Организация клетки

Исследования клетки для разгадки заболеваний. Химический состав и общность живой и неживой природы. Понятие об органических и неорганических соединениях. Роль воды в обеспечении процессов жизнедеятельности. Функции белков и минеральных солей в организме.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 24.12.2013
Размер файла 30,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат по дисциплине "Биологическая и физколлоидная химия"

на тему: "Организация клетки"

Содержание

Введение

1. Химический состав клетки

2. Структурные элементы

3. Клеточная теория строения организмов

4. Обмен веществ и преобразование энергии в клетке

Заключение

Список литературы

Введение

Одним из шагов человечества в познании тайн живого стало изучение клетки, образующей живой организм.

Клетка - элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители.

Начало биологической эволюции связано с появлением на Земле клеточных форм жизни.

Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных - животных и растений - построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему - отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток. Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний.

В клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и не органического мира нет. Различия обнаруживаются на более высоком уровне организации - молекулярном.

1. Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения - это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности.

Неорганические вещества.

Вода

Н2О - самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С - половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос - односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли

Большая часть неорганических веществ клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и мало Nа. Во внеклеточной среде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na+, K+, Ca2+, Mg2+. В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н2РО4 и НРО42. Во внеклеточных жидкостях и в крови роль буфера играют Н2СО3 и НСО3-. Анионы связывают ионы Н и гидроксид-ионы (ОН), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки

Белки

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 - 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры, мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (NH2), обладающая основными свойствами, и карбоксильная группа (СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 1010 - 1012.

Цепь аминокислотных звеньев, соединенных ковалентно пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин - это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка.

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших - строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 и 100 миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы

Углеводы, или сахариды - органические вещества с общей формулой (СН 2О)n. У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами.

В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем - тканей и органов.

Существуют 2 типа нуклеиновых кислот - ДНК и РНК.

ДНК - полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). Схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Из схемы видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.

РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое - урацил (У) - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы). клетка химический органический белок

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

По структуре различаются двухцепочечные РНК. Двухцепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одноцепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одноцепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде - они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.

Одна из основных функций жиров - энергетическая. В ходе расщепления 1г. жиров до СО2 и Н2О освобождается большое количество энергии - 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.

Жиры и липоиды выполняют и строительную функцию 6 они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

2. Структурные элементы

Плазматическая мембрана выполняет защитную, разграничительную, рецепторную (восприятие сигналов внешней среды) и транспортную функции. Снаружи она покрыта гликокалексом - комплексом гликопротеидов и гликолипидов, который обеспечивает поверхностные свойства клетки. Плазматическая мембрана участвует в образовании межклеточных соединений, микроворсинок, ресничек и отростков. Через нее осуществляется обмен веществ между клеткой и окружающей средой, а также взаимодействие между соседними клетками.

Ядро - основная клеточная структура, которая имеется во всех клетках млекопитающих, кроме эритроцитов и тромбоцитов крови. Оно состоит из: кариолеммы имеющей две мембраны, пронизанной порами и обеспечивающий регуляцию взаимодействий ядра и цитоплазмы. И кариоплазмы, основу которой составляют белки, обеспечивающие функционирование генетического материала.

В цитоплазме различают гиалоплазму, включения и органеллы.

Гиалоплазма является внутренней средой клетки, в которой осуществляются процессы обмена и поддерживается клеточный гомеостаз - динамическое постоянство внутренней среды.

Включения - непостоянные компоненты цитоплазмы, которые являются запасными питательными веществами или продуктами жизнедеятельности клетки.

Органеллы - постоянные структуры цитоплазмы, выполняющие определенные функции. Они бывают общего (имеются во всех клетках) и специального (имеются только в определенных видах клеток) назначения.

К органеллам относятся:

Эндоплазматический ретикулум - полость, ограниченная мембраной, которая образует множество складок. Выделяют гранулярный (синтезирует и транспортирует белки) и агранулярный (синтез и обмен углеводов и липидов) ретикулумы.

