Атомно-силовой микроскоп
Схема лазерного атомно-силового микроскопа. Основные узлы механической части атомно-силового микроскопа. Метод модуляции силы в атомно-силовой микроскопии контакта. Природа сил трения, закон Амонтона-Кулона. Потенциальная энергия и траектория зонда.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 29.12.2013 |
Размер файла | 764,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
План
атомный силовой микроскоп
Введение
Принцип работы атомно-силового микроскопа
АСМ прерывистого контакта
АСМ модуляции силы
Природа сил трения
Выводы
Литература
Введение
Одной из наиболее распространенных разновидностей сканирующей зондовой микроскопии является атомно-силовая микроскопия (АСМ). Первый микроскоп такого типа был сконструирован Г. Биннигом, X. Гербером и С. Квайтом в 1986 году, после того как годом ранее Г. Бинниг показал принципиальную возможность неразрушающего контакта зонда (атомно-острой иглы) с поверхностью образца (Рисунок 1).
Рисунок 1 ? Схема лазерного атомно-силового микроскопа
Действительно, если подвести зонд к образцу на расстояние в несколько ангстрем, то между атомами, образующими острие, и атомами, расположенными на поверхности образца, начнет действовать Ван-дер-Ваальсова сила притяжения.
Под действием этой силы зонд будет приближаться к образцу до тех пор, пока не начнется электростатическое отталкивание одноименно (отрицательно) заряженных электронных оболочек атомов зонда и поверхности. В первых атомно-силовых микроскопах зонд (иголку кристаллического сапфира) закрепляли на тонкой платиновой фольге, за перемещением которой следили по изменению туннельного тока, по аналогии со сканирующей туннельной микроскопией. В настоящее время зонд закрепляют на гибкой балке, называемойкантилевером или консолью. При подводе зонда к образцу и возникновении отталкивающего взаимодействия кантилевер изгибается до тех пор, пока давление со стороны зонда (определяемое силой упругости консоли) не окажется больше предела упругой деформации материала образца или зонда. Таким образом, основным свойством кантилевера является его жесткость, а подбор материала и геометрических характеристик кантилевера позволяет использовать метод АСМ для самых различных приложений. Перемещаясь в плоскости образца над поверхностью, кантилевер изгибается, отслеживая ее рельеф. При сканировании образца в контактном режиме его поверхность частично повреждается, а разрешение метода оказывается достаточно низким. Разработка методов полуконтактного и бесконтактного сканирования, когда зонд входит в контакт с поверхностью только в нижней точке траектории собственных резонансных колебаний или не входит в контакт вообще, позволила увеличить разрешение АСМ, значительно снизив давление на образец со стороны зонда. Для регистрации отклонения кантилевера предложены различные системы, основанные на использовании емкостных датчиков, интерферометров, систем отклонения светового луча или пьезоэлектрических датчиков. В современных приборах угол изгиба кантилевера регистрируется с помощью лазера, лучкоторого отражается от внешней стороны консоли и падает на фотодиодный секторный датчик. Система обратной связи отслеживает изменение сигнала на фотодетекторе и управляет системой нанопозиционирования. Использование «пьезодвигателей» и атомно-острых зондов позволяет добиться атомного разрешения АСМ в высоком вакууме. Помимо непосредственного исследования структуры поверхности методом контактной АСМ, можно регистрировать силы трения и адгезионные силы. В настоящее время разработаны многопроходные методики, при которых регистрируется не только топография, но и электростатическое или магнитное взаимодействие зонда с образцом. С помощью этих методик удается определять магнитную и электронную структуру поверхности, строить распределения поверхностного потенциала и электрической емкости и т. д. Для этого используют специальныекантилеверы с магнитными или проводящими покрытиями. АСМ также применяются для модификации поверхности. Используя жесткие зонды, можно делать гравировку и проводить наночеканку - выдавливать на поверхности крошечные рисунки. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая разность потенциалов между зондом и проводящей поверхностью, а также открывает возможность применения АСМ для исследования биологических объектов. АСМ уже стал одним из основных наноинструментовнанотехнологов, быть может, следующий шаг за покорением бионанотехнологии.
Принцип работы атомно-силового микроскопа
Деление АСМ по способу измерения и фиксации силового взаимодействия зонда и образца позволяет выделить два основных случая: контактная атомно-силовая микроскопия и АСМ прерывистого контакта.
