Экологические и онтогенетические аспекты дыхания

Общие принципы процесса дыхания. Зависимость дыхания от факторов внешней и внутренней среды. Действия гетероауксина и гибберелина на процессы окислительного фосфорилирования в изолированных митохондриях. Распад глюкозы в тканях разного возраста.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.11.2013
Размер файла 65,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное образовательное учреждение

высшего профессионального образования

«Башкирский государственный педагогический университет им. Акмуллы»

(ФГБОУ ВПО «БГПУ им. М.Акмуллы»)

Кафедра биоэкологии и биологического образования

Реферат по физиологии растений на тему:

«Экологические и онтогенетические аспекты дыхания»

Выполнил: студент 2 курса

БГПУ им. М.Акмуллы

Естественно-географический факультет

1 группа Биология

Кравцов Радомир

Проверила: Фазлутдинова Альфия Ильсуровна

Уфа - 2013

План:

1. Введение

2. Общие принципы процесса дыхания

3. Зависимость дыхания от факторов внешней и внутренней среды

4. Интересны данные по изучению относительной активности пентозофосфатного распада глюкозы в тканях разного возраста

5. Вывод

6. Список литературы

1. Введение

Дыхание - важнейший физиологический процесс, в результате которого происходит выделение энергии, необходимой для жизнедеятельности растительного организма. При дыхании поглощается кислород и выделяется углекислый газ. Установлено, что дыхание животных и растений протекает однотипно, несмотря на отсутствие у растений специальных органов дыхания.

Наиболее простой механизм обмена газами у водорослей, которые не имеют тканей и органов, а воздух непосредственно проникает в каждую клетку. У мхов, папоротников, голосеменных и покрытосеменных воздух проходит более сложный путь. Через устьица он поступает в межклетники, которые пронизывают все растения, а оттуда - в клетки.

У наземных растений устьица, как правило, расположены на нижней стороне листа, а у живущих в воде - на верхней, так как нижней стороной он лежит на поверхности воды. Поступление воздуха в листья регулируется периодическим открыванием и закрыванием устьиц.

Внутрь стволов деревьев и кустарников, покрытых толстой пробкой или корой, воздух поступает через отверстия - чечевички. Хорошо видны чечевички у березы, они крупные (до 15 см) и имеют вид узких темных поперечных полосок. У ряда болотных растений затруднено поступление воздуха в корни, так как в насыщенной влагой почве мало воздуха. У этих растений сформировались приспособления, обеспечивающие нормальный газообмен. Так, у некоторых растений образовались дыхательные корни, которые выступают над поверхностью воды, например у растений мангровых лесов. Процесс дыхания связан с непрерывным потреблением кислорода клетками и тканями растений и осуществляется при участии различных ферментов. Вначале сложные органические вещества (белки, жиры, углеводы) под действием ферментов распадаются на более простые, которые при участии кислорода расщепляются до конца, т.е. до образования углекислого газа и воды. При этом освобождается энергия, которая используется растением (а также любым живым организмом) на процессы жизнедеятельности: поглощение из почвы воды и минеральных веществ, их передвижение, рост, развитие, размножение.

В освобождении энергии, заключенной в органических веществах, состоит главное значение дыхания. По существу, при дыхании освобождается солнечная энергия, которую растение использовало в процессе фотосинтеза на образование органических веществ и таким путем запасло ее.

В процессе дыхания окисление сложных органических веществ до углекислого газа и воды происходит постепенно и энергия освобождается небольшими порциями. Если бы энергия освобождалась вся сразу, тогда клетка сгорела бы. Дыхание, подобно другим процессам жизнедеятельности, зависит от факторов среды: температуры, влажности, содержания кислорода, степени освещенности и др. Для протекания процессов дыхания требуются определенные температурные условия, причем они разные у каждого вида растений и его органов. У большинства растений для дыхания наиболее благоприятна температура 25 - 30°С. У некоторых видов растений дыхание происходит и при отрицательных температурах, хотя этот процесс протекает очень слабо. Например, почки лиственных и иглы хвойных деревьев дышат и при температуре - 20 - 25°С. У арктических растений даже при низких температурах интенсивность дыхания высокая.

Интенсивность дыхания растений зависит от содержания воды в клетках. Чем меньше воды в клетках, тем слабее идет в них дыхание. Очень слабо дышат сухие семена. С увеличением влажности дыхание семян возрастает в сотни и тысячи раз. Это отрицательно сказывается на хранении семян, так как они сильно разогреваются и погибают. Повышение интенсивности дыхания имеет огромное биологические значение для прорастания семян, поскольку усиление дыхания сопровождается освобождением большого количества энергии, необходимой для роста и развития зародыша.

На дыхание растений влияет содержание кислорода в окружающей среде. Угнетение дыхания начинается при уменьшении содержания кислорода до 5%. Недостаток кислорода испытывают подземные органы (корни и корневища) растений, обитающих на заболоченных и глинистых почвах.

В растениеводстве применяются различные агротехнические приемы для улучшения дыхания корней. Так, проводят комплексную обработку посевов машинами, чтобы сократить число обработок и уменьшить уплотненность почвы. Специальными культиваторами почву рыхлят и таким путем улучшают доступ воздуха к корням, при этом срезают сорняки, подкармливают культурные растения. Сильно увлажненные земли осушают, создают дренаж.

На дыхание растений влияет и свет, хотя дышат они днем и ночью, на свету и в темноте. Свет вызывает повышение температуры растения, отчего дыхание его усиливается. У светолюбивых растений, дыхание более интенсивное, чем у теневыносливых.

Изменения в окружающей среде, связанные с деятельностью человека, также воздействуют на дыхание растений. Отрицательно влияют на дыхание вредные примеси, пыль, выделяемые промышленными предприятиями.