Пластинчатый комплекс (комплекс Гольджи) - совокупность диктиосом (дискообразных цистерн), в которых накапливаются различные параплазматические образования (гранулы секрета, желтка, липидов, акросомы спермиев и др.), а также синтезируются полисахариды и гликопротеиды.

Митохондрии - двухмембранные структуры клетки, в которых происходит ферментативное извлечение (окисление) и накопление энергии.

Лизосомы - органеллы, в которых осуществляется переваривание веществ, поступающих извне (фаголизосомы), или собствен¬ных структур клетки (аутолизосомы).

Рибосомы - округлые рибонуклеопротеиновые частицы, состоящие из двух субъединиц и способные объединяться в полисомы - место активного синтеза клеточного белка.

Клеточный центр образован двумя центриолями (диплосомами), имеет вид полого цилиндра. Центриоли образуют нити митотического веретена, поляризуют процесс деления клетки, обеспечивая расхождение сестринских хромосом.

К органеллам относятся также некоторые структуры, лишенные мембран: микротрубочки и микрофиламенты, которые образуют цитоскелет клетки и центриоли.

3. Клеточная теория строения организмов

Для прокариот и простейших, низших грибов и некоторых водорослей понятия "клетка" и "организм" совпадают. Можно сказать, что клетка - это элементарная биологическая система, способная к самообновлению, самовоспроизведению и развитию.

Такое представление о клетке установилось в науке не сразу. Сама клетка (точнее, клеточная оболочка) была открыта в XVII в. Английским физиком Р. Гуком. Рассматривая под микроскопом срез пробки, Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал клетками. Долгое время главной частью клетки считали ее оболочку. Лишь в XIX в. Ученые обратили внимание на полужидкое студенистое содержимое, заполняющее клетку. В 1831 г. английский ботаник Б. Броун обнаружил в клетках ядро. Это открытие послужило важной предпосылкой для установления сходства между клетками растений и животных. Ботаник М. Шлейден доказал, что ядро есть в любой растительной клетке.

В конце 30-х гг. XIX в. зоолог Т. Шванн, обобщив накопленные сведения о строении живых организмов, пришел к заключению, что клетка - их главная структурная единица и что именно образование клеток обусловливает рост и развитие живых тканей.

Клеточная теория строения была сформулирована и опубликована Т. Шванном в 1839г. Она сыграла огромную роль в развитии биологии. Исчезла казавшаяся непроходимой пропасть между царством растений и царством животных. Провозглашая единство живого мира, клеточная теория послужила одной из предпосылок возникновения теории эволюции Ч. Дарвина.

Позднее клеточная теория была развита многими учеными. Немецкий врач Р. Вирхов доказал, что главная составная часть клетки - ядро и что клетки образуются только от клеток. Дальнейшее совершенствование микроскопической техники, создание электронного микроскопа и появление методов молекулярной биологии позволили глубже проникнуть в тайны клетки, познать ее сложную структуру и многообразие протекающих в ней биохимических процессов.

В настоящее время основные положения клеточной теории формулируются следующим образом:

1) Клетка является структурно-функциональной единицей, а также единицей развития всех живых организмов;

2) Клеткам присуще мембранное строение;

3) Ядро - главная составная часть клетки;

4) Клетки размножаются только делением;

5) Клеточное строение организма - свидетельство того, что растения и животные имеют единое происхождение.

Неклеточные формы жизни - вирусы и бактериофаги - устроены проще, чем клетки даже самых примитивных бактерий.

4. Обмен веществ и преобразование энергии в клетке

Все живые организмы способны к обмену веществ с окружающей средой. В клетках непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью катализаторов химических реакций - ферментов - из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов - сложные углеводы, из азотистых оснований - нуклеиновые кислоты. Разнообразные жиры и масла возникают путем химических превращений сравнительно простых веществ, источником которых служит остаток уксусной кислоты - ацетат. При этом биосинтетические реакции отличаются видовой и индивидуальной специфичностью. Клетки наружных покровов членистоногих синтезируют хитин - сложный полисахарид, у наземных позвоночных - рептилий, птиц, млекопитающих - роговое вещество, основой которого является белок кератин. В конечном счете, структура синтезируемых крупных органических молекул определяется последовательностью нуклеотидов в ДНК, т.е. генотипом. Синтезированные вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции биосинтеза идут с поглощением энергии.

