека 6 типа, или же болезнь является следствием реактивации латентной инфекции, т. е. ВГЧ-6 играет патогенетическую роль. В отличие от внезапной экзантемы, синдром хронической усталости -- болезнь взрослых.
В 1957 г. вирусы полиомиелита, Коксаки и ECHO были объединены в одну группу и названы кишечными вирусами человека. 6 последние десятилетия продолжали накапливаться факты, объясняющие роль энтеровирусов в патологии человека.
Как сейчас установлено, энтеровирусы играют этиологическую роль в возникновении серозных менингитов и значительно реже -- менингоэнцефалитов с доброкачественным течением.
7. Предмет, задачи и разделы медицинской микробиологии. Методы, применяемые в микробиологии
ЗАДАЧИ медицинской микробиологии:
1. установление этиологической (причинной) роли микроорганизмов в норме и патологии.
2. разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и индефикации (определения) возбудителей.
3.бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.
4.контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микробиоценозов (микрофлорой) поверхностей и полостей тела человека.
(1.изучение микроорганизмов; 2.патогенез действия микроорганизмов; 3.происхождение микроорганизмов)
Основные МЕТОДЫ микробиологии:
1. микроскопический (фазово-контрастная, темнопольная, люминисцентная, электронная, окраска по Романовскому-Гимзе) -- с использованием приборов для микроскопии. Определяет форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определенными красителями.
2. микробиологический (бактериологический, микологический, вирусологический) -- выделение чистой культуры и ее идентификация.
3. серологический (сыворотка)
4. аллергологический
5. биологический -- заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).
6. хемотоксонамический
7. молекулярно-биологический ( ПЦР, ЛЦР, саузернблоттинг и нозенблоттинг, ДНК-ДНК-гибридизация, риботипирование, рестрикционный анализ).
8. Методы микроскопии; с иммерсионным объективом, в темном поле, фазово-контрастная, люминесцентная микроскопия. Электронный микроскоп
Методы микроскопического исследования используют для изучения формы и структуры клетки, подвижности микробов.
Микроскопия в световом оптическом микроскопе
Световой микроскоп состоит из механической и оптической части. Механическая часть микроскопа - это штатив, состоящий из основания и колонки, к которой прикреплены тубус и предметный столик. В колонке имеются две винтовые системы для установки тубуса. Макрометрический винт служит для установки на фокус при слабых увеличениях (объектив х8), а при сильных объективах (х40, х90) - доя первоначальной, грубой установки. Для более точной установки служит микрометрический винт. Это одна из наиболее хрупких частей микроскопа, и работа с ним требует особой осторожности.
Оптическая часть микроскопа состоит из осветительного аппарата, объективов и окуляров.
Осветительный аппарат расположен под предметным столиком. В большинстве микроскопов свет отражается от зеркала и, пройдя через линзы конденсора, фокусируется в плоскости препарата. В современных микроскопах освещение достигается с помощью вмонтированного в микроскоп источника света.
Объективы представляют собой систему линз в металлической оправе. Передняя (фронтальная) линза - самая маленькая. От нее главным образом зависит увеличение микроскопа. Расположенные за ней линзы называются коррекционными, так как они предназначены для устранения недостатков оптического изображения.
На оправе объективов обозначается создаваемое ими увеличение: х8, х40, х90. Объективы х 8 (малое увеличение) и х40 - это сухие объективы. При работе с ними между фронтальной линзой объектива и препаратом находится воздух. При этом, вследствие разницы показателей преломления стекла (1,52) и воздуха (1,0), часть световых лучей, проходя через оптически неоднородные среды, рассеивается. При микроскопии с объективами х 8 и х 40 это не имеет значения. Но микробы настолько малы, что для их исследования необходимо более сильное увеличение, которое дает объектив х90. При работе с этим объективом рассеивание света должно быть устранено. Для этого между предметным стеклом и линзой помещают каплю жидкости, показатель преломления которой равен показателю преломления стекла. Более всего для этого подходит кедровое масло или его заменители. При микроскопии объектив погружают в каплю масла, поэтому объектив называют иммерсионным (лат. immercio - погружение), а масло - иммерсионным маслом. Иммерсионный объектив требует особо осторожного обращения. Фронтальная линза имеет настолько короткое фокусное расстояние до исследуемого объекта, что опускать объектив нужно медленно, глядя сбоку, чтобы не раздавить препарат, что связано с порчей линзы.