Наиболее интенсивно дышат молодые органы и ткани растений, находящиеся в состоянии активного роста. Цветение и плодоношение сопровождаются усилением дыхания развивающихся цветков и плодов, что связано с образованием новых органов и тканей, обладающих высоким уровнем обмена веществ.

2. Общие принципы процесса дыхания

Дыхание -- это процесс, обеспечивающий обмен веществ (метаболизм) живых организмов из окружающей среды кислородом (О2) и отводящий в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, H2O и др.) Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Большинство растений в светлое время суток вырабатывают кислород, но в их клетках идет и обратный процесс: кислород поглощается в процессе дыхания. Ночью в комнате, плотно уставленной растениями, можно наблюдать снижение концентрации кислорода и увеличение концентрации углекислого газа.

На самом деле, в живых клетках растений процесс дыхания происходит круглосуточно. Просто на свету скорость образования кислорода в результате фотосинтеза обычно превышает скорость его поглощения. Так же как и у животных, клеточное дыхание растений протекает в специальных клеточных митохондриях.

Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикрепленный образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности.

Во второй половине XIX века в результате изучения дыхания у растительных и животных объектов общее уравнение этого процесса разложения сахаров приняло следующий вид:

Дыхание дает энергию для химических превращений веществ в клетках растений.

Совершенствование методов исследования сделало возможным изучение дыхания отдельных микроскопических участков тканей и облегчило выяснение значения фазы роста клеток для характера дыхательного процесса. Уже первые исследования, проведенные в этом направлении, дали ряд интересных и неожиданных результатов: оказалось, что не всегда, более молодые клетки дышат интенсивнее, как можно было ожидать на основе данных, полученных при грубом сравнении дыхания органов разного возраста. Ученые наблюдают изменения дыхания клеток растений на разных фазах роста и возраста тканей, а также обнаружено аэробное брожение, т.е. наряду с кислородным дыханием в них осуществляется процесс спиртового брожения.

У высших растений нет специальных органов газообмена. Каждая клетка корня, стебля или листа независимо от остальных клеток обменивается со своим окружением двуокисью углерода и кислородом путем диффузии.

В корнях и стеблях газообмен сравнительно невелик. Интенсивность клеточного дыхания у растений обычно значительно ниже, чем у животных. Большая часть корней и ветвей лишена хлорофилла и не участвует в фотосинтезе. Кроме того, в корне и стволе многие клетки мертвы. Кислород легко диффундирует из воздуха в промежутки между мелкими частицами почвы в окружающую их пленку воды и в корневые волоски. Затем он, также путем диффузии, проникает в клетки более глубоких слоев коры и в клетки центрального цилиндра. Образующаяся в клетках углекислота диффундирует в обратном направлении и выходит наружу через корневые волоски. В более старых, утолщенных корнях, которые лишены корневых волосков и покрыты защитным слоем мертвых клеток (пробковой тканью), в этом слое имеются бесчисленные мелкие отверстия (чечевички), через которые газы и проходят внутрь и выходят наружу. Если почва сильно пропитана водой, то между ее частицами не остается воздушных пространств, и многие растения в таких условиях погибают.

Стволы и ветви деревьев и кустарников тоже покрыты толстым слоем пробки, состоящей из мертвых клеток и сильно затрудняющей диффузию. Здесь, так же как и в корнях, имеется множество чечевичек, через которые могут проходить газы. Зеленые стебли однолетних растений имеют тонкий наружный покров, не препятствующий газообмену.

При активном фотосинтезе лист интенсивно обменивается газами с внешней средой. Поступление в лист углекислоты и выделение кислорода происходят путем диффузии через особые поры на поверхности листа -- устьица. Отверстие устьица расположено между двумя замыкающими клетками. В листе имеется много широких межклеточных пространств, сообщающихся с устьицами и свободно пропускающих газы. По мере использования СО2 в процессе фотосинтеза, концентрация его в клетке листа снижается и в клетку из окружающей ее водной пленки диффундируют новые молекулы СО2. В свою очередь в лист через устьица снаружи из воздуха диффундирует СО2 (содержание ее в атмосфере составляет около 0,03%). Свободный кислород, образующийся в клетках листа, переходит из них в водную пленку, во внутренние воздушные пространства и через отверстия устьиц наружу тоже путем диффузии.

Скорость поступления СО2 и выхода кислорода зависит от величины отверстий устьиц, которая в свою очередь регулируется осмотическим давлением воды (тургор) замыкающих клеток. Устьица обычно открываются утром под действием света и закрываются с наступлением темноты или в жаркую сухую погоду.

У растений засушливых мест листья обычно толстые, мясистые, а устьица расположены в углублениях.

С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов -- способность испускать видимый свет -- люминесцировать.

Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, иногда приводит к свечению моря. С люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.

(http://magbiocenter.ru/articles/9-gazeta-zelyonyj-ostrov-dyhanie-rastenij)

3. Зависимость дыхания от факторов внешней и внутренней среды

Дыхание -- процесс универсальный. Оно является неотъемлемым свойством всех организмов, населяющих нашу планету, и присуще любому органу, любой ткани, каждой клетке, которые дышат на протяжении всей своей жизнедеятельности. Дыхание всегда связано с жизнью, тогда как прекращение дыхания -- с гибелью живого. В связи с этим проблеме дыхания уделяется большое внимание в исследованиях биологов всех специальностей и профилей.

Как и фотосинтез, дыхание зависит от различных внутренних и внешних факторов.