Пластический обмен

Совокупность реакций биологического синтеза называется пластическим обменом или ассимиляцией. Название этого вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам клетки.

Рассмотрим одну из важнейших форм пластического обмена - биосинтез белков. Как уже отмечала, все многообразие их свойств определяется, в конечном счете, первичной структурой, т.е. последовательностью аминокислот. Огромное количество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путем синтеза нуклеиновых кислот с такой последовательностью азотистых оснований, которая соответствует последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трех нуклеотидов (триплет). Так, аминокислоте цистеину соответствует триплет АЦА, валину ЦАА, лизину - ТТТ и т.д.

Таким образом, определенные сочетания нуклеотидов и последовательность их расположения в молекуле ДНК являются кодом, несущим информацию о структуре белка.

Код включает все возможные сочетания трех (из четырех) азотистых оснований. Таких сочетаний может быть 43=64, в то время как кодируется только 20 аминокислот. В результате некоторые аминокислоты кодируются несколькими триплетами. Эта избыточность кода имеет большое значение для повышения надежности передачи генетической информации. Например, аминокислоте аргинину могут соответствовать триплеты ГЦА, ГЦГ, ГЦТ, ГЦЦ и др. Понятно, что случайная замена третьего нуклеотида в этих триплетах никак не отразится на структуре синтезируемого белка. В длинной молекуле ДНК, состоящей из миллионов нуклеотидных пар, записана информация о последовательности аминокислот в сотнях различных белков.

Этапы энергетического обмена

Энергетический обмен обычно делят на 3 этапа. Первый этап - подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы - глюкозу, глицерин и жирные кислоты, аминокислоты, крупные молекулы нуклеиновых кислот - на азотистые основания - нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепловой энергии.

Второй этап - бескислородный, или неполный. Он называется также анаэробным дыханием или брожением. Термин "брожение" обычно применяют по отношению к процессам, протекающим в клетке микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов вступают на путь дальнейшего расщепления. В мышцах, например, в результате анаэробного дыхания молекула глюкозы распадается на 2 молекулы молочной кислоты (гликолиз). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. В суммарном виде гликолиз выглядит так:

С 6Н 12О 6+2Н 3РО 4+2АДФ>3Н 6О 3+2АТФ+2Н 2О.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С 6Н 12О 6+2Н 3РО 4+2АДФ>2Н 5ОН+2СО 2+2АТФ+2Н 2О.

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т.д.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% энергии, а остальная рассеивается в виде теплоты.

Третий этап энергетического обмена - стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе О к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов - Н 2О и СО 2. кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:

3Н 6О 3+6О 2+36Н 3РО 4+36АДФ>6СО 2+6Н 2О+36АТФ+36Н 2О.

Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Заключение

Очень большое значение для изучения клетки имеет применение биохимических и цитохимических методов. В настоящее время мы можем не только изучать строение клетки, но и определять ее химический состав и изменения его в процессе жизнедеятельности клетки. Многие из этих методов основаны на применении цветных реакций, позволяющих различать определенные химические вещества или группы веществ. Изучение распределения разных по своему химическому составу веществ в клетке путем цветных реакций представляет собой цитохимический метод. Он имеет большое значение для исследования обмена веществ и других сторон физиологии клетки.

Знания, накопленные с использованием клеточной теории, широко используются в различных отраслях человеческой деятельности. Исследования клетки имеют большое значение для профилактики и лечения заболеваний человека, растений, животных. Именно в клетках начинают развиваться патологические изменения, приводящие к заболеваниям. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают тоже на уровне клетки. Представления о строении и развитии клетки широко используются в генетике - науке о наследственности и изменчивости организмов.

Список литературы

1. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина. 2003г.