Контактная атомно-силовая микроскопия
Для измерения величины силового взаимодействия в контактном режиме используется следующая схема, включающая в качестве миниатюрного динамометра упругую консоль (называемуюлевером или кантилевером), имеющую на свободном конце зонд (другой конец левера заделан в держателе). При сканировании баланс сил взаимодействия зонда и образца приводит к изгибу левера; величина изгиба детектируется прецизионным датчиком. В большинстве атомно-силовых микроскопов для этого используют оптические датчики, реализованные по следующей схеме: луч лазерного диода падает под углом на поверхность левера и отражается в центр четырехсекционного фотодиода (рис. 1. 1). При изгибе левера в нормальном направлении или при его кручении возникает разница в сигналах соответствующих участков фотодиода: верхние сегменты/нижние сегменты или правые сегменты/левые сегменты. Первый сигнал несет информацию о балансе сил притяжения и отталкивания, а второй - о латеральных силах взаимодействия зонда и образца (рис. 1. 2).
Рис. 1.1. Основные узлы механической части атомно-силового микроскопа
Рис. 1.2. Основные элементы атомно-силового микроскопа
В процессе сканирования система обратной связи поддерживает на заданном уровне величину изгиба кантилевера (следовательно, и силы воздействия зонда на образец) посредством вариации Z-координаты точки закрепления кантилевера. Сигнал обратной связи несет, таким образом, информацию о топографии поверхности Z|F=const (X, Y).
Упругая сила изгиба кантилевера, действующая на зонд, может быть направлена как в сторону образца, так и в обратную (прямой и обратный изгиб кантилевера, см. рис. 1. 1б) ; в первом случае она увеличивает давление зонда на образец, во втором уменьшает. Как правило, при сканировании стремятся уменьшить воздействие на образец, для чего выбирают минимальную величину прямого изгиба кантилевера, или, по мере возможности, максимальную величину обратного изгиба кантилевера, при которой еще сохраняется механический контакт. Сканирование при обратном изгибе может быть нестабильным. Если силы притяжения (капиллярные, дисперсионные) действуют на зонд неодинаково на всем участке сканирования, то в тех местах, где они меньше, зонд может ``оторваться'' от поверхности (выйти из контакта), если величина упругих сил обратного изгиба превысит силы притяжения. Это обстоятельство является основным препятствием при минимизации силы воздействия зонда.
Разница сигналов правых и левых сегментов фотодиода отображает величину сил трения, действующих на зонд при сканировании, что позволяет исследовать распределение локальных фрикционных свойств поверхности. Информацию о градиенте к исследуемой поверхности несет сигнал отклонений Fоткл (X, Y) детектируемый при сканировании как разностный сигнал верхних и нижних сегментов фотодиода, см. рис. 1. 3. Оказывается, что в эксперименте зависимости Fтр (X, Y) и Fоткл (X, Y) часто характеризуются большей латеральной разрешающей способностью, чем топографический сигнал Z|F=const (X, Y), в силу чего оказывается возможным детектирование более мелких деталей поверхности.
АСМ прерывистого контакта
Для измерения и фиксации при сканировании интенсивности силового взаимодействия зонда и образца в АСМ прерывистого контакта (tappingmode) используется резонансная схема. Дополнительныйпьезоэлемент возбуждает вынужденные колебания левера на его резонансной частоте (вдали от поверхности образца). При сближении зонда и образца возникновение дополнительного градиента сил их взаимодействия приводит к сдвигу резонансной частоты (изменению эффективной жесткости) и частичному выходу системы из резонанса. Наряду с этим, при соударениях зонда и образца увеличивается демпфирование колебаний за счет неупругих процессов. Следствием обоих механизмов является уменьшение амплитуды колебаний.
При сканировании АСМ в режиме прерывистого контакта система обратной связи поддерживает на заданном уровне именно величину амплитуды колебаний: Dz=const. В силу высокой чувствительности амплитуды колебаний к среднему значению расстояния между зондом и образцом, можно получать информацию о топографии поверхности (Z|Dz=const (X, Y)) с достаточно высоким пространственным разрешением.