Внутренние факторы, влияющие на дыхание

1. Содержание углеводов

Углеводы являются основными субстратами для дыхания. Если углеводов мало и энергии не хватает, то интенсивность дыхания падает, а когда содержание углеводов увеличивается - сразу возрастает интенсивность ды 343f58ed хания. Постепенно растение полностью удовлетворяет свою потребность в энергии, и в дальнейшем при увеличении содержания углеводов интенсивность дыхания не увеличивается.

2. Орган растения и его возраст

У сухих семян интенсивность дыхания очень мала. Когда семя набухает и начинает прорастать, то интенсивность дыхания резко возрастает, т.к. необходимо обеспечивать энергией различные процессы при прорастании семени.

У корней и листьев интенсивность дыхания очень велика в молодом возрасте, когда нужно обеспечивать энергией процессы роста органа. У зрелых корней и листьев интенсивность дыхания намного ниже, т.к. энергия требуется только для поддержания основных структур этих органов. У стареющих корней и листьев интенсивность дыхания вновь немного возрастает, т.к. питательные элементы из стареющих органов начинают оттекать в молодые, и этот процесс идет с затратами энергии.

У сочных плодов интенсивность дыхания тоже велика в молодом возрасте и снижается у более зрелых плодов; при созревании плодов интенсивность дыхания опять увеличивается, но не немного, как у корней и плодов, а резко - климактерическая активация дыхания. Это необходимо для того, чтобы обеспечивать энергией процессы преобразования питательных веществ в плоде (образование сахаров из органических кислот, разрушение пектиновых веществ и т.д.).

3. Видовая принадлежность растений

У разных видов растений интенсивность дыхания разная. Например, у бобовых интенсивность дыхания значительно выше, чем у остальных растений, потому что у бобовых очень много энергии уходит на фиксацию азота.

Внешние факторы, влияющие на дыхание

1. Обеспеченность растения водой

При недостатке воды в растении интенсивность дыхания растет, т.к. растению нужна энергия для приспособления своего обмена веществ к условиям недостатка воды. Если недостаток воды очень сильный, то интенсивность дыхания снижается, т.к. уменьшается общая активность всех жизненных процессов в растении. Однако интенсивность дыхания при недостатке воды (так же как и при действии других неблагоприятных факторов) тормозится значительно позже, чем фотосинтез и тем более чем ростовые процессы.

2. Температура

Т.к. дыхание - это ферментативный процесс, то с увеличением температуры до определенного предела (ок. 350С) интенсивность дыхания возрастает, т.к. снижается энергия активации химических реакций. После 350С дыхательные ферменты начинают денатурировать, поэтому интенсивность дыхания уменьшается.

3. Концентрация О2 и СО2

Увеличение концентрации СО2 или уменьшение концентрации О2 снижают интенсивность дыхания.

4. Азотное питание растений

Как известно, многие белки для поддержания своей структуры требуют определенной энергии. Поэтому чем лучше азотное питание растений и чем больше содержание белка в растениях, те больше интенсивность дыхания.

5. Пораженность растения патогенами

При поражении патогенами интенсивность дыхания резко возрастает, т.к. растению требуется энергия для активации различных защитных систем (нейтрализация токсинов патогена, образование белков, разрушающих патоген, и.т.д.)

Физиологические основы регулирования дыхания при хранении с/х продукции

Одной из задач при хранении с/х продукции является уменьшений интенсивности дыхания. В процессе дыхания расходуется часть пластических веществ урожая, а также возникает ряд дополнительных проблем (с/х продукция может погибнуть от избытка СО2, возможны взрывы из-за самосогревания с/х продукции и т.д.). поэтому интенсивность дыхания при хранении с/х продукции уменьшают различными способами. Зерно хранят при низкой влажности (12-14%), когда подавлены все жизненные процессы и в том числе дыхание. Сочные плоды, овощи и т.д. высушивать нельзя, поэтому их приходится хранить при низкой (но обязательно выше 00С) температуре. Также нередко поддерживают в хранилище специальную газовую среду, в которой содержится мало кислорода, но много СО2 и азота. Например, яблоки и груши хранят в газовой среде 3% О2, 5% СО2 и 92% N2.

Рост растения представляет собой интегральную функцию, на которую откладывает отпечаток вся совокупность процессов жизнедеятельности организма. В основе роста лежит непрерывное новообразование различных элементов структуры и, следовательно, синтез самых разнообразных клеточных компонентов. Тесная связь дыхания с биосинтетическими функциями клетки позволяет уже априори предполагать, что дыхание должно также оказывать большое влияние и на ростовые процессы у растений.

Однако данные непосредственных наблюдении не всегда укладываются в эту, казалось бы, бесспорную схему. Они свидетельствуют о том, что взаимосвязь процессов роста с окислительно-восстановительными превращениями является сложной и до настоящего времени природа этой связи в общем недостаточно изучена. Нередки случаи, когда более активный рост вегетативных органов коррелирует с низкой величиной rН, пониженной активностью ряда окислительных ферментов, высокой восстановительной активностью тканей.

Для обсуждаемой проблемы в особенности интересны данные по дыхательной активности клеток, находящихся на различных стадиях роста. Взаимосвязь дыхания и роста можно проследить на быстрорастущих органах различных тканей корней. Согласно исследованиям ряда лабораторий, клетки меристемы характеризуются минимальной интенсивностью кислородного дыхания. Зона деления отличается, кроме того, высоким дыхательным коэффициентом, достигающим нередко величины 2 и больше. Это указывает на то, что в дыхательном метаболизме клеток меристемы существенное место занимают анаэробные процессы.

У клеток зоны растяжения, для которых характерно усиленное новообразование протоплазмы, наблюдается резкое усиление дыхательной активности. Это активирование обусловлено не только увеличением количества белка, приходящегося на долю митохондрий, но и возрастанием удельной активности каждой единицы белка.

