Круговорот веществ в природе. Биогеохимическая деятельность микроорганизмов
Изучение схемы участия микроорганизмов в биогеохимических циклах соединений углерода, азота и серы. Определение роли микроорганизмов в круговороте веществ в природе. Условия обитания микроорганизмов в почве, воде и их участие в геологических процессах.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.12.2013 |
Размер файла | 22,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
Контрольная работа
Круговорот веществ в природе. Биогеохимическая деятельность микроорганизмов
Содержание
Введение
Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы и других элементов
Роль микроорганизмов в круговороте углерода в природе. Углеродное питание прокариот с различными типами жизни
Роль микроорганизмов в круговороте азота в природе. Азотное питание прокариот с различными типами жизни
Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование
Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединений фосфора
Значение микроорганизмов в геологических процессах
Условия обитания микроорганизмов в почве и воде
Заключение
Использованная литература
микроорганизм круговорот углерод азот сера
Введение
«Мириады микробов населяют стихии и повсюду окружают нас. Незримо они сопутствуют человеку на всём его жизненном пути, властно вторгаясь в его жизнь то в качестве врагов, то как друзья. В громадном количестве они встречаются в пище, которую мы принимаем, в воде, которую мы пьём, в воздухе которым мы дышим и в почве…» так образно характеризовал микрофлору, которая нас окружает, выдающийся русский микробиолог В.Л. Омелянский. По-видимому, в биосфере нет такой среды, в которой не встречались бы микроорганизмы. Всюду, где есть хотя бы какие-то источники энергии, углерода и азота, обязательно встречаются и микроорганизмы, различающиеся по своим физиологическим свойствам.
Микроорганизмы, несмотря на свою малую величину играют огромную роль в природе и жизни человека. Микробы совершают круговорот веществ, разрушают сложные органические вещества, образующиеся в зелёных растениях, участвуют в процессах самоочищении воды и почвы. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифицирующие, азотфиксирующие, денитрифицирующие и др.
В последнее время микроорганизмы стали шире использоваться в геологии при поисках полезных ископаемых. Сейчас выясняется их роль в разрушении одних и образовании других горных пород.
Все это является примером биогеохимической деятельности микроорганизмов. В результате этой деятельности происходит трансформация элементов в биосфере, что определяется универсальностью ферментативного аппарата микробной клетки, способной перерабатывать любые вещества субстрата.
Изучением проблем биогеохимической деятельности микроорганизмов занимались многие ученые. В 1890 г. С.Н. Виноградский открыл две фазы нитрификации: Nitrosomonas и Nitrobacter, а в 1893 г. он же открыл анаэробную фиксацию азота. В 1901 г. М. Бейеринк открыл аэробную фиксацию азота, в 1902 г. В.Л. Омелянский обнаружил анаэробные целлюлозоразлагающие бактерии.
Все эти открытия позволили расширить представления о биогеохимической деятельности микроорганизмов.
Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы и других элементов
Возможность жизни на нашей планете определяется непрерывно протекающим круговоротом основных биогенных элементов (углерода, кислорода, водорода, азота, фосфора, серы и др.). Ведущая роль в процессах трансформации этих элементов принадлежит прокариотам.
Приведем характерный пример. Содержание углекислого газа в атмосфере минимально (составляет всего 0,03%), и если бы не происходил постоянный возврат СО2 в атмосферу, этот газ был бы израсходован в процессе фотосинтеза за какие-нибудь 7--40 лет. Дальнейшая жизнь оказалась бы невозможна.
Однако этого не происходит. В результате разложения органических соединений различными группами микроорганизмов в атмосферу возвращается 90% углекислого газа, остальные 10% СО2 пополняются в атмосфере за счёт дыхания эукариот, а также за счет хозяйственной деятельности человека.
Помимо углекислого газа, при разложении органических соединений микроорганизмы возвращают в атмосферу и другие газообразные продукты, такие, как Н2, Н2S, N2, СН4.
Таким образом, они осуществляют не только деструкцию растительного и животного опада, выполняя роль санитаров планеты, но одновременно регулируют газовый состав атмосферы.