Информация о тонкой структуре (и локальных вязкоупругих свойствах) исследуемой поверхности может быть получена из измерений зависимости: Dj|Dz=const (X, Y), где Dj - сдвиг фаз между колебаниями левера и внешней вынуждающей силы. Вдали от поверхности колебательная система настраивается в резонанс (j = p/2), однако при сближении зонда и образца она, частично, выходит из резонанса и вклад в сдвиг фаз будут давать упругие (изменение резонансной частоты) и диссипативные (увеличение декремента затухания) механизмы. Оказывается, что в ряде случаев сигнал Dj|Dz=const (X, Y) характеризуется большей латеральной разрешающей способностью, чем топографический Z|Dz=const (X, Y), позволяя разрешить более мелкие детали поверхности.
Стоит отметить, что в настоящее время не существует законченной теории АСМ прерывистого контакта, которая позволяла бы количественно связать параметры эксперимента (величину амплитуды и сдвига фаз колебаний левера) с интенсивностью силового воздействия зонда на образец и с локальными вязкоупругими свойствами образца. Это обстоятельство осложняет количественную интерпретацию фазовых АСМ-изображений (Dj|Dz=const (X, Y)) микроскопии прерывистого контакта.
АСМ модуляции силы
Метод модуляции силы рассмотрим применительно к атомно-силовой микроскопии контакта. В этом случае общая схема измерений такова. Как и в микроскопии прерывистого контакта в экспериментальную схему введен дополнительный пьезоэлемент (биморф), который возбуждает колебания левера, но в этом случае не на его резонансной частоте, а на резонансной частоте самого биморфа (существенно более массивного). Данное обстоятельство приводит к тому, что, в отличие от АСМ прерывистого контакта, в этом случае силовое взаимодействие зонда и образца не влияет на собственную резонансную частоту системы (система не выходит из резонанса в случае, когда проявляется взаимодействие зонда и образца).
Как и в контактной АСМ в процессе сканирования система обратной связи поддерживает на заданном уровне изгиб кантилевера. Но в этом случае фиксируется среднее за период значение изгиба, поскольку кантилевер совершает вынужденные колебания. Величина амплитуды колебаний будет зависеть от упругих свойств поверхности: более жесткие участки поверхности будут ``продавливаться'' в меньшей степени и там амплитуда колебаний будет меньше.
Как и для микроскопии прерывистого контакта в настоящее время не существует удовлетворительной теории, позволяющей проводить количественный анализ упругих свойств поверхностей на основании анализа АСМ-изображений, полученных в режиме модуляции силы.
Поэтому в литературе по АСМ модуляции силы при интерпретации экспериментальных результатов ограничиваются лишь качественным анализом, привлекая некоторые модельные представления.
Природа сил трения
При взаимодействии зонда с поверхностью помимо нормальных сил возникают также боковые (латеральные) силы. АСМ позволяет измерять эти силы, что существенно расширяет возможности для исследования свойств поверхностей различных образцов. Соответствующая методика носит название Метода Латеральных Сил (МЛС).
Какова природа латеральных сил и какую дополнительную информацию о поверхности они могут дать? Существуют две основные силы, которые имеют горизонтальную составляющую - это сила трения и нормальная реакции образца , которая из-за локальных неровностей поверхности отклоняется от вертикали (рис. 1). Последняя всецело определяется рельефом поверхности. Таким образом, латеральные силы несут информацию о топографии, что при наличии других методов исследования, вряд ли имеет большую экспериментальную ценность.
Рис. 1. Латеральные силы.
С другой стороны, возможность изучения силы трения способна дать новые сведения о свойствах поверхности. Это сделало АСМ важным экспериментальным инструментом трибологии - раздела физики, изучающего природу трения.
В зависимости от масштаба, на котором изучается трение, в современной трибологии принято выделять три раздела:
макротрибологию (или просто трибологию)
микротрибологию
нанотрибологию
Лишь с возникновением сканирующих микроскопов появилась возможность экпериментального изучения микро- и нанотрибологии. Ниже кратко обсуждаются некоторые положения трибологии, а затем рассказывается о методе исследования латеральных сил.
Сила трения - это совокупный эффект, возникающий в результате самых различных физических явлений: упругости, адгезии, вязкости, капиллярных сил, химических особенностей, фононного и электростатического взаимодействий и проч. В зависимости от условий может преобладать то или другое явление.
