Репарация ДНК

Репарация как особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, поврежденной при нормальном биосинтезе. Ее разновидности, главные причины и предпосылки, принципы и перспективы исправления.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 12.12.2013
Размер файла 25,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Видимо, уже на ранних стадиях эволюции ДНК заменила РНК в качестве носителя генетической информации. Этому гипотетическому событию должны были способствовать большая химическая устойчивость ДНК, связанная с заменой рибозы на дезоксирибозу, и двуцепочечное строение, «скрывающее» целый ряд реакционноспособных группировок. Но несмотря на свои «преимущества», ДНК постоянно подвергается химическим изменениям, как спонтанным, так и индуцируемым мутагенами и даже клеточными метаболитами. Еще одна обычная причина повреждений ДНК - радиация и ультрафиолетовое облучение. Большинство происходящих с ДНК изменений недопустимы: они либо приводят к вредным мутациям, либо блокирую репликацию ДНК и вызывают гибель клеток. Поэтому все клетки имеют специальные системы исправления повреждений, репарации ДНК. Нарушение этих систем губительно. Репарация УФ повреждений ДНК нарушена у людей, страдающих тяжелым наследственным заболеванием - пигментной ксеродермой. Такие больные не могут бывать на солнце и обычно умирают в раннем возрасте от какого-либо злокачественного заболевания.

Принципы репарации ДНК у различных организмов сходны, поэтому эти принципы рассматриваются на примере E. coli, у которой они хорошо изучены.

1. Понятие репарации

Репарация - особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки.

История открытия

Начало изучению репарации было положено работами А. Келнера (США), который в 1948 обнаружил явление фотореактивации (ФР) - уменьшение повреждения биологических объектов, вызываемого ультрафиолетовыми (УФ) лучами, при последующем воздействии ярким видимым светом (световая репарация).

Р. Сетлоу, К. Руперт (США) и др. вскоре установили, что фотореактивация - фотохимический процесс, протекающий с участием специального фермента и приводящий к расщеплению димеров тимина, образовавшихся в ДНК при поглощении УФ-кванта.

Позднее при изучении генетического контроля чувствительности бактерий к УФ-свету и ионизирующим излучениям была обнаружена темновая репарация - свойство клеток ликвидировать повреждения в ДНК без участия видимого света. Механизм темновой репарации облученных УФ-светом бактериальных клетокбыл предсказан А.П. Говард-Фландерсом и экспериментально подтвержден в 1964 Ф. Ханавальтом и Д. Петиджоном (США). Было показано, что у бактерий после облучения происходит вырезание поврежденных участков ДНК с измененными нуклеотидами и ресинтез ДНК в образовавшихся пробелах.

Системы репарации существуют не только у микроорганизмов, но также в клетках животных и человека, у которых они изучаются на культурах тканей. Известен наследственный недуг человека - пигментная ксеродерма, при котором нарушена репарация.

Источники повреждения ДНК

* УФ излучение

* Радиация

* Химические вещества

* Ошибки репликации ДНК

* Апуринизация - отщепление азотистых оснований от сахарофосфатного остова

* Дезаминирование - отщепление аминогруппы от азотистого основания

Основные типы повреждений ДНК

* УФ излучение

* Радиация

* Химические вещества

* Ошибки репликации ДНК

* Апуринизация - отщепление азотистых оснований от сахарофосфатного остова

* Дезаминирование - отщепление аминогруппы от азотистого основания

Устройство системы репарации

Каждая из систем репарации включает следующие компоненты:

* фермент, «узнающий» химически изменённые участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения;

* фермент, удаляющий повреждённый участок

* фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого;

* фермент (ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность (см. рис. справа).

2. Типы репарации

По отношению к процессу репликации различают два типа репарации ДНК:

1. Дорепликативную (включающую фотореактивационную и эксцизионную формы, направленные на вырезание поврежденных участков ДНК);

2. Пострепликативную (осуществляемую с помощью механизмов, участвующих в процессах рекомбинации и репликации ДНК).

Репарация может осуществляться как конститутивно с помощью специфического набора ферментов, постоянно присутствующих в нормально функционирующих клетках (фотореактивационная, эксцизионная и пострепликативная), так и в ответ на повреждение ДНК или прекращение ее синтеза (путем активации группы генов, контролирующих различные клеточные функции, так называемая SOS-репарация).