Окуляры имеют две линзы: верхняя называется глазной г нижняя -собирательной. Окуляры обозначают по тому увеличению, которое они дают, например: х7, х10, х15. Окуляр дает увеличение, ничего не добавляя в деталях изображения, данного объективом.
Чтобы определить общее увеличение микроскопа, нужно умножить увеличение объектива на увеличение окуляра.
Разрешающая способность светового микроскопа - это наименьшее расстояние между точками в препарате, которые еще не сливаются в одно изображение. Для светового микроскопа эта способность зависит от длины волны видимого света, и предел разрешения оптического микроскопа равен 0,2 мкм.
Изображение объекта в микроскопе увеличенное и обратное.
Правила микроскопии с иммерсионной системой
1.Работать сидя.
2.Поднять конденсор до уровня предметного столика.
3.Глядя на верхнюю поверхность конденсора, осветить поле зрения.
4.Установить иммерсионный объектив.
5.На предметный столик поместить препарат с каплей Иммерсионного масла.
6.Глядя сбоку, осторожно опустить тубус с помощью макровинта до соприкосновения объектива с маслом и чуть-чуть погрузить его в масло, не доводя до соприкосновения с предметным стеклом.
7.Глядя в окуляр, медленно поднимать макровинтом тубус до получения изображения в поле зрения. Не разрешается опускать макровинтом тубус, глядя в окуляр.
8.Микровинтом, вращая его не более чем вполоборота, найти ясное изображение и рассматривать его. 9.Держать оба глаза открытыми. Левой рукой передвигать препарат для общего обозрения. Если предметный столик подвижный - можно для более мелких и точных движений пользоваться боковыми винтами. Правой рукой слегка вращать микровинт, чтобы препарат всегда был в фокусе.
10.После просмотра препарата поднять тубус при помощи макровинта, снять препарат, установить объектив х8, вытереть мягкой салфеткой масло с иммерсионного объектива.
Микроскопия в темном поле. Для микроскопии в темном поле применяются особые конденсоры, у которых центральная часть линзы затемнена, за исключением узкой полоски по периферии. Кроме того, боковые поверхности конденсора представляют собой не прямую линию, а параболу. Внутренняя поверхность такого темнопольного параболоид-конденсора зеркальная. Лучи света попадают в темнопольный конденсор только через узкую полоску по периферии линзы. Затем они отражаются от его зеркальной поверхности и, если в поле зрения нет никакого объекта, то ни один луч не попадает в объектив. Поле зрения кажется совершенно черным. Если же в поле зрения есть какие-то объекты, например, микробы, то лучи, отраженные от них, попадают в объектив, и их можно видеть светящимися на темном фоне.
Это явление подобно тому, которое наблюдается в комнате с затемненными окнами, когда в косых лучах света, проникающих через щель, видны танцующие пылинки, при обычном освещении невидимые (феномен Тиндаля).
За неимением специального темнопольного конденсора можно обычный конденсор превратить в темнопольный, поместив между его линзами кружок черной бумаги, немногим меньше по диаметру линзы конденсора. В таком "приспособленном" конденсоре можно наблюдать достаточно ясно живых светящихся микробов, но поле зрения будет не черным, а серым.
Преимущество микроскопии в темном поле зрения состоит в том, что при этом можно видеть объекты более мелкие. Кроме того, в темном поле зрения лучше наблюдать в живом состоянии такие микробы, как лептоспиры, которые в водной среде не преломляют света и поэтому в проходящем свете совершенно прозрачны.
Фазовоконтрастная микроскопия. При прохождении через непрозрачные объекты, такие как окрашенные препараты микроорганизмов, амплитуда световых волн уменьшается. Такие изменения, называемые амплитудными, улавливаются человеческим глазом. Поэтому окрашенные микробы видны в обычном микроскопе.
Объекты, разные по плотности, но одинаковые по прозрачности, не меняют амплитуды световых волн, а только изменяют фазу. Такие фазовые изменения человеческий глаз не способен уловить. Поэтому живые клетки микробов, их структурные элементы в живом состоянии прозрачны в проходящем свете и для нас невидимы.
Фазовоконтрастный микроскоп превращает фазовые изменения в амплитудные. Поэтому структурные элементы с различной плотностью выглядят как более светлые и более темные. Это позволяет наблюдать не только фазовые объекты целиком, но и структурные элементы микробов.