2. Северин Е.С., Алейникова Т.Л., Осипов Е.В., Силаева С.А. - Биологическая химия. 2008г.

3. А.Я. Николаев "Биологическая химия". 2004г.

4. Филиппович Ю.Б. Основы биохимии. М. Флинта. 1999г.

5. Николаев А.Я. Биохимия. / М., "Высшая школа", 1989г.

6. Строев Е.А. Биологическая химия. / М., "Высшая школа", 1986г.

7. Теппермен Дж., Теппермен Х. Физиология обмена веществ и эндокринной системы. - М., "Мир", 1989г.

Размещено на Allbest.ru

...

Подобные документы

  • Биологическая роль воды. Функции минеральных солей. Простые и сложные липиды. Уровни организации белков. Строительная, энергетическая, запасающая и регуляторная функции липидов. Структурная, каталитическая, двигательная, транспортная функции белков.

    презентация [383,4 K], добавлен 21.05.2015

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

  • Общая характеристика живой и неживой природы. Неорганические и органические вещества в клетке: макроэлементы, микроэлементы, ультрамикроэлементы, соли, вода, нуклеиновые кислоты, углеводы, белки, липиды. Понятие биогенных элементов. Свойства воды.

    презентация [3,7 M], добавлен 26.04.2012

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.

    контрольная работа [58,3 K], добавлен 19.05.2010

  • Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.

    реферат [39,6 K], добавлен 14.05.2011

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Автотрофные и гетеротрофные клетки, уравнение, сущность фотосинтеза, его световая, темновая фаза. Хемосинтез как преобразование энергии реакций окисления неорганических веществ в химическую энергию синтезируемых органических соединений, биосинтез белков.

    реферат [21,5 K], добавлен 07.10.2009

  • Характеристика сущности клетки - элементарной единицы строения и жизнедеятельности всех живых организмов (кроме вирусов), обладающей собственным обменом веществ, способной к самостоятельному существованию, самовоспроизведению и развитию. Строение клетки.

    реферат [607,1 K], добавлен 13.11.2010

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Структура эукариотической клетки и классификация белков. Типы, функции и свойства липидов мембран, их многомолекулярные конфигурации. Структура органелл и диктиосомы аппарата Гольджи. Сортировка белков в эндоплазматической сети и аппарате Гольджи.

    презентация [1,9 M], добавлен 27.11.2012

  • Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

    реферат [271,2 K], добавлен 18.06.2010

  • Основные особенности метаболических процессов. Обмен веществ и энергии. Общая характеристика, классификация, функции, химический состав и свойства белков, их биологическая роль в построении живой материи. Структурные и сложные белки. Способы их осаждения.

    презентация [4,2 M], добавлен 24.04.2013

  • Описание отличительных особенностей живой природы, ее основных структурных уровней от молекулярного до экосистемного. Различные степени сложности неживой природы. Теория биологической эволюции, основанная на открытии Дарвином естественного отбора.

    реферат [66,7 K], добавлен 22.12.2010

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Белки и липиды - важные структурные, запасные и функциональные элементы клетки. Азотфиксация и биосинтез аминокислот. Пути биосинтеза аминокислоты лизина у грибов. Поглощение неорганических питательных веществ водорослями активным и пассивным путями.

    реферат [22,3 K], добавлен 23.04.2010

  • Успехи биохимии в изучении живых объектов на молекулярном уровне. Способы диагностики заболеваний и контроля за их течением посредством химических анализов. Представления о биохимии живой клетки, сложившиеся к началу 50-х годов прошлого столетия.

    реферат [21,6 K], добавлен 11.12.2009

  • Белки - высокомолекулярные органические соединения, их аминокислотный состав. Определение свойств белков их составом и структурой белковой молекулы. Характеристика основных функций белков. Органоиды клетки и их функции. Клеточное дыхание и его строение.

    контрольная работа [22,5 K], добавлен 24.06.2012

  • История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация [10,3 M], добавлен 10.09.2015

  • Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация [3,1 M], добавлен 09.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.