Ведущая роль прокариот в процессах трансформации элементов в биосфере определяется прежде всего огромной численностью микроорганизмов, повсеместным распространением их, а также универсальностью ферментативного аппарата микробной клетки, способной перерабатывать любые вещества субстрата.
Роль микроорганизмов в круговороте углерода в природе. Углеродное питание прокариот с различными типами жизни
Круговорот углерода складывается из двух взаимосвязанных процессов: 1) потребление углекислоты атмосферного воздуха аутотрофными микробами; 2) возвращения, пополнения запасов углекислоты в атмосфере. Потребление СО2 совершается фотосинтезирующими микроорганизмами. При фотосинтезе образуются различные органические соединения. Основная масса углерода отлагается в растениях в форме различных сахаров (глюкоза, фруктоза, крахмал и др.). Образовавшиеся органические соединения используются человек и животными для питания, а после их гибели органические вещества переходят в почву. Возвращение углекислоты происходит микроорганизмами почвы и воды. Большое количество углекислоты поступает обратно в атмосферу при минерализации органических остатков растений и животных почвенными бактериями и грибами. Главными субстратами процессов минерализации в природе являются сахара в форме полимеров. Использование глюкозы в качестве основного энергетического материала при процессах биологического окисления (брожение, дыхание) приводит к высвобождению углекислоты. Дополнительный цикл круговорота углерода обусловлен анаэробными почвенными микроорганизмами. Одни из них (метанобактерии) в условиях влажных почв восстанавливают СО2 в метан (СН4). Другие, наоборот, окисляют метан в углекислоту.
В зависимости от источника углерода все прокариоты делятся на две группы: автотрофы (синтезируют все необходимые компоненты из углекислоты) и гетеротрофы (источником углерода служат органические соединения). Последние делятся на паразитов (живут за счет других живых клеток) и сапрофиты (нуждаются в готовых органических веществах, но от других организмов не зависят.
Роль микроорганизмов в круговороте азота в природе. Азотное питание прокариот с различными типами жизни
Круговорот азота в природе складывается из трех основных процессов: 1)фиксация азота атмосферы; 2)нитрификация-окисление азота; 3) денитрификация (гниение) - восстановление азота. Азот атмосферы фиксируют только свободноживущие азотофиксаторы (азотобактер) и микробы-симбионты - клубеньковые бактерии. Они имеют ферменты, обладающие способностью связывать свободный азот с другими химическими элементами. Эти микроорганизмы синтезируют сложные органические соединения. Значение: обогащают почву связанным азотом и способствуют ее плодородию.
Гниение, или аммонификация белков -- микробиологический процесс, при котором под воздействием гнилостных микроорганизмов происходит гидролитическое расщепление белков, поступающих в почву с трупами животных и отмирающими растениями, с образованием промежуточных продуктов (альбумоз, пептонов, амино- и амидокислот), а также дурно пахнущих веществ -- индола, сероводорода, меркаптана, летучих жирных кислот.
Конечным продуктом гидролиза белков и дезаминирования аминокислот является NH3
Гниение -- преимущественно анаэробный процесс
Гнилостные микробы широко распространены в почве, воде, воздухе, в животных и растительных организмах. Поэтому любой продукт, не защищенный от них, быстро подвергается гниению. Его вызывают как анаэробные, так и аэробные микроорганизмы, причем они могут действовать и преемственно, и одновременно. Наиболее энергичными возбудителями гниения, сопровождающегося глубоким распадом белка и образованием азотистых и безазотистых соединений (индола, скатола, жирных кислот и др.), являются Bacillus mycoides, B.Mesentericus, а также Clostridium putrificum, C.sporogenes. Последние два -- анаэробы, содержатся в кишечнике и после смерти вызывают зловонное разложение трупов.
Гниение ведет к обогащению почвы азотистыми продуктами.
Процессы нитрификации, или окисления, аммиака в нитриты, а затем в нитраты осуществляют почвенные бактерии, в результате растения получают питательные вещества.