Фазовоконтрастная микроскопия осуществляется с помощью обычного светового микроскопа, в котором заменяют объективы и конденсор на специальные - фазово-контрастные.
Люминесцентная микроскопия. Люминесценция - это свечение объекта за счет поглощенной световой энергии коротковолновой или ультрафиолетовой части спектра. Большинство микроорганизмов не обладает собственной люминесценцией, поэтому пользуются наведенной люминесценцией путем обработки микробов флюорохромами. Чаще всего используют акридин-оранж, аурамин, изоцианат флюоресцеина, которые светятся под влиянием ультрафиолетовых лучей. Некоторые флюорохромы избирательно связываются с определенными структурами, такими, как ядро, цитоплазма, включения. Таким образом, можно дифференцировать эти структуры. Препараты, обработанные флюорохромами, микроскопируют в специальных люминесцентных микроскопах, в которых объекты исследуются в ультрафиолетовых лучах.
Люминесцентная микроскопия используется для реакции иммунофлюоресценции (РИФ). В этой реакции для определения вида микробов препарат-мазок из исследуемого материала обрабатывают специфической антисывороткой, соединенной с флюорохромом. Если в материале содержатся микробы, соответствующие антисыворотке, то при микроскопии препарата в люминесцентном микроскопе наблюдается свечение микробов.
Электронная микроскопия. Возможности разрешающей способности светового микроскопа ограничены не качеством линз, а длиной волны видимого света. В электронном микроскопе вместо световых лучей используется поток электронов. Источником электронов является раскаленная вольфрамовая нить. Роль линз в электронном микроскопе выполняет круговое магнитное поле. Вначале электроны попадают в магнитный конденсор и сходятся в одной точке на рассматриваемый предмет, лежащий в безвоздушной среде на тонкой пленке коллодия. Затем пучок электронов проходит через объективную и проекционные линзы. Наблюдатель видит не поток электронов, а изображение, которое проецируется на флуоресцирующий экран или фотографическую пленку. Возникновение изображения на экране обусловлено тем, что различные части исследуемого объекта обладают неодинаковой проницаемостью для электронов. Электроноплотные участки выглядят темными, электронопрозрачные - светлыми.
С помощью электронного микроскопа можно наблюдать вирусы, детали морфологии микробов. Используя метод иммуноэлектронной микроскопии (ИЭМ), можно видеть и сфотографировать вирусы с присоединившимися к ним антителами.
9. Основные принципы систематики бактерий. Таксономические категории. Принципы классификации. Понятие о виде, критерии вида как основной таксономической единице. Подвид, инфравид (биовар, серовар, хемовар, фаговар), культура, популяция, штамм, клон (определение понятий)
Виды, связанные генетическим родством, объединяют в роды, роды -- в семейства. Высшими таксономическими категориями являются царства и подцарства.
Согласно современной систематике, патогенные (болезнетворные) бактерии относятся к надцарству прокариотов (Procaryotae), царству эукариот (Eucaryotae), грибы -- к царству микота (Mycota), простейшие -- к царству Protozoa, вирусы -- к царству Vira.
В основе современной систематики микроорганизмов лежат фенотипические признаки: морфологичеческие, физиологические, биохимические. Морфологические характеризуют форму и структуру микробной клетки; фйизиологические -- особенности роста микроорганизма на искусственных питательных средах в определенных условиях культивирования (температура, рН и др.), а также морфологию колоний на твердых средах и характер роста на жидкой среде; биохимические -- тип окислительного и пластического метаболизма, ферментацию углеводов, протеолитические и другие признаки.
В настоящее время используют ряд таксономических систем: нумерическая таксономия, хемотаксономия, генетическая и серологическая таксономии.
Нумерическая таксономия признает равноценность всех фенотипических признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность исследуемого микроорганизма устанавливается по числу совпадающих признаков. Расчеты проводятся с помощью компьютера. Трудности получения информации о многочисленных признаках исследуемого микроорганизма ограничивает возможность применения нумерической таксономии.
Для хемотаксонамии применяют физико-химические и биохимические методы: газовожидкостная хроматография, электрофорез и другие, с помощью которых исследуют липидный, аминокислотный состав (протеиновые профили) микробной клетки и ее компонентов, напр., клеточной стенки.
Генотаксономия основана на генетических признаках, которые устанавливаются в опытах трансформации, трансдукции и конъюгации, а также анализе внехромосомных факторов наследственности -- плазмид, транспозонов и фагов.