У бактерий имеются по крайней мере 2 ферментные системы, ведущие репарацию - прямая и эксцизионная.

Типы репарации ДНК:

* Прямое исправление повреждений

Наиболее частая причина точечных мутаций у человека: это спонтанное добавление метильной группы - один из типов алкилирования. Такие модификации исправляются без разрушения цепи ДНК ферментами - гликозилазами. Фермент О-6-метилгуанин-ДНК-метилтрансфераз (MGMT) защищает клетку от токсических эффектов, производимых алкилирующими агентами, переводя для этого метильную группу из О-6-метилгуанин-ДНК в цистеиновый остаток в MGMT.

* Починка путем вырезания основания (эксцизионной репарации основания - BER)

Главные способы, посредством которых происходит починка оснований ДНК, включают устранение поврежденного основания, которое осуществляют ферменты нуклеазы. Возникающая лакуна может быть заполнена ДНК-полимеразой, что сопровождается лигацией с родительской ДНК. Окислительные повреждения, как основные, так и индуцированные, являются важными причинами для починки оснований ДНК.

* Починка путем вырезания нуклеотида (эксцизионной репарации нуклеотида - NER)

Система NER обеспечивает способность клетки устранять объемные повреждения в ДНК. NER удаляет содержащий повреждение олигонуклеотид из ДНК посредством распознавания повреждения, разреза, вырезания, нового повторного синтеза и лигации. ДНК-полимеразы (у эукариот их известно более 15) различаются по ряду признаков, в том числе по количеству нуклеотидов, которые они могут встроить в растущую цепь за один акт связывания с дуплексом ДНК. присоединяют один нуклеотид, а при участии белка l и bДНК-полимеразы - e иdPCNA (proliferating cell nuclear antigen) ДНК-полимеразы способны вставить фрагмент необходимой длины. Повреждения ДНК в активно транскрибирующих генах, особенно в транскрибирующей спирали, чинятся в первую очередь и потому быстрее, чем повреждения ДНК в остальной части генома. Так клетка защищает целостность процесса транскрипции.

* Репарация ошибок спаривания - мисмэтч репарация (mismatch - MMR)

Этот метод исправляет ошибочно встроенные неповрежденные основания, которые не образуют нормальное Уотсон-Криковское спаривание (A * T, C * G). Такие ошибки иногда происходят при репликации с помощью ДНК - полимеразы. В MMR участвуют ферменты, вовлеченные в BER и NER, а также специализированные ферменты. Синтез ДНК при MMR осуществляется ДНК-полимеразами

* Гомологичная рекомбинация

У эукариот существует два основных способа устранить двухцепочечные разрывы: гомологичная рекомбинация (рекомбинационная репарация) и соединение негомологичных концов. Прямое соединение сломанных концов требует специальных ферментов, которые узнают и связывают разорванные концы с последующим их сшиванием. Починка разрывов двойной спирали (и разрывов одной спирали) обычно включает в себя продуцирование трехконечного односпирального хвоста с помощью экзонуклеаз или геликаз. Посредством инвазии спирали, при которой односпиральный хвост вторгается в неповрежденную гомологичную молекулу ДНК, синтезируется ДНК. Одновременно образуется так называемое холлидеевское сочленение в комплексе ДНК. Через промежуток этого сочленения проводятся две молекулы ДНК (как со структуральным перекрестом, так и без него), каждая из которых более не содержит разрывов.

* Негомологичное соединение концов-NHEJ (Nonhomologous End-Joining)

Если разорванная ДНК имеет тупые концы, и соединение двух фрагментов ДНК происходит случайно, то такая репарация называется NHEJ. Главным компонентом NHEJ восстановительного комплекса является зависящий от ДНК белок киназа (DNA-PK), или белок Ku - гетеродимерная субъединица, состоящая из двух белков Ku70 и Ku80. Этот белок служит для выравнивания концов разорванной ДНК, чтобы упростить процесс их склеивания или выступает в качестве сигнальной молекулы для мобилизации других восстанавливающих белков.

Рассмотрим подробнее некоторые из вышеперечисленных типов.

Прямая репарация ДНК

Прямая репарация ДНК обеспечивает прямое восстановление исходной структуры ДНК или удаление повреждения. Широко распространенная система репарации такого рода - фотореактивация пиримидиновых димеров. Кроме нее, к этому типу относятся: репарация ДНК за счет 3'-5'-экзонуклеазной активности ДНК-полимеразы, репарация одноцепочечных разрывов ДНК с помощью полинуклеотиллигазы, а также генетическая репарация повреждений, вызванных алкильными или метильными группами, путем удаления этих групп специфическими ферментами.