Следует отметить, что дыхательная активность тесно связана с содержанием белка, причем в особенности отчетливо эта корреляция проявляется, если расчет ведется не на содержащийся в клетке белок, а на единицу белка, синтезируемого клеткой. Факт этот легко понять, если вспомнить, что именно синтетические процессы и являются непосредственными потребителями энергии дыхания.

Вопрос о дыхательной активности клеток зоны дифференциации оказался сложным и пока не может считаться решенным. Имеющиеся по этому вопросу экспериментальные материалы противоречивы. Так, по данным некоторых исследователей, дыхательная активность клеток зоны дифференцировки ниже, чем клеток зоны растяжения, тогда как, согласно данным Н. Г. Потапова и сотр., активность дыхания непрерывно растет от меристемы к клеткам, где формируются корневые волоски. Клетки зоны дифференцировки обладают наибольшей активностью дыхания в пересчете как на белковый азот, так и на одну клетку. В клетках этой зоны наиболее активна цитохромоксидаза, подтверждением чего служит также максимальная величина подавления дыхания азидом .

Соотношения указанного типа не являются, однако, общей закономерностью, поскольку в ряде случаев максимальная интенсивность дыхания обнаруживается в клетках зоны растяжения. Такая закономерность выявляется при пересчете на белок, а также на единицу кислотонерастворимого фосфора. Вполне вероятно, что это обусловлено увеличением количества митохондрий, а также возрастанием их удельной активности. Большие различия в дыхании свойственны клеткам различных видов ткани. Так, например, в точке роста стебля люпина дыхание клеток инициального конуса значительно выше, чем клеток окружающей туники. Очень интенсивно дышат клетки камбия, которые отличаются также и высокой активностью дегидрогеназ.

Имеются наблюдения, что факторы, ингибирующие анаэробную фазу дыхания, а также транспорт электронов и превращения в цикле Кребса, влияют аналогичным образом и на рост.

В работах лаборатории Тиманна подчеркивается важная роль цитохромной системы в процессах роста растений. Подтверждением этого являются многочисленные опыты, в которых полное подавление роста вызывалось с помощью СО, причем это подавление снималось на свету.

В связи с проблемой взаимозависимости процессов роста и дыхания представляют интерес опыты, в которых изучалось влияние на окислительные процессы, оказываемое обработкой растительных тканей различными ростактивирующими веществами (гетероауксин и др.). Основанием для проведения указанных опытов послужило представление о том, что стимулирующее действие ауксина на ростовые процессы обусловлено в первую очередь влиянием этих агентов на энергетический обмен клетки.

Результаты наблюдений оказались в значительной степени противоречивыми, что свидетельствует о большой сложности путей взаимосвязи роста с процессами образования и потребления энергии.

Так, в большом числе наблюдений установлено, что один из эффектов, вызываемых гетероауксином, состоит в активировании дыхания обработанной им ткани. Внутренняя природа и механизм этого влияния остаются, однако, до настоящего времени окончательно невыясненными.

В серии работ Марре и сотр. развиваются представления о том. что в основе действия ауксина лежит увеличение содержания богатых энергией восстановленных соединений (аскорбиновая кислота, восстановленная кодегидрогеназа, восстановленный глутатион). Это приводит к некоторому снижению окислительного потенциала, что, в свою очередь, положительно влияет на процессы роста. Предполагается также, что гетероауксин ингибирует аскорбинатоксидазу, активность которой обусловлена сульфгидрильными группами ферментативного белка.

Интересны, но противоречивы данные, характеризующие влияние гетероауксина на накопление энергии в соединениях типа АТФ. Согласно Боннеру и сотр., гетероауксин обладает высокой фосфатазной активностью, в результате чего в обработанных им тканях снижается содержание АТФ. В этом отношении действие гетероауксина сходно с действием ядов-разобщителей. С другой стороны, в ряде работ показано, что ауксины активируют превращение в системе АТФ/АДФ. Гетероауксин, усиливая потребление макроэргических связей в АТФ, используемых на процессы роста, увеличивает отношение АДФ к АТФ, результатом чего и является активирование аэробного дыхания.

В пользу этого предположения свидетельствуют опыты, в которых при искусственном подавлении роста не проявлялось и стимулирующее действие гетероауксина на дыхание.

Изучение непосредственного действия гетероауксина и гибберелина на процессы окислительного фосфорилирования в изолированных митохондриях, проведенное Якушкиной и сотр., показало, что под действием гетероауксина сопряжение дыхания и фосфорилирования возрастает, повышается количество макроэргического фосфора в АТФ и АДФ (табл. 1).

Изложенный материал показывает, что существует ряд противоположных мнений о первичных механизмах действия ростактивирующнх веществ, и в частности ауксина. Вопрос о последовательности действия ауксина на энергетические и синтетические процессы нельзя считать окончательно решенным. Имеются, наконец, наблюдения, что гетероауксин изменяет «качество» дыхания, в частности под его влиянием происходит активация дегидрогеназ апотомического цикла.

В ряде работ подчеркивается, что с уровнем энергетических процессов связана не только интенсивность, но и направление роста, например знак и величина геотропической реакции.

Наряду с использованием энергии новообразование элементов структуры растения в процессах роста связано с затратой пластических веществ. С этой точки зрения представляется весьма важным вопрос о соотношении между количествами органических соединений, потребляемых на дыхание, с одной стороны, и на новообразование клеток -- с другой.