Процесс нитрификации вызывается двумя группами открытых С. Н. Виноградским нитрифицирующих бактерий. Нитрифицирующие бактерии -- строгие аэробы, хемолитотрофы. Энергию окисления они используют для восстановления СО2 в гексозу. Благодаря нитрифицирующим бактериям в почве могут образовываться огромные скопления солей азотной кислоты в виде селитры
Сначала бактерии (нитрозомонас) окисляют аммиак в азотистую кислоту, получая при этом энергию, необходимую для своей жизни. (NH2+1,5O2=NO2+H2O+2H) На втором этапе нитратные бактерии(нитробактер) окисляют азотистую кислоту в азотную. (NO2+О2 = NO3).
Нитрифицирующие бактерии способствуют повышению урожайности почвы благодаря накоплению в ней азотнокислых солей
денитрификация, или восстановление микроорганизмами солей азотной кислоты в соли азотистой кислоты и в другие простые азотистые соединения, вплоть до свободного азота, который, уходит в атмосферу.
Процессы денитрификсации идут при наличии в почве денитрифицирующих бактерий, которые восстанавливают нитраты до молекудярного азота. NO3 = NO2 = NO = N2.
Эти процессы протекают на глубине 10-15см в почве в анаэробных условиях и ведут к понижению плодородия почвы, уменьшая в ней запасы нитритов.
Способностью восстанавливать нитраты в нитриты обладает большое количество видов бактерий и грибов.
Денитрифицирующие бактерии (в частности, некоторые виды Pseudomonas) в анаэробных условиях используют денитрификацию как основную форму дыхания.
Бактерии, осуществляющие круговорот азота в природе могут быть либо симбионтами, либо свободноживущими.
Особенно энергично процессы денитрификации развиваются в слежавшейся, плохо аэрируемой почве.
Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование
Круговорот серы осуществляется в результате жизнедеятельности бактерий, окисляющих или восстанавливающих ее. Процессы восстановления серы происходят несколькими путями. Под влиянием гнилостных бактерий - клостридий, протея в анаэробных условиях при гниении белков, содержащих серу, происходит образование сероводорода и, реже, меркаптана. Большие количества сероводорода накапливается также в результате жизнедеятельности сульфатвосстанавливающих бактерий. Они восстанавливают сульфаты почвы, ила и воды. Сероводород, образовавшийся в процессе восстановления частично, улетучивается в атмосферу, а частично накапливаются в почве и воде. В дальнейшем он окисляется. Процессы окисления сероводорода совершаются при участии серобактерий и тиобацилл. Серобактерии используют сероводород в биоэнергетических процессах окисления, обеспечивая себя энергией. В результате этих процессов сероводород окисляется до серы, которая накапливается в цитоплазме бактерий, которая накапливается в цитоплазме бактерий. После того, как запасы сероводорода во внешней среде исчерпаны, сера окисляется до серной кислоты и сульфатов, используемых растениями. Тиобациллы окисляют серу, сероводород, гипосульфит. Они накапливают серу внутри клетки и вне ее, иногда окисляют серу до сульфатов. Среди тиобацилл встречаются аутотрофы и гетеротрофы. Практическое использование: бактерии, в процессе окисления серы образуют используемые растениями сульфаты, бактерии гниения разлагают останки животных.
Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединений фосфора
С химической стороны круговорот фосфора достаточно прост, поскольку он встречается в живых организмах только в пятивалентном состоянии в виде свободных фосфатных ионов (РО4-3) или в составе органических фосфатных компонентов клетки. Бактерии не способны поглощать большинство органических фосфорсодержащих соединений, свои потребности в фосфоре они удовлетворяют путем поглощения фосфатных ионов, из которых затем синтезируют органические фосфатные соединения. При разложении гнилостными бактериями белковых веществ одновременно с минерализацией азота происходит превращение органического фосфора в фосфатные ионы. Поскольку большая часть фосфатов, несмотря на быстрый круговорот фосфора, находится в виде нерастворимых солей кальция, железа или алюминия, фосфаты также служат фактором, ограничивающим рост растений. Растворимые фосфаты постоянно переносятся из почвы в море вследствие выщелачивания.