Фотореактивация

В 1949 г. А. Кельнер и в 1950 г. Р. Дульбекко установили, что жизнеспособность актиномицетов и бактерий, подвергнутых УФ-облучению в летальных дозах, восстанавливается, если затем воздействовать на них видимым светом. Явление было названо фотореактивацией. Эффективность ее зависит от уровня рН, температуры и физиологического состояния клетки. Восстановительный эффект при фотореактивации (рис.) связан с действием фермента - дезоксирибозидпиримидинфотолиазы, представляющего собой полипептид, ассоциированный для его активности с небольшой молекулой РНК (10-15 нуклеотидов).

Этот фермент расщепляет димеры двух соседних пиримидинов циклобутанового типа в одной цепи ДНК, образующиеся под влиянием УФ-лучей, действие которых подробнее рассмотрено в нашей статье. Каждый из димеров задерживает репликацию примерно на 10 секунд. Фермент присоединяется к ним и в темноте, и на свету, но реакция расщепления связей, объединяющих две молекулы пиримидинов, энергетически зависит от действия видимого света с большей длиной волны. На свету пиримидиновые димеры расщепляются, за счет разрыва ковалентных связей происходит мономеризация и таким образом восстанавливается нативная структура ДНК. К эффективному диапазону (365-490 нм) относятся наиболее длинноволновые УФ-лучи (365-390 нм) и примыкающие к ним видимые синие лучи (435-495 нм). Наибольшая эффективность фотореактивации отмечена для голубой части видимого спектра. Если же необходимо исключить возможность реактивации, то опыты следует проводить в более длинноволновой части спектра, начиная с желтого света (570-590 нм).

За 1 минуту молекула фотолиазы может расщепить 2,4 димера. У Е. coli система фотореактивации удаляет до 90% пиримидиновых димеров и контролируется одним геном - phr. Штаммы, несущие мутацию по этому гену, не способны к репарации ДНК.

Фотореактивации подвергаются только циклобутановые димеры. Надо отметить, что это пока почти единственная, известная ферментная реакция, в которой фактором активации служит не химическая энергия, а энергия видимого света. Дезоксирибозидпиримидинфотолиаза широко распространена у разных органических форм и представлена даже у таких примитивных микроорганизмов, как микоплазмы. Она есть у всех изученных бактерий, кроме Micrococcus radiodurans, которые чрезвычайно устойчивы к действию УФ-лучей и выдерживают дозы в 1 000 раз более высокие, чем те, что детальны для E.coli. Фотолиаза обнаружена в клетках многих растений и животных, в том числе и у человека. По-видимому, наибольшее значение фотореактивация имеет у растений.

Эксцизионная репарация

Существуют системы генетической репарации, работа которых напоминает «хирургическое» вмешательство в структуру ДНК: поврежденные участки вырезаются из цепи ДНК, отсюда происходит и термин «эксцизиониая репарация» (англ. excision - вырезание). Сам феномен известен еще с 1955 г., однако, молекулярный механизм эксцизионной репарации был раскрыт гораздо позже - в 1964 г., в результате работ нескольких групп исследователей налиниях мутантных бактерий, чувствительных к действию радиации. Оказалось, что данный тип генетической репарации обеспечивает вырезание неверного или поврежденного нуклеотида / участка ДНК, последующую синтез застройку бреши и лигирование. К этому типу относится несколько специализированных механизмов, например, гликозилазы удаляют лишь модифицированные основания, АР-эндонуклеазы - апуриновые сайты, и т.п. По-видимому, именно системы эксцизионной репарации восстанавливают большую часть повреждений ДНК в клетке.

Общая схема эксцизионной репарации, действующей по принципу «режь-латай», включает несколько этапов:

1. Узнавание повреждения УФ-эндонуклеазой (у E.coli этот фермент называют UvrABC-эндонуклеазой);

В случае пиримидиновых димеров или моноаддуктов повреждение распознается легко. В других случаях, например, при неправильном спаривании нуклеотидов, оба нуклеотида (правильный и неверный) эквивалентны для многих видов эксцизионной репарации, однако существуют специализированные системы, позволяющие в большинстве случаев восстанавливать нативную структуру.