В исследовании с изолированными зародышами кукурузы, выращенными в стерильных условиях, было найдено, что из трех молей потребленной ими глюкозы два моля затрачивались на построение новых клеток и один моль -- на дыхание. Отношение 2 : 1 было максимальным, и оно отмечалось у пятидневных зародышей. .В другие сроки наблюдений это отношение было менее благоприятным.

Наблюдения над молодыми проростками риса показали, что у этого объекта синтетический эффект составляет примерно 50%, т. е. на каждую единицу вновь образованных сухих веществ затрачивалось такое же количество пластических соединений на дыхание.

Наиболее высокий коэффициент использования в синтетических целях характерен для соединений, содержащих ацетильные, радикалы, для органических кислот цикла Кребса и некоторых других. В особенности продуктивно клетка использует в синтетических целях пировиноградную кислоту, около половины углерода которой может быть обнаружено в составе сухих веществ мезокотиля проростков кукурузы.

Таблица 1

Влияние регулятора роста на окислительное фосфорилирование при обработке изолированных митохондрий стеблей гороха (по Г. М. Живухиной и Н. И. Якушкиной, 1966 г.)

О

Р

Р/О

конт роль

индолил-уксусная кислота

гибберелиновая кислота

контроль

индолил-уксусная кислота

гибберелиновая кислота

контроль

индолил-уксусная кислота

гибберелиновая кислота

0,94 1,80

1,82

1,35 2,10 2,40

2,0 2,55 1,92

0,68 0,91 1,04

2,03 1,80 3,68

2,03 1,80 1,33

0,73

0,51 0,61

1,50

0,87 1,53

1,0 1,07

0,69

Совершенствование методов исследования сделало возможным изучение дыхания отдельных микроскопических участков тканей и облегчило выяснение значения фазы роста клеток для характера дыхательного процесса. Уже первые исследования, проведенные в этом направлении, дали ряд интересных и неожиданных результатов: оказалось, что не всегда более молодые клетки дышат интенсивнее, как можно было ожидать на основе данных, полученных при грубом сравнении дыхания органов разного возраста.

Дыхание меристематических тканей растений отличается рядом своеобразных особенностей. Это впервые показали Рулянд и Рамсгорн (1938), изучая дыхательный газообмен различных меристем (кончики корней бобов, камбий сирени и липы). Эти ученые обнаружили, что этим тканям свойственно аэробное брожение, т. е. наряду с кислородным дыханием в них осуществляется процесс спиртового брожения. Оказалось, что в камбии и кончиках корней содержится небольшое количество этилового спирта и уксусного альдегида. Дыхательный коэффициент этих тканей оказался повышенным и иногда достигал нескольких единиц

Как видно из приведенных данных, поглощение кислорода в меристемах значительно меньше по сравнению с клетками, перешедшими к растяжению или закончившими рост. Дыхательный коэффициент в камбии и кончиках корней всегда выше единицы и обычно резко уменьшается при переходе к зоне растяжения вследствие усиления поглощения кислорода.

При расчете на единицу белкового азота цифры поглощения кислорода были бы еще ниже по сравнению с другими тканями.

Увеличение меристематической активности (ускорение клеточных делений), что достигалось в исследованиях Рулян-да и Рамсгорна воздействием гетероауксина, приводит к еще более высоким величинам ДК, обусловленным снижением поглощения кислорода. Одновременно при применении стимулятора увеличивается накопление продуктов спиртового брожения.

Г. Ваннер (1950) и др., изучая дыхание в разных срезах корней пшеницы, обнаружили, что в зоне растяжения при расчете на единицу белкового азота кислорода поглощается почти в три раза больше, чем в меристематической зоне. Это позднее было подтверждено опытами Л. Элиассона , 1955). Ваннер, 1950) получил подобные результаты для корней лука, Г. Балдовинос (, 1953) и Д. Р. Годдард и Б. Дж. Меуз (, 1950) -- для корней кукурузы. Годдард и Меуз обнаружили, что в меристематической зоне корней интенсивность дыхания при расчете на единицу азота низкая, в зоне растяжения она сильно возрастает и достигает максимума, а после прекращения роста снижается до постоянного уровня. Р. Броун и Д. Броадбент ,( 1950) не нашли столь значительных различий в интенсивности дыхания разных зон роста корней гороха. Таким образом, переход клетки от эмбрионального состояния к фазе растяжения обычно связан со значительным активированием кислородного дыхания. Причина этих изменений дыхания пока остается неясной. Некоторые исследователи считают, что более интенсивное дыхание зоны растяжения является следствием того, что эта фаза роста клеток помимо поглощения воды, накопления осмотически активных веществ и роста клеточных оболочек связана также с интенсивным новообразованием цитоплазмы (Броун и Броадбент, 1950 и др.).

С приведенными данными вполне согласуются наблюдения над влиянием парциального давления кислорода на распускание древесных почек: у некоторых деревьев, например у каштана, почки скорее трогаются в рост при пониженном содержании кислорода -- до 2--5об.%. Многие способы ранней выгонки связаны с временным усилением анаэробных процессов.

Смирнов (1943), изучая дыхание зерна пшеницы при разной влажности, нашел, что дыхательный коэффициент сухого зерна выше; он относил это за счет дыхания зародыша. Особенности дыхания растительных меристем интересно сопоставить с данными, характеризующими обмен веществ на разных фазах митотического деления клеток. Штерн (1959) считает, что митоз можно отнести к числу немногих функций, осуществление которых в клетках, нормально являющихся аэробными, частично или полностью возможно в отсутствие кислорода. У аэробных организмов во многих случаях, хотя и не всегда, доступ кислорода является существенным условием, способствующим митозам, но даже в случае наличия потребности в кислороде эта потребность снимается перед окончанием профазы, а у некоторых клеток и при вхождении в профазу, после чего до самого завершения митотического цикла клетки не нуждаются в доступе кислорода (В. С. Буллоу-- 1952). В этом отношении наблюдается неоднородность реакций даже среди аэробных клеток: у некоторых потребность в кислороде обнаруживается только на протяжении части профазы, у других--вся профаза проходит без кислорода, а у некоторых клеток уже перед началом профазы эта потребность утрачивается.