Этот перенос имеет однонаправленный характер. Лишь небольшая часть фосфатов возвращается на сушу, главным образом в виде отложений гуано морскими птицами. Поэтому доступность фосфатов для растений зависит от непрерывного перевода в раствор нерастворимых фосфатных отложений -- процесса, в котором важную роль играют микроорганизмы. Образуемые ими кислые продукты метаболизма (органические кислоты, а также азотная и серная) растворяют фосфат кальция, а образуемый ими H2S способствует растворению фосфата железа.
Значение микроорганизмов в геологических процессах
Вряд ли можно переоценить роль микроорганизмов как разрушителей горных пород и создателей горючих ископаемых -- каменного угля, торфа, сапропелей, нефти.
Попавшие случайно на гранит небольшие количества органического вещества дают возможность размножаться многим сапрофитным бактериям, которые, выделяя углекислоту, способствуют дальнейшему выветриванию горных пород, частично растворяя их.
С другой стороны, на тех же голых скалах могут поселяться не нуждающиеся в органическом веществе хемотрофные нитрифицирующие бактерии, образующие азотную кислоту. Незначительные количества аммиака, необходимые им для окисления, могут образовать сапрофитные микроорганизмы.
Дальше поселяются некоторые сине-зеленые водоросли, фиксирующие атмосферный азот самостоятельно или в сообществе с азотфиксаторами; затем корковые лишайники, также являющиеся пионерами заселения таких местообитаний. Лишайники могут фиксировать атмосферный азот или за счет сине-зеленых организмов, или присутствующих в них азотфиксирующих бактерий. Затем уже появляются мхи и некоторые высшие растения. Так постепенно идет разрушение горных пород и одновременно создается почвенный перегной (гумус), растворимый в щелочах и осаждаемый в кислотах. Гумус образуется в результате разложения органического вещества микроорганизмами, одновременно синтезирующими это сложное вещество, обусловливающее многие физические и химические свойства почвы и ее плодородие.
Разрушающая способность микроорганизмов очень велика. В настоящее время известно, что специальные группы микроорганизмов могут использовать в качестве источника углерода для своего питания нефть, фенолы, парафин, нафталин и ряд других соединений, совершенно не доступных для большинства обычных сапрофитных микроорганизмов.
Бактерии служат и для разведки нефтяных и газовых месторождений. На основании распределения в подпочвенных слоях бактерии, окисляющих газообразные углеводороды, проводилась микробиологическая разведка нефтяных и газовых месторождении
Различные микроорганизмы участвуют и в таких геологических процессах как выветривание, почвообразование.
Превращение горной породы в почву происходит в результате одновременно идущих процессов -- выветривания и почвообразования, которые тесно связаны друг с другом. Процесс выветривания часто предшествует процессу почвообразования.
Биологическое выветривание -- это процесс механического разрушения и химического изменения горных пород и минералов под действием растительных и животных организмов и продуктов их жизнедеятельности.
В процессе выветривания горная порода превращается вначале в рухляк, а затем в материнскую почвообразующую породу. На продуктах физического и химического выветривания горной породы (рухляке) поселяются микроорганизмы, растения и животные, в результате жизнедеятельности которых происходит накопление органического вещества, а следовательно, образование почвы.
Условия обитания микроорганизмов в почве и воде
Почва -- среда обитания многочисленных видов микроорганизмов и крупнейший резервуар их в природе.
Численность и видовой состав их в почве зависят от содержания в ней органических веществ и влаги, структуры почвы, способа ее сельскохозяйственной обработки, климатических условий, характера растительного покрова, степени загрязнения почвы отходами хозяйственной деятельности человека и многих других факторов. Состав микрофлоры почвы складывается из различных комбинаций бактерий (сотни и тысячи видов), грибов, простейших и вирусов. Фактически она содержит представителей всех царств жизни -- вирусов, архебактерий, эубактерий и эукариот во всем их многообразии, которое зависит от действия многих факторов
Почва постоянно загрязняется различными отбросами, выделениями человека и животных, мертвыми растениями и животными. Огромная роль в процессах самоочищения почвы и в круговороте веществ в природе принадлежит микроорганизмам. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифицирующие, азотфиксирующие, денитрифицирующие и другие.
В почве выделяют различные группы микрофлоры.
Сапрофитные микроорганизмы, ведущие процессы минерализации веществ органического опада, С.Н. Виноградский предложил назвать зимогенной микрофлорой.