2. Инцизия (надрезание) цепи ДНК этим ферментом по обе стороны от повреждения;

3. Эксцизия (вырезание и удаление) фрагмента ДНК, содержащего повреждение, происходит при участии геликазы - фермента, расплетающего молекулу ДНК для высвобождения концов после первичных надрезов;

4. Ресинтез, в ходе которого ДНК-полимераза I застраивает образовавшуюся брешь благодаря своей 5'-3'-полимеразной активности, а ДНК-лигаза ковалентно присоединяет 3'-конец вновь синтезированного материала к ранее синтезированной ДНК.

Эксцизионная репарация ДНК завершается при возникновении ковалентных связей репарированного участка со скелетом полинуклеотида. Таким образом, обеспечивается непрерывность в ранее поврежденной цепи двухцепочечной молекулы ДНК. В целом, эксцизионная репарация обычно распознает нарушения вторичной структуры ДНК (двойной спирали) и вырезает их.

У Е. coli выделяют три вида эксцизионной репарации, различающихся по длине вырезаемых фрагментов поврежденной ДНК (короткие, длинные и очень короткие).

Эксцизионная репарация коротких фрагментов является конститутивной и контролируются системой uvr-генов (А, В, С, D). Размер вырезаемого фрагмента цепи ДНК составляет около 20 оснований. Комплекс UvrAB распознает повреждение (пиримидиновый димер, моноаддукт), затем UvrA отсоединяется, a UvrC присоединяется, новый комплекс осуществляет разрез на 7 нуклеотидов в 5'-сторопу от повреждения и 3-4 нуклеотида в другую. UvrD продуцирует геликазу, которая раскручивает ДНК для высвобождения концов цепей. Этап эксцизии обычно осуществляется ДНК-полимеразой I, которая помимо полимеразной имеет и экзонуклеазную активность. Этот фермент, как правило, застраивает короткие участки (до 30 нуклеотидов). ДНК-полимераза II способна вырезать и застраивать более длинные бреши (до 1 000-1 500 нуклеотидов). Такие же функции присущи экзонуклеазе VII. Таким образом, отдельные этапы могут выполняться различными ферментами, что повышает надежность системы. Данный тип репарации ДНК удаляет примерно 99% моноаддуктов.

Эксцизионная репарация длинных повреждений контролируется той же системой генов, однако, является индуцибельной. Размеры вырезаемых фрагментов в отдельных случаях могут превышать и 9 000 нуклеотидов.

К специализированным системам эксцизионной репарации ДНК можно отнести эксцизионную репарацию очень коротких фрагментов. Она специфически удаляет Т в парах GT и СТ, используя продукты генов mutL и mutS. Другая система подобного рода, основанная на работе гена mutY, кодирующего аденингликозилазу, вырезает А в парах AG и АС. Эти системы могут работать очень успешно вскоре после синтеза ДНК.

Мисмэтч-репарация

Мисмэтч-репарация исправляет ошибки, возникающие в результате нарушения комплементарности пар AT или GC в дочерней цепи при включении в них некомплементарных нуклеотидов. Особенность данного механизма, состоит в том, что он способен отличить «старую» цепь ДНК от «новой» и исправить именно вновь синтезированную. В основе данного феномена лежит то важное свойство, что материнская цепь несет в последовательностях GATC аденины с присоединенными к ним сразу после окончания репликации метальными группами.

Вследствие этого во время следующего цикла репликации материнская и дочерняя цепи становятся структурно различимыми, так как до окончания данного цикла дочерняя цепь остается неметилированной. Именно в этот временной промежуток и должны быть исправлены ошибки спаривания оснований. Генетическая репарация неспаренных оснований обнаружена в клетках и человека, и дрожжей. Механизм коррекции ошибок такого типа, базирующийся на сочетанном действии продуктов четырех генов mut (И, L, S и U) и получивший название «система MutHSLU», достаточно хорошо изучен у E. coli. Такое взаимодействие протекает в несколько этапов, на первом из которых к паре некомплементарных оснований присоединяется MutS - белковый продукт гена mutS, распознающего нарушения такого типа. Соединившись с участком, включающим неправильное основание, этот белок сразу же образует комплекс и с продуктом гена mutt. Сформированный трехчленный комплекс активирует продукт гена тutН (до этого момента находившийся в латентном состоянии) для связывания с ближайшей неметилированной последовательностью GATC. Обладающий эндонуклеазной активностью продукт гена тutН может разрезать дочернюю цепь как с 5'-, так и с З'-стороны от аденина. В первом случае к белку MutH присоединится экзонуклеаза, которая разрушит дочернюю цепь в направлении 5'-3' до места неверного спаривания и несколько дальше. А во втором - другая экзонуклеаза, c 3'-5'-активностью, двигаясь по дочерней цепи ДНК, также разрушит ее ошибочный фрагмент. Дальнейший ход событий аналогичен описанным этапам ресинтеза и лигирования концов в ходе эксцизионной репарации. Механизм коррекции, при котором восстановлению подвергается определенная цепь ДНК, называется направленным. Эксцизионная репарация обнаружена как у простейших, так и в культуре клеток млекопитающих. В частности в культуре клеток здоровых людей после облучения ее ультрафиолетом через 20 ч из ДНК исчезает до 90% тиминовых димеров (со скоростью около 40 000 димеров в час).