Варбург (1956) высказывал предположение, что причина рака заключается в нарушении дыхательных систем, приводящих к нарушению дифференциации тканей при сохранении высокой активности митозов. Действительно, для многих опухолей характерно наличие интенсивного гликолиза при слабом дыхании (см. сводку Штерн, 1959). Однако Штерн считает, что возникновение подобных аномалий обмена чаще является следствием, чем причиной канцерогенезиса.

Неодинаковое отношение к кислороду митотического процесса у разных клеток пока еще не получило своего объяснения. Некоторые исследователи предполагают, что здесь может сказываться конкуренция в потреблении кислорода разными клеточными органоидами, изменяющаяся при дифференциации тканей (Штерн, 1959). Благоприятное влияние дыхания на митотические движения отмечалось многими, оно возникает вследствие образования богатых энергией соединений, прежде всего АТФ. Однако пока еще неясна роль образуемой при дыхании АТФ в процессе разделения хромосом. Если бы гликолиз не прекращался во время митоза, то он один был бы способен обеспечить энергией этот процесс, как предполагает Браше (1955 и др.). Однако пока еще нельзя считать доказанным, что гликолитический механизм остается активным на протяжении всех этапов митоза; имеется ряд фактов, говорящих об обратном. Например, микроспоры во время митотического интервала обладают очень слабой способностью вызывать распад сахара ферментами, катализирующими первичные реакции гликолиза, хотя в другое время эти ферменты у них очень активны.

В пыльниках лилейных во время деления ядер наблюдается резкое падение потребления кислорода в микроспороцитах и микроспорах, что подтвердилось и в опытах с суспензиями микроспор (Р. О. Эриксон-- 1947; Штерн и П. Л. Кирк -- 1948 и др.). В синхронно делящейся культуре обнаружено прекращение поглощения кислорода во время деления клеток. Однако подобное явление наблюдается не всегда: у морских ежей нет подобного резкого снижения потребления кислорода клетками в момент деления, что, вероятно, связано с большой массой цитоплазмы у их яйцеклеток (Штерн, 1956, 1959).

Предполагается, что нарушения синтетических процессов во время митотического деления клеток являются следствием временного ослабления активности аэробных систем, имеющих значение в образовании богатых энергией соединений. Для объяснения сравнительно малой потребности митотического процесса в снабжении энергией существуют разные предположения. Как уже упоминалось, существует точка зрения Варбурга, заключающаяся в том, что гликолиз может служить единственным источником энергии для митоза. Буллоу (1952) -предполагает, что до наступления митоза предварительно создается резервуар энергии за счет аэробных процессов. Штерн (1959) считает, что дезорганизация ядра во время митоза каким-то образом прекращает функционирование митохондрий. Это пока трудно достаточно ясно истолковать потому, что здесь было бы неправильно полагаться на аналогии с влиянием удаления ядра в опытах Браше (1955 и др.). Изменения состояния клетки и ее отдельных органоидов во время митоза своеобразны и трудно сравнимы со всякими другими состояниями, искусственно вызываемыми при выделении безъядерных фрагментов и т. д.

Для деления клеток характерны понижение окислительно-восстановительного потенциала и высокий уровень восстановленности, что было замечено для эмбриональных тканей животных (Вюрмзер, 1935 и др.), а также для растительных меристем, которым, присущи спиртовое брожение, высокий дыхательный коэффициент и сравнительно невысокая интенсивность поглощения кислорода (Рулянд и Рамсгорн, 1938; Ваннер, 1950; Элиассон, 1955 и др.). Здесь, вероятно, имеет значение характер биосинтезов, происходящих хотя и не в период самого деления клетки, а, по-видимому, во время интерфазы, но без совершения которых не может осуществляться митотический процесс. Имеется в виду синтез ядерной нуклеиновой кислоты -- дезоксирибонуклеиновой (ДНК), содержание которой должно удвоиться, иначе не может происходить деление. ДНК характеризуется высоким уровнем восстановленности: в состав ее нуклеотидов входит дезоксирибоза -- пентоза, отличающаяся от рибозы при равном числе водородных атомов меньшим числом кислородных. Кроме того, в отличие от РНК, ДНК имеет в своем составе тимин (вместо урацила в РНК), который отличается от урацила большим числом метальных групп. Высокий уровень восстановленности говорит о необходимости больших затрат энергии на синтез ДНК. Кроме того, самый характер биосинтеза ДНК требует предварительного аккумулирования значительных количеств энергии макроэргических связей, которые могли бы обеспечить этот синтез своевременно и быстро. Действительно, имеющийся фактический материал, характеризующий условия, влияющие на деление клеток, показывает, что для интенсивного деления их необходима высокая активность процессов, способных обеспечить запасание энергии макроэргов. У растений все условия, способствующие фотосинтетическому или дыхательному фосфорилированию, благоприятствуют интенсивному делению клеток, высокой активности меристем. Наоборот, все факторы, угнетающие энергетические процессы: недостаток света, недостаток фосфора при избытке азота, воздействие специфическими ингибиторами дыхательных ферментов, или ингибиторами фосфорилирования, высокими концентрациями ауксинов, угнетающими фосфорилирование, и т. д., приводят к торможению деления клеток, уменьшая синтез ДНК. Следствием подобных условий является обычно увеличение отношения РНК/ДНК при снижении общего содержания нуклеиновых кислот (Туркова и др., 1960 и др.).