Каждый из разделов трибологии исследует трение на своем масштабе. Макротрибология имеет дело с большими объектами и не рассматривает особенностей строения вещества. С другой стороны, задачей нанотрибологии является объяснение трения на уровне взаимодействия отдельных атомов. Микротрибология является переходным разделом.
Основным соотношением Макротрибологии является закон Амонтона-Кулона, который пропорционально связывает силу трения и нормальную реакцию:
, (1)
где k - безразмерный коэффициент трения, который и несет всю информацию о трибологии. Он зависит от многих факторов, среди которых температура, влажность, скорость скольжения и др.
В макротрибологии считается, что геометрическая площадь контакта двух тел равна (или не сильно отличается) реальной площади контакта на атомарном уровне. Разумеется, это некоторое приближение, т. к. на самом деле даже самые гладкие поверхности на меньшем масштабе оказываются неровными, и фактический контакт двух тел происходит по гораздо меньшей площади - соприкасаются только выступающие части. Контакт в макромасштабе - это множество микроконтактов (рис. 2). Макроскопическая сила трения при этом есть усредненная микроскопическая сила трения отдельных микроконтактов, которая может сильно варьироваться.
Рис. 2. Контакт в макромасштабе шарика и кремниевой пластины [1].
Микротрибология занимается исследованием таких элементарных контактов. Как правило, подразумевается, что небольшой выступ взаимодействует с некоторой поверхностью. Именно такая модель и сделала АСМ наиболее привлекательной экспериментальной методикой микротрибологии.
Как известно, трение является диссипативной силой. При скольжении поверхностей друг по другу происходит рассеяние механической энергии. И, например, для поддержания постоянной скорости скольжения внешней силе необходимо совершать работу. Поэтому каждый из эффектов, приводящих к трению, имеет механизм диссипации энергии. В рамках обсуждения микротрибологии перечислим некоторые из них.
Трение подразделяется на два основных типа: сухое и жидкое. Причем жидким трение считают даже тогда, когда на поверхности образуется очень небольшая (в несколько атомарных слоев) пленка жидкости. В результате адсорбции это происходит практически всегда, исключения составляют следующие случаи:
гидрофобные поверхности зонда и образца,
трение в вакууме,
а также случаи, когда в результате большой нормальной нагрузки слой жидкости вытесняется из площади контакта, поверхности вступают в непосредственный контакт, и фактически реализуется механизм сухого трения.
В случае сухого трения считается, что при скольжении трущихся поверхностей микронеровности задевают друг за друга. При преодолении препятствий, возникают атомарные вибрации, которые в виде фононов рассеиваются, унося энергию. Кроме того, при разрыве адгезионных связей, возникающих между выступами соприкасающихся поверхностей, в металлических образцах образуются пары электрон-дырка, на возникновение которых также затрачивается энергия (этот эффект значительно слабее, чем фононное рассеяние). В случае мягких образцов возможно и разрушение микронеровностей, так называемое «пропахивание», в этом случае механическая энергия расходуется на разрушение атомарных связей.
Жидкое трение существенно зависит от толщины слоя жидкости. При пленке в один мономолекулярный слой трение мало отличается от сухого. Если монослоев два-три, то рассеяние энергии в фононном канале уже блокировано, и основную роль играет вязкость жидкого слоя. Для более толстых пленок начинают преобладать капиллярные эффекты, в результате которых неровности соприкасающихся поверхностей притягиваются друг к другу, если их попытаться сдвинуть.
Какова зависимость силы трения от нормальной приложенной нагрузки в микротрибологии? Аналогом закона Амонтона-Кулона здесь является формула (модель) Баудена-Табора, которая записывается так:
, (2)
где - касательное напряжение,
- реальная площадь элементарного контакта (в отличие от геометрического контакта в макротрибологии).
Эта площадь зависит от степени взаимногопроминания контактирующих выступов обеих поверхностей. Как известно, площадь такого контакта дает решение задачи Герца. В результате:
(3)
где R - радиус закругления зонда, N - нормальная сила, K - эффективный модуль Юнга.
, (4)
здесь E, E' - модули Юнга, а m, m' - коэффициенты Пуассона зонда и образца соответственно. Для кремниевых зонда и образца , , .