Пострепликативная репарация осуществляется в тех случаях, когда повреждение доживает до фазы репликации (слишком много повреждений, или повреждение возникло непосредственно перед репликацией) или имеет такую природу, которая делает невозможным его исправление с помощью эксцизионной репарации (например, сшивка цепей ДНК). Важная характеристика пострепликативной системы репарации - точность синтеза ДНК, не уступающая той, что наблюдается при обычной репликации.

Эта система играет особенно важную роль у эукариот, обеспечивая возможность копирования даже с поврежденной матрицы (хотя и с увеличенным количеством ошибок). Одна из разновидностей этого типа репарации ДНК-рекомбинационная репарация.

Данный вариант пострепликативной репарации использует рекомбинацию для получения неповрежденной копии генетического материала. Этот тип репарации ДНК был открыт в клетках мутантов E. coli, неспособных выщеплять тиминовые димеры.

После действия ультрафиолета в таких клетках с помощью ДНК-полимеразы III синтезируется ДНК с одноцепочечными пробелами-брешами, которые исчезают при последующей инкубации клеток в питательной среде за счет рекомбинации между двумя сестринскими дуплексами. У Е. coli эти обмены осуществляются с помощью продуктов генов rec (А, В и С). Кроме них, в заключительном этапе ресинтеза и сшивания участвуют ДНК-полимераза I илигаза.

Механизм пострепликативной репарации ДНК, происходящей уже в первые минуты после облучения, наименее специфичен, гак как отсутствует этап узнавания повреждения. Это быстрый способ восстановления нативной структуры, по крайней мере, части дочерних молекул ДНК. Таким образом, данная система позволяет полностью пройти процессу репликации на матрице поврежденной ДНК, но не удаляет повреждения: оно остается в исходных родительских цепях и может быть удалено на других этапах клеточного цикла, например, с помощью эксцизионной репарации

SOS-репарация

Существуют системы генетической репарации, при которых точность синтеза невысока. Они являются индуцибельными, и, очевидно, обусловлены необходимостью синтеза ДНК даже на матрице, содержащей повреждения. При этом синтез ДНК на матрице, оставшейся неповрежденной, будет сопровождаться большим количеством ошибок. Индукцию процессов репарации, сопровождающуюся увеличением числа ошибок последней, обнаружил в 1953 г. Дж. Уэйгл (при заражении УФ-облученных клеток Е. coli облученным же фагом X).

В честь первооткрывателя этот тип генетической репарации в 1974 г. М. Радман назвал W-реактивацией (Weigle-reactivalion). W-реактивация дает возможность многим димерам пиримидина, возникающим в бактериальной клетке, дожить до периода синтеза ДНК. Хотя такая ДНК и содержит значительное количество ошибок, поврежденные клетки действительно «спасаются» на каком-то этапе, если только жизненно важные функции не оказались безнадежно нарушенными. Тогда же было показано, что реализация этого механизма возможна только при наличии продуктов генов гесА и lexA.

М. Радман в 1974 г. и Э. Виткин в 1975 г. сформулировали представления об индуцибельной системе генетической репарации, включающейся при появлении затруднений в синтезе ДНК, возникших вследствие сохранившихся димеров, число которых должго быть не менее 30-60. В связи со спасательными функциями этой системы репарации ДНК она была названа SOS-репарацией.