4. Интересны данные по изучению относительной активности пентозофосфатного распада глюкозы в тканях разного возраста

дыхание ткань митохондрия

Джиббс и Биверс провели определение величины С6/С1 дыхания растительных тканей разного возраста (1955). Интересно, что только кончики корней давали близкие к единице величины С6/С1, а по мере удаления от них наблюдалось все большее уменьшение этой величины, т. е. у более старых частей корня анаэробная фаза дыхания менее выражена и начинает преобладать путь прямого окисления. Это подтверждает представления о сильно выраженном гликолизе в активных меристемах растений, в частности в кончиках корней.

Джиббс и Биверс в стеблях и листьях различных растений также обнаружили, что по мере старения тканей возрастает доля участия в дыхании «апотомического» распада глюкозы. В этой работе для листьев и стеблей были получены менее высокие цифры изучаемого отношения, чем для корней. Во всех случаях наблюдается одна и та же закономерность: усиление прямого окисления глюкозы при старении.

Вместе с изменениями в дыхательном газообмене, сопровождающими рост клеток, и в характере путей распада глюкозы обнаружены изменения и в ферментных системах, участвующих в дыхании. Исследованиями В. Кемпвера (1936), Д. Р. Годдарда (1944) и др. было установлено наличие цитохромной системы в эмбриональных тканях растений: зародышах семян и др.

П. В. Марш и Годдард ,( 1939) обнаружили, что листья разного возраста обладают качественно различными дыхательными системами. Анализируя листья моркови, они наблюдали, что наружные листья розетки мало чувствительны к действию цианидов, азида натра и окиси углерода, средняя часть -- уже более чувствительна, а дыхание самых молодых, внутренних, листьев розетки, еще не прекративших рост, почти полностью подавляется этими ингибиторами. Отсюда был сделан вывод, что при старении листьев увеличивается роль дыхательных ферментов, не содержащих тяжелых металлов. В то время считалось, что флавиновые ферменты не содержат металлов и что поэтому они не ингибируются ядами металлосодержащих оксидаз.

Михлин и П. А. Колесников (1947) провели обстоятельные исследования изменения в дыхательных системах зародыша за период до 6-недельного возраста у нескольких растении из разных семейств: ячменя, табака, свеклы, цикория. Основными методами изучения окислительных систем служили: 1) применение специфических субстратов, 2) использование специфических ингибиторов и 3) спектроскопические исследования.

Цитохромную систему Михлив и Колесников обнаружили в изолированных зародышах, в проростках и корешках ячменя, в листьях табака (сорт Дюбек). В незеленых частях ячменя цитохром с нашли спектроскопически. В суспензии из 10-дневных проростков ячменя удалось обнаружить лишь следы цитохрома. О присутствии в зародышах и проростках ячменя цитохромоксидазы можно было судить по поглощению кислорода суспензией после прибавления к ней цитохрома с и гидрохинона . Предварительные опыты с изолированными препаратами показали, что для цитохромоксидазы преимущественным субстратом из полифенолов является гидрохинон, а для полифенолоксидазы -- пирокатехин.

Результат опыта показал: влияние добавления цитохрома падает с возрастом ткани: у зародышей оно таково, что увеличение поглощения кислорода возрастает в несколько раз, у проростков оно значительно меньше и заметно падает с каждым днем. Спектроскопические исследования подтвердили результаты опытов с добавлением цитохрома и гидрохинона; это дало право Михлину (1947, 1956) считать, что после 5--6 дней роста ячменя цитохромная система заменяется какой-то другой. В надземных частях ячменя Михлину не удалось обнаружить наличие полифенолоксидазы; прибавление пирокатехина оказывало только тормозящее действие на дыхание. В листьях же цикория и свеклы была установлена высокая активность полифенолоксидазы.

После отравления цианидом у зародышей и корней ячменя в опытах Михлина и Колесникова наблюдалось значительное «остаточное» дыхание, величина которого оказалась гораздо большей у нерастертых листьев 20-дневного возраста. Таким образом, при развитии ячменя цитохромная система в его тканях постепенно заменяется другой, мало чувствительной к цианидам и, как оказалось в других опытах, совсем не угнетаемой окисью углерода. Инфильтрованные в листья ячменя аминокислоты, в-оксимасляная кислота, глицериновый альдегид и гипоксантин окисляются даже в присутствии цианидов. Все это позволило авторам считать, что дыхание листьев ячменя осуществляется при активном участии флавиновых ферментов.

5. Вывод

Я изучил экологические и онтогенетические аспекты дыхания путем написания этого реферата и их углубленного изучения

6. Список литературы

1. Рубин Б.И. и Ладыгина М.Е. Физиология и биохимия дыхания.-М.: Наука, 1974г.

2. Туркова Н.С. Дыхание растений. М. Изд-во Моск. ун-та, 1963г.

3. Куперман И.А., Хитрово Е.В. Дыхательный газообмен как элемент продукционного процесса растений. - Новосибирск: Наука, 1977г.

4. Полевой В.В. Физиология растений. 1989г.

Размещено на Allbest.ru

...

Подобные документы

  • Три основных пути диссимиляции углерода. Энергетический выход гликолиза. Последовательность реакций в цикле Кребса. Хемиосмотическая теория окисления и фосфорилирования. Митохондрии как органоиды дыхания. Взаимосвязь дыхания с другими процессами обмена.

    реферат [6,8 M], добавлен 07.01.2011

  • Изучение дыхания растений как окислительного распада органических веществ синтезированных в процессе фотосинтеза. Характеристика процесса аэробного дыхания растений как процесса, в ходе которого расходуется кислород. Специфика и типы анаэробного дыхания.