Видно, что зависимость силы трения от нормальной нагрузки N носит нелинейный характер. В случае наличия жидкой пленки к N необходимо прибавить адгезионный член, связанный с наличием капиллярной силы. Воcпользуемся моделью DMT:
(5)
где - коэффициент поверхностного натяжения. Эта сила дополнительно прижимает друг к другу соприкасающиеся поверхности.
Модель Баудена-Табора хорошо подтверждается на опыте. На рисунке 3 приведены экспериментальные данные [1] в вакууме (жидкая пленка и капиллярный эффект отсутствуют), на воздухе и изображена для сравнения теоретическая кривая (3).
Рис. 3. Зависимость силы трения от нормальной силы на воздухе и в вакууме. Жирной линией изображена теоретическая зависимость по Баудену-Табору [1].
В микротрибологии часто встречается так называемый эффект прилипания-скольжения. Сила трения при движении поверхности относительно другой силы трения имеет пилообразный профиль (рис. 4), она неравномерна. Прилипнув к одной «точке» на соседней поверхности, выступу в результате адгезии, капиллярных сил и т. п. сложно оторваться от нее, для это требуется преобладающая сила. Оторвавшись, выступ перескакивает к другой такой точке, возле которой снова прилипает на некоторое время и т. д.
Эффект прилипания-скольжения существенно зависит от скорости сканирования (рис. 5). Для исследования зависимости силы трения от скорости скольжения был проведен эксперимент [1], в котором измерялась сила трения между кремниевым шариком радиусом 0. 5 мм и плоской кремниевой поверхностью с шероховатостями 0. 2 нм для шарика и 0. 17 нм для пластины. При этом оба твердых тела были гидрофильны. При низкой скорости эффект прилипания-скольжения выражен более ярко, частота скачков меньше, а их амплитуда больше. С ростом скорости частота повышается, а амплитуда, наоборот, понижается. Существует некоторая максимальная критическая скорость скольжения, после которой эффект пропадает и сила трения становится регулярной. В эксперименте критическая скорость 0. 4 мкм/с достигалась при нормальной силе придавливания, равной 70 мкН.
Рис. 4. Зависимость силы трения от скорости скольжения [1]. В квадратиках изображено поведение силы трения при скоростях скольжения, больших и меньших критической.
Рис. 5. Зависимость амплитуды и частоты силы трения в эффекте прилипания-скольжения от скорости сканирования [1].
На тех же образцах была изучена зависимость силы трения от температуры и влажности [1]. Сначала оба твердых тела были гидрофильны. Затем, чтобы убрать оксидную пленку и сделать их гидрофобными, в течении двух минут их травили в плавиковой кислоте HF.
Таким образом, сила трения измерялась как функция относительной влажности при различных температурах для гидрофильных и гидрофобных образцов. Температура была изменяемым параметром. Измерительную систему помещали в камеру с регулируемой влажностью и температурой. Влажность изменяли от 85% до 20%. Нормальная сила поддерживалась постоянной и была равна N = 2000 мкН. На рисунке 6 приведены экспериментальные результаты для высоких и низких температур [1].
Рис. 6. Зависимость силы трения от влажности при разных температурах для гидрофильных и гидрофобных систем [1].
На поверхности гидрофильного образца может адсорбироваться большое количество воды. Таким образом, чем больше влажность окружающей среды, тем больше жидкости может адсорбироваться и тем больше сила трения. При росте температуры десорбция начинает превышать адсорбцию, и трение уменьшается. Чем выше температура, тем более энергетичны молекулы воды и тем легче они покидают поверхность и возвращаются к ней. Поэтому зависимость трения от влажности слабая.
Гидрофобный кремний, в отличии от гидрофильного, показывает слабую зависимость трения от влажности при любых температурах. При росте температуры трение слабо возрастает. Это означает, что в результате десорбции твердые поверхности приходят в более тесный контакт, и между ними начинают действовать силы Ван-дер-Ваальса и возникают химические связи.
Нанотрибология имеет дело со взаимодействием отдельных атомов. Представим, что поверхностный атом одной поверхности движется при скольжении в периодическом потенциале поверхностных атомов другой (рис. 7), отсутствует механизм диссипации энергии.
Рис. 7. Слева: Потенциальная энергия и траектория зонда; справа: Мгновенная и средняя сила трения [3].