Микроорганизмы, разлагающие гумус почвы, С.Н. Виноградским названы автохтонной микрофлорой.
Микроорганизмы, развивающиеся за счет минимальных концентраций органических веществ, завершающие минерализацию органического опада в почве, получили название олиготрофной микрофлоры. Среди этой группы микроорганизмов выделяются олигонитрофилы, нуждающиеся в минимальной концентрации органических азотсодержащих веществ, и олигокарбофилы, потребляющие остаточные органические углеродсодержащие соединения. Олиготрофные микроорганизмы Г.А. Заварзиным трактуются как «микрофлора рассеяния». Эта группа микроорганизмов до сего времени слабо изучена. Очевидно, в ее состав входят различные специфические виды сапрофитных микроорганизмов, способные развиваться на очень бедных органических субстратах.
Микроорганизмы, потребляющие в качестве источника углерода CO2 или карбонаты и получающие энергию за счет реакций окисления минеральных соединений, объединены в группу автотрофной микрофлоры.
Вода, как и почва, является естественной средой обитания для многих видов микроорганизмов всех царств жизни.
Разнообразные микроорганизмы обитают как в воде открытых водоемов, так и в грунтовых водах
Многие виды галофильных бактерий обитают в морских водах. Численность микроорганизмов в воде определяется главным образом содержанием в ней органических веществ, которые под влиянием микроорганизмов подвергаются совершенно таким же превращениям, как и в почве.
Заключение
Микроорганизмы, благодаря легкости их расселения по воздуху и воде, распространены по всей биосфере, и вследствие их чрезвычайно высокой метаболической активности они играют главную роль в химических превращениях, которые происходят на поверхности Земли. Возможность жизни на нашей планете определяется непрерывно протекающим круговоротом основных элементов (углерода, кислорода, водорода, азота, фосфора, серы и др.). Ведущая роль в процессах трансформации этих элементов принадлежит микроорганизмам.
В большинстве случаев определенное вещество субстрата перерабатывается определенной группой микроорганизмов, которая называется физиологической. Например, разрушение клетчатки ведут клетчаткоразрушающие бактерии, окисление солей аммония до нитритов и нитратов - нитрифицирующие бактерии, процессы минерализации органических азотсодержащих веществ с выделением аммиака - аммонифицирующие бактерии и т.д.
Также велика роль микроорганизмов как разрушителей горных пород и создателей горючих ископаемых -- каменного угля, торфа, сапропелей, нефти. Разрушение горных пород идет постепенно и одновременно создается почвенный перегной - гумус в результате разложения органического вещества микроорганизмами.
Различные микроорганизмы участвуют и в таких геологических процессах как выветривание и почвообразование. В результате биологического выветривания происходит механическое разрушение и химическое изменение горных пород и минералов под действием растительных и животных организмов и продуктов их жизнедеятельности. В процессе выветривания горная порода превращается в рухляк, на котором поселяются микроорганизмы, растения и животные, в результате их жизнедеятельности происходит накопление органического вещества, а, следовательно, образование почвы.
Почва является средой обитания для многих микроорганизмов, которые участвуют в процессах минерализации органических веществ и определяют круговорот основных биогенных элементов в природе. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифицирующие, азотфиксирующие, денитрифицирующие и другие.
Вода, как и почва, является естественной средой обитания для многих видов микроорганизмов всех царств жизни.
Таким образом, биогеохимическая деятельности микроорганизмов очень разнообразна и играет важную роль в природе и жизни человека. По-видимому, в природе нет таких органических веществ, которые не разрушались бы теми или иными микроорганизмами.
Использованная литература
1.А.С. Коничев, Г.А. Севастьянова. Молекулярная биология. М., 2005.
2.К.А. Мудрецова-Висс, А.А. Кудряшова, В.П. Дедюхина. Микробиология, санитария и гигиена. М., 2001.
3.Основы микробиологии, вирусологии и иммунологии. Под редакцией А.А. Воробьева и Ю.С. Кривошеина. М., 2001.