    реферат [371,6 K], добавлен 29.03.2011

  • Понятие дыхания как физиологического процесса, обеспечивающего нормальное течение метаболизма организмов. Виды дыхания микроорганизмов. Химизм аэробного дыхания. Достоинства и недостатки дыхания кислородом. Появление аэробного дыхания в процессе эволюции.

    реферат [391,8 K], добавлен 11.06.2014

  • Изучение сути дыхания – непрерывного процесса, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. Регуляция деятельности дыхательного центра. Механизм адаптации дыхания к мышечной деятельности.

    курсовая работа [398,4 K], добавлен 04.04.2011

  • Исполнительные органы системы дыхания у животных: мышцы инспираторные и экспираторные, грудная клетка, плевра, бронхи и легкие, воздухоносные пути, сердце и сосуды, кровь. Физиологические процессы дыхания. Внешние показатели системы дыхания, ее регуляция.

    курсовая работа [856,5 K], добавлен 07.08.2009

  • Гортань, трахея, бронхи и легкие, их строение, функции. Плевральные листки и синусы плевры. Заболевания органов дыхания. Вредные привычки, способствующие развитию заболеваний органов дыхания. Процесс газообмена в легких и тканях, дыхательные движения.

    презентация [2,1 M], добавлен 01.05.2013

  • Значение дыхания в жизни растений. Субстраты дыхания семян злаковых. Цикл трикарбоновых кислот. Факторы, определяющие интенсивность дыхания семян. Окислительно декарбоксилирование пировиноградной кислоты. Роль гликолиза как анаэробной фазы дыхания.

    курсовая работа [1,1 M], добавлен 29.04.2014

  • Клеточное дыхание - система окислительно-восстановительных процессов образования химически активных метаболитов и энергии. Физиологическое значение и показатели газообмена; дыхательный контроль. Зависимость дыхания от факторов внутренней и внешней среды.

    презентация [2,3 M], добавлен 21.02.2015

  • Определение и характеристика воздействия разных факторов, оказывающих влияние на дыхание растений: температура, кислород, углекислый газ, вода, свет, питательные соли, поранения. Изменение интенсивности дыхания в онтогенезе. Связь фотосинтеза и дыхания.

    презентация [1,7 M], добавлен 01.12.2016

  • Анализ строения и функций органов дыхания (нос, гортань, трахея, бронхи, легкие). Отличительные черты воздухоносных путей и дыхательной части, где происходит газообмен между воздухом, содержащимся в альвеолах легких и кровью. Особенности процесса дыхания.

    реферат [43,6 K], добавлен 23.03.2010

  • Роль дыхания в жизни человека. Органы дыхания: носовая полость, гортань, трахея, бронхи, лёгкие. Строение носовой полости человека. Правое и левое лёгкие. Строение бронхиол и альвеол. Газообмен в легких и тканях. Роль кислорода в жизнедеятельности клетки.

    презентация [1,1 M], добавлен 11.01.2010

  • Изучение функций внешнего дыхания, его регуляции в покое и при мышечной работе. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Легочные объемы, их изменение при физических нагрузках. Физиологические сдвиги при задержке дыхания и гипервентиляции.

    презентация [41,6 K], добавлен 05.03.2015

  • Рефлексы, участвующие в регуляции дыхания. Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие при изменении объема легких. Дополнительные разновидности патологических дыхательных движений.

    презентация [2,4 M], добавлен 08.01.2014

  • Определение термина "дыхательная система", ее функции. Функциональная анатомия системы дыхания. Онтогенез органов дыхания во время внутриутробного развития и после рождения. Формирование механизмов регуляции дыхания. Диагностика и лечение заболеваний.

    курсовая работа [68,8 K], добавлен 02.12.2014

  • Значение дыхания в жизни растительного организма. Специфика дыхания у растений. Каталитические системы дыхания. Типы окислительно-восстановительных реакций. Основные пути диссимиляции углерода. Цепь переноса водорода и электрона (дыхательная цепь).

    реферат [2,8 M], добавлен 07.01.2011

  • Строение верхних и нижних дыхательных путей (нос, глотка, гортань, трахея). Легкие и особенности физиологии дыхания. Изменение с возрастом типа дыхания, его ритма и частоты, величины дыхательного и минутного объёмов легких, их жизненной ёмкости.

    презентация [873,2 K], добавлен 24.04.2014

  • Дыхание как физиологический процесс, обеспечивающий нормальный метаболизм живых организмов. Особенности дыхания в измененных условиях. Влияние на процесс дыхания жаркого климата. Дыхание в условиях высокогорья и повышенного барометрического давления.

    презентация [627,4 K], добавлен 03.12.2015

  • Особенности строения и эволюция органов дыхания. Сущность процесса дыхания, его значение в обмене веществ. Функции носовой полости. Органы нижних дыхательных путей. Газообмен между кровью и окружающим воздухом. Как возникает и формируется звук.

    презентация [834,0 K], добавлен 20.10.2013

  • Свойства живого организма, основные положения клеточной теории. Осмотические активные вещества растительной клетки. Темновая стадия фотосинтеза, роль дыхания в обмене веществ растительного организма. Химическая природа и характер действия дегидрогеназ.

    контрольная работа [58,0 K], добавлен 01.12.2011

  • Деление организмов на аэробов и анаэробов. Распространенность аэробного дыхания в мире прокариот. Ингибиторы дыхания и состав дыхательной цепи у прокариот. Эволюция путей аэробного метаболизма. Бесхлорофильный фотосинтез без электрон-транспортной цепи.

    контрольная работа [730,3 K], добавлен 26.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.