Неконсервативность вводится следующим образом. Достигнув верхней точки потенциала, атом, который можно смоделировать подвешенным на пружинке, отрывается от контактируемой поверхности и «падает» точку минимума потенциала (или ее окрестность). Атом переходит в точку с другой энергией, то есть потенциал становится «непотенциальным». Мгновенная сила трения при этом:
(6)
Можно считать, что энергия, благодаря упругому подвесу атома, передается вглубь тела, то есть, с наноскопической точки зрения, диссипируется. Такая модель приводит к неконсервативной (в среднем) силе, показанной на рисунке 7, которая и является силой трения. Эта средняя неконсервативная сила является силой трения в микротрибологии. В качестве примера приведем результаты эксперимента [2], [4] (рис. 8) на высокоориентированном пиролитическом графите (HOPG).
Рис. 8. Распределение латеральных сил на высокоориентированном пиролитическом графите (ВОПГ). Эти МЛС изображения получены с помощью прибора SOLVER P47 (сканер 14 мкм x 14 мкм) на воздухе, размеры сканируемых участков составляли: (а) 7 мкм x 7 мкм; (б) 9 Е x 9 Е.
Обратим внимание, что поверхность HOPG должна быть сухой. Адсорбция воды играет значительно большую роль, чем на микромасштабе. Из-за капиллярных сил прилипание-скольжение демпфируется, что приводит к получению нерезкого изображения.
Выводы
Наука о силе трения - трибология - подразделяется на макротрибологию, микротрибологию, нанотрибологию. На разных масштабах используют различные модели для описания трения.
Трение существенно зависит от влажности, температуры, адсорбции, других факторов и подразделяется на сухое и жидкое.
Основное уравнение макротрибологии - закон Амонтона-Кулона. Считается, макроскопическая площадь соприкосновения тел состоит из элементарных контактов, имеющих гораздо меньшую суммарную площадь.
Сухое трение в элементарном контакте описывается моделью Баудена-Табора. Она использует герцевское представление об упругой деформации в месте контакта, а в качестве параметра трения служит напряжение сдвига.
В жидком трении основную роль играют капиллярные силы.
В микротрибологии часто встречается эффект прилипания-скольжения, в результате которого сила трения непостоянна и имеет пилообразный профиль.
Нанотрибология описывает трение как взаимодействие атомов. Рассматривая движение атомов одного тела в потенциале атомов другого, можно ввести неконсервативную силу, описывающую трение.
Литература
Scherge Matthias, Biological micro- and nanotribology: Nature's solutions. Springer, 2001
N. P. D'Costa, J. H. Hoh, Rev. Sci. Instrum. 66 (1995) 5096-5097
Wiesendanger R., Guentherodt H. -J. (eds.), Scanning tunneling microscopy. - 2d ed. 3: Theory of STM and related scanning probe methods. 1996
Bhushan B., Wear 225-229 (1999) 465-492.
Размещено на Allbest.ru
...Подобные документы
Понятие увеличительных приборов (лупа, микроскоп), их назначение и устройство. Основные функциональные и конструктивно-технологические части современного микроскопа, используемого на уроках биологии. Проведение лабораторных работ на уроках биологии.
курсовая работа [3,8 M], добавлен 18.02.2011Рассмотрение химии как составного элемента системы "общество - природа". Описание химических и физических изменений веществ. Изучение законов сохранения массы и энергии. Описание реакционной способности веществ. Основы атомно-молекулярного учения.
реферат [29,3 K], добавлен 30.07.2010Організація бактеріальних біоплівок та процес їх утворення. Використання атомно силової мікроскопії для дослідження біоплівок, поширення їх у природі та методи штучного вирощування. Стійкість біоплівкових бактерій до дії антибіотиків і стресових чинників.
реферат [1,7 M], добавлен 25.01.2015Закономерные связи между всеми химическими элементами. Вклад французского ученого Ж. Гей-Люссака, итальянского ученого А. Авогадро, русского ученого Д.И. Менделеева в атомно-молекулярное учение. Исследования Резерфорда Эрнеста. Планетарная модель атома.
контрольная работа [124,5 K], добавлен 16.12.2012Всестороннее изучение и анализ микро-, макро- и мегамиров. Изучение материального мира. Представление об иерархичности физических явлений в настоящее время. Становление теории атомно-молекулярного строения мира. Научное