Таким образом, важная особенность прокариотических и эукариотических клеток состоит в их способности увеличивать эффективность генетической репарации при высокой дозе повреждений. Это возможно в результате индукции новой или модификации одной из пресушествующих ДНК-полимераз за счет белковых продуктов генов, активируемых повреждающими агентами. Например, появление таких ферментов в случае УФ-облучения обеспечивает транедимерный синтез ДНК, в результате которого напротив тиминового димера будет находиться не брешь, а какой-либо нуклеотид. Разумеется, такая произвольная подстановка нуклеотида во вновь образующуюся цепь ДНК часто приводит к ошибкам репликации.

В клетках Е. coli сигналом для индукции SOS-репарации служит замедление синтеза ДНК. Ответом на этот сигнал является ингибирование клеточного деления, индукция эксцизионной репарации с длинными вырезаемыми фрагментами и затем - рекомбинационной репарации.

По-видимому, непосредственным стимулом к запуску механизмов SOS-репарации служит накопление одноцепочечных разрывов ДНК, индуцирующее протеазную активность белка RecA который специфически взаимодействует с белком LexA - репрессором для генов rec (В, С, Е, F, J) и uvrB. Разрезание белка LexA приводит к снятию репрессии и запуску синтеза белковых продуктов указанных выше генов. Кроме того, разрезание белка LexA приводит к кратковременному увеличению его синтеза в клетке, поскольку данный белок является репрессором собственного гена (аутогенный контроль). Далее в результате работы репарационных систем происходит уменьшение количества одноцепочечных разрывов в ДНК, тем самым снижается индуцирующий SOS-репарацию сигнал, белок RecA теряет протеазную активность, и механизмы SOS-репарации выключаются.

Интересные факты

* Полагают, что от 80% до 90% всех раковых заболеваний связаны с отсутствием репарации ДНК.

* Повреждение ДНК под воздействием факторов окружающей среды, а также нормальных метаболических процессов, происходящих в клетке, происходит с частотой от нескольких сотен до 1000 случаев в каждой клетке, каждый час.

Заключение

репарация молекула биосинтез

Исправление повреждений в ДНК тесным образом связано с другими фундаментальными молекулярно-генетическими процессами: репликацией, транскрипцией и рекомбинацией. Все эти процессы оказываются переплетенными в общую систему взаимодействий, обслуживаемую большим числом разнообразных белков, многие из которых являются полифункциональными молекулами, задействованными в контроле реализации генетической информации в клетках про- и эукариот. В то же время очевидно, что природа «не скупится» на элементах контроля, создавая сложнейшие системы коррекции тех повреждений в ДНК, которые несут опасность для организма и особенно для его потомства. С другой стороны, в тех случаях, когда репарационных возможностей недостаточно для сохранения генетического статуса организма, наступает необходимость в программируемой клеточной смерти - апоптозе.

Использованные источники

1 Алиханян С.И и др. Общая генетика. М., 1985

2. Биология. Под ред. Ярыгина В.Н.М., 2001

3. Биохимия.1997, №62

4. Гайнутдинов И.К., Рубан Э.Д. Медицинская генетика. Ростов-на-Дону, 2007

5. Генетика. Под ред. Иванова В.И.М., 2006

6. Жестяников В.Д. Репарация Днк и ее биологическое значение. Л., 1979

7. Жимулев Н. Общая и молекулярная генетика. Новосибирск, 2006

8. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. М., 2003

9. Спивак И.Н. Наследственные заболевания с первичными и вторичными дефектами репарации ДНК. // Цитология, 1999, Т. 41

Размещено на Allbest.ru

...

Подобные документы

  • Репарация как особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических агентов. Ошибки репликации ДНК.

    реферат [384,0 K], добавлен 20.12.2014

  • Матричная функция, комплементарное копирование оснований, перенос дезоксинуклеотидов и лигирование ДНК при репликации. Ключевые ферменты в синтезе ДНК. Инициация образования новых цепей ДНК и их рост в репликативных вилках. Репарация ДНК и ее значение.

    курсовая работа [50,6 K], добавлен 26.07.2009

  • Степени поражения после воздействия однократных доз излучения, кинетика восстановления организма. Восстановление клеток и репарация ДНК. Процессы восстановления в облученном организме и факторы, влияющие на их скорость, биологическое обоснование.