Серотаксономия основана на определении соответствующих антигенов, содержащихся в вбактериальной клетки с помощью диагностических сывороток. Данный метод особенно часто применяется в медицинской микробиологии.
- классификация бактерий по источнику питания ( аутотрофы и гетеротрофы)
- классификация бактерий по источнику энергии ( фототрофы и хемотрофы)
- классификация бактерий по способу углеродного питания (фотолитотрофы, хемолитотрофы, хемоорганотрофы, прототрофы и ауксотрофы)
Вид -- совокупность микроорганизмов, имеющих общий корень происхождения и максимально близкие фенотипические признаки и свойства. ( Вид -- эволюционно сложившаяся совокупность особей, имеющих единый тип организации, который в стандартных условиях проявляется сходными фенотипическими признаками: морфологическими, физиологическими, биохимическими и др.) Однако генетичские механизмы, лежащие в основе изменчивости микроорганизмов, обеспечивают только относительную стабильность перечисленных признаков, которые в пределах одного и того же вида могут варьировать. Отсюда сложившееся понятие о вариантах (варах) микроорганизмов, отличающиеся отдельными признаками от стандартных видов. Так, различают морфовары (отличаются по морфологическим признакам), биовары (по биологическим признакам), ферментовары ( по ферментативным признакам), резистенсвары (резистентностью к антибиотикам), фаговары (к фагам), серовары (по антигенной структуре), эковары (по экологическим нишам), патовары (по патогенности).
Домен>царство>тип>класс>порядок>семейство>род>вид>подвид.
Колония -- скопление бактерий одного вида на ( или в ) плотной питательной среде.
Чистая культура -- популяция состоящая из особей одного вида. (из олной микробной клетки на искусственной питательной среде)
Штамм -- чистые культуры микробов одного вида, полученные из разных источников или из одного источника в разное время.
Клон -- культура микроорганизмов, полученная из одной клетки.
Популяция -- совокупность особей одного вида, обитающих в пределах биотопа (территориально ограниченный участок биосферы с относительно однородными условиями жизни).
(В микробиологии широко применяются специальные термины: штамм, клон, чистая культура. Штамм -- культура, выделенная из определенного источника, или из одного и того же источника в разное время. Обычно штаммы обозначают либо протокольными номерами, либо по источнику выделения (человек, животное, внешняя среда), либо по местности (городу), где он был выделен. Штаммы одного и того же вида могут быть идентичными или различаться по некоторым признакам, не выходящим за пределы вида. Клоном называют культуру микроорганизма, выделенную из одной клетки (одноклеточная культура). Чистая культура представляет собой микробные особи одного и того же вида, выращенные из изолированной колонии, выращенной на твердой питательной среде.)
10. Формы бактерий. Морфология, ультраструктура, химический состав бактериальной клетки. Основные отличия прокариот от эукариот. Субклеточные формы бактерий; протопласты, сферопласты, L-формы бактерий
В настоящее время установлены принципиальные различия в организации и функционировании клеток прокариот и эукариот. Прежде всего, они заключаются в отсутствии у прокариот мембран, с помощью которых органеллы микробной клетки ( ядро, митохондрии, рибосомы и др.) отграничены от цитоплазмы. Система мембран у прокариот представлена только цитоплазматической мембраной, отдедяющей цитоплазму от клеточной оболочки или непосредственно от внешней среды. Вследствии этого при электронно-микроскопическом исследовании срезов клеток прокариот цитоплазма имеет вид мелкозернистой массы с включениями рибонуклеопротеиновых молекул, не организованных в ЭПС, но выполняющих рибосомальные функции.
...Подобные документы
История развития микробиологии как науки о строении, биологии, экологии микробов. Науки, входящие в комплекс микробиологии, классификация бактерий как живых организмов. Принцип вакцинации, методы, повышающие резистентность человека к микроорганизмам.
презентация [10,9 M], добавлен 18.04.2019Этапы развития микробиологии как науки. Анатоксины: определение и практическое применение. Морфологические и культуральные свойства стрептококков. Работы Пастера, их значение в развитии и становлении микробиологии. Эволюция микробного паразитизма.
шпаргалка [813,1 K], добавлен 13.01.2012Наука, изучающая микроорганизмы, их систематику, морфологию, физиологию, наследственность и изменчивость. Методы и цели микробиологии, этапы становления. Ученые, внесшие существенный вклад в развитии микробиологии, ее практическое значение и достижения.