Размещено на Allbest.ru
...Подобные документы
Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы, в геологических процессах. Условия обитания микроорганизмов в почве и воде. Использование знаний о биогеохимической деятельности микроорганизмов на уроках биологии.
курсовая работа [317,9 K], добавлен 02.02.2011Роль микроорганизмов в круговороте углерода в природе. Углеродное и азотное питание прокариот с различными типами жизни. Значение микроорганизмов в геологических процессах. Типы микрофлоры почвы: зимогенная, автохтонная, олиготрофная и автотрофная.
презентация [1,3 M], добавлен 18.12.2013Роль микроорганизмов в круговороте азота, водорода, кислорода, серы, углерода и фосфора в природе. Различные типы жизни бактерий, основанные на использовании соединений различных химических веществ. Роль микроорганизмов в эволюции жизни на Земле.
реферат [20,2 K], добавлен 28.01.2010Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.
шпаргалка [50,2 K], добавлен 04.05.2009Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.
реферат [35,7 K], добавлен 12.06.2011Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.
презентация [35,1 M], добавлен 11.11.2013Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.
реферат [37,3 K], добавлен 26.04.2010Роль микроорганизмов в природе и сельском хозяйстве. Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты. Методы определения суммарной биохимической активности почвенной микрофлоры.
контрольная работа [392,8 K], добавлен 27.09.2009Типы дыхания микроорганизмов. Транспорт электронов при дыхании и различных типах анаэробного способа получения энергии. Наиболее доступные источники углерода для бактерий. Механизм поступления питательных веществ. Использование неорганического азота.
реферат [799,3 K], добавлен 26.12.2013Основные понятия о биогеохимических циклах. Круговорот и миграция химических элементов в природе. Круговорот азота, фосфора, серы, углерода, кремния, железа и марганца. Антропогенное влияние человека. Постоянные компоненты природных пресных вод.
курсовая работа [2,5 M], добавлен 22.03.2012Гипотезы о зарождении жизни на Земле. Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.
реферат [40,9 K], добавлен 26.12.2013Роль и значение воды в жизни человека. Особенности размножения микроорганизмов в воде. Опасность загрязнения почвы необезвреженными отходами животноводства. Механизм передачи возбудителей заболеваний через воздух. Эпифитная микрофлора, ее специфика.
презентация [7,4 M], добавлен 20.11.2014Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.
презентация [1,1 M], добавлен 17.03.2015Изучение особенностей микроорганизмов. Микроэкологический риск при использовании высоких технологий. Характеристика технологии приготовления препаратов и опытов. Правила микроскопирования. Влияние гигиенических навыков на распространение микроорганизмов.
научная работа [23,6 K], добавлен 06.09.2010Виды микроорганизмов: микробы, спирохеты, риккетсии, вирусы, грибки. Рецепторы клеток: нативные, индуцированные, приобретенные. Характеристика групп микроорганизмов согласно Всемирной организации здравоохранения. Особенности патогенных микроорганизмов.
презентация [999,4 K], добавлен 14.04.2012Значение воды в жизнедеятельности клетки. Виды микроорганизмов, состав питательной среды, характер обмена и условия существования во внешней среде. Практическое использование микробных ферментов. Питание, дыхание, рост и размножение микроорганизмов.
лекция [603,0 K], добавлен 13.11.2014Роль микроорганизмов в круговороте углерода. Определение влияния органических удобрений на микробиоту почвы. Приготовление почвенной суспензии и посев на питательные среды. Учет количества микроорганизмов методом обрастания комочков на среде Эшби.
курсовая работа [647,1 K], добавлен 30.11.2014Питательные среды в микробиологии, их классификация и разновидности, сферы и особенности использования. Культивирование аэробных и анаэробных микроорганизмов. Методы количественного учета микроорганизмов, основные правила и условия хранения их культур.
реферат [24,6 K], добавлен 25.03.2013Понятие и виды взаимодействия микроорганизмов с высшими растениями, влияние фитопатогенных микроорганизмов на их жизнедеятельность. Место и роль знаний о взаимодействия микроорганизмов с высшими растениями в школьном курсе биологии, их применение.
дипломная работа [11,0 M], добавлен 02.02.2011Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.
презентация [6,4 M], добавлен 13.09.2015