    контрольная работа [36,9 K], добавлен 16.02.2015

  • Строение и функции клеточного ядра. Его форма, состав, строение. Дезоксирибонуклеиновая кислота - носитель наследственной информации. Механизм репликации ДНК. Процесс восстановления природной структуры ДНК, поврежденной при ее нормальном биосинтезе.

    реферат [6,6 M], добавлен 07.09.2015

  • Естественные мутаций и индуцированный мутагенез. Влияние лучистой энергии на наследственность. Химические и радиационные мутагены. Природа молекулярных изменений генов во время мутагенеза. Ферменты темновой репарации. Условие появления полной мутации.

    реферат [18,7 K], добавлен 13.10.2009

  • Фотоповреждение нуклеиновых кислот ультрафиолетовым излучением. Нуклеотид-эксцизионная репарация повреждений ДНК. Фотоповреждение аминокислот и белков ультрафиолетовым излучением. Влияние ультрафиолетового излучения на биомембраны и клетки организма.

    контрольная работа [1,2 M], добавлен 19.08.2015

  • Свойства генетического кода, история его открытия. Обоснование триплетности. Репликация ДНК, его скорость, механизм и место в клеточном цикле. Репарация ДНК, химическая стабильность. Классификация мутаций по характеру появления и по уровню возникновения.

    дипломная работа [1,3 M], добавлен 17.06.2013

  • Репликация одноцепочечной ДНК у вирусов и у прокариот. Основные этапы редупликации. Репликация кольцевых дуплексов. Центомеры и теломеры – наиболее четко выраженные морфологические структуры хромосом. Терминация и расхождение в кольцевых геномах.

    лекция [179,7 K], добавлен 21.07.2009

  • Информация о строении белков. Матричный принцип. Генетическая роль нуклеиновых кислот. Центральная догма молекулярной биологии. Репликция, репарация и полуконсервативность. Недорепликация концов линейных молекул, теломераза. Технология амплификации ДНК.

    презентация [3,3 M], добавлен 14.04.2014

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Репликативный синтез ДНК и пролиферация, особенности организации хроматина в нервных клетках. Репарация (система "ремонта") ДНК в мозге животных. Рибонуклеиновые кислоты мозга. Экспрессия генов в нервной системе позвоночных. Онтогенез мозга животных.

    курсовая работа [575,0 K], добавлен 26.08.2009

  • Разнообразие сперматозоидов у животных. Основная функция сперматозоида. Формирование мужских половых клеток. Сперматозоиды человека, их строение, функция, движение, продолжительность жизни. Сперматозоиды в растительном мире. Схема развития половых клеток.

    реферат [140,0 K], добавлен 18.09.2013

  • Изучение активностей ключевых ферментов трех этапов эксцизионной репарации оснований в эмбриональном развитии морского ежа Strongylocentrotus intermedius. Приготовление экстрактов эмбрионов морских ежей. Измерение активности ферментов репарации.

    дипломная работа [2,4 M], добавлен 06.07.2011

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Классификация углеводов, их основные разновидности и химические свойства, значение в жизнедеятельности организма. Половое размножение и этапы процесса созревания половых клеток. Дигибридное и полигибридное скрещивание. Действие естественного отбора.

    контрольная работа [20,6 K], добавлен 08.08.2009

  • Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

    реферат [2,9 M], добавлен 23.12.2013

  • Понятие и разновидности соединительных тканей, оценка их роли и значения в организме человека, клеточный состав и отличительные особенности. Дифферон клеток костных тканей, их главные функции и расположение. Хрящ как орган его структура и части.

    презентация [9,0 M], добавлен 28.04.2014

  • Причины повреждения ультраструктур. Физические, химические, биологические и экстремальные факторы. Патология поверхностного комплекса клетки. Нарушение механизмов рецепции. Аутоантительная блокада рецепторов. Патология подмембранного компонента.

    презентация [2,0 M], добавлен 03.03.2016

  • Термин "клон", его происхождение. Тотипотентные свойства клетки - способности реализовывать всю генетическую информацию, заложенную в ядре. Отличия клеток растений от клеток животных. Первые попытки клонирования. Процесс клонирования эмбрионов амфибий.

    статья [13,4 K], добавлен 04.05.2009

  • Функциональные возможности организма обеспечивают взаимодействие 2-х систем: нервной и гуморальной. Возможности взаимоотношений 2-х систем могут осуществляться благодаря наличию в мозгу нейросекреторных клеток. Функции нервных и секреторных клеток.

    реферат [269,8 K], добавлен 31.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.