презентация [3,1 M], добавлен 14.12.2017Предмет, задачи и этапы развития микробиологии, ее значение для врача. Систематика и номенклатура микроорганизма. Механизмы резистентности бактерий к антибиотикам. Генетика бактерий, учение об инфекции и иммунитете. Общая характеристика антигенов.
курс лекций [201,9 K], добавлен 01.09.2013Болезнетворные (патогенные) микроорганизмы и непатогенные (сапрофиты). Классификация микробиологии. Изучение микроорганизмов тел космонавтов и подводчиков. Воздействие космических лучей на микроорганизмы. Значение микробиологии в деятельности врача.
презентация [2,0 M], добавлен 03.04.2012Задачи медицинской микробиологии, вирусологии, иммунологии и бактериологии. История развития микробиологии на мировом уровне. Изобретение микроскопа А. Левенгуком. Зарождение отечественной бактериологии и иммунологии. Работы отечественных микробиологов.
реферат [68,2 K], добавлен 16.04.2017История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.
шпаргалка [249,1 K], добавлен 04.05.2014Микроорганизмы как важный фактор естественного отбора в человеческой популяции. Их влияние на круговорот веществ в природе, нормальное существование и патологии растений, животных, человека. Основные этапы развития микробиологии, вирусологии, иммунологии.
реферат [20,4 K], добавлен 21.01.2010Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.
презентация [967,8 K], добавлен 27.05.2015История развития микробиологии. Эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы развития микробиологии. Диссертация Луи Пастера. Работы в области химии, брожения. Изучение инфекционных заболеваний.
презентация [1,5 M], добавлен 21.12.2016Особенности вирусов - возбудителей опасных заболеваний человека, которые передаются при физическом контакте, воздушно-капельным, половым путем. Характеристика вирусологии - науки, изучающей природу вирусов, их строение, размножение, биохимию, генетику.
реферат [21,1 K], добавлен 23.01.2010Биография Антони ван Левенгука, его роль в развитии микробиологии. Совершенствование конструкции микроскопа, его использование в микробиологических исследованиях. Изучение Левенгуком причинных связей и способов появления и размножения микроорганизмов.
реферат [250,4 K], добавлен 28.10.2015Понятие, цель и задачи клинической микробиологии. Клинико-лабораторная диагностика, специфическая профилактика и химиотерапия инфекционных болезней, часто встречающихся в широкой медицинской практике в неинфекционных клиниках. Дезинфекция. Стерилизация.
презентация [797,3 K], добавлен 22.11.2016Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.
лекция [1,3 M], добавлен 12.10.2013Понятие микробиологии как науки, ее сущность, предмет и методы исследования, основные цели и задачи, история зарождения и развития. Общая характеристика микроорганизмов, их классификация и разновидности, особенности строения и практическое использование.
реферат [20,9 K], добавлен 04.05.2009Понятие микробиологии и ее основные вопросы. История развития данной науки, основные периоды: эвристический, морфологический, физиологический, иммунологический и молекулярногенетический. Описание методов проведения реакций Вассермана, Видаля и Райта.
реферат [31,2 K], добавлен 16.05.2013Программы вступительных экзаменов по общей биологии, зоологии беспозвоночных, зоологии позвоночных, биохимии, микробиологии и вирусологии, генетике, физиологии человека и животных, экологии для направления "Биология" (магистерская программа "Биология")
методичка [103,4 K], добавлен 01.06.2008Понятие мутации вирусов и мутагенов. Частота мутаций вирусов и механизмы их возникновения. Модификации, вызываемые хозяином. Изменчивость вирусов при пассажах. Изменчивость вирусов, возникающая в процессе пассажей при пониженных и повышенных температурах.
реферат [32,0 K], добавлен 10.11.2010Вирусы как мельчайшие возбудители инфекционных болезней. Открытие Д. Ивановским вируса табачной мозаики. Наличие наиболее объемного и сложного набора ДНК среди вирусов у мимивируса. Возможность влияния вирусных осколков в геноме на автоимунную систему.
презентация [2,2 M], добавлен 10.04.2012Главные направления научной деятельности Э. Чаргаффа. Биография и исследовательские работы Р. Коха. Методы изучения патогенных организмов Р. Коха. Обнаружение Кохом сибирской язвы. Анализ медицинской практики Коха. Изучение Кохом туберкулеза и холеры.
презентация [740,7 K], добавлен 02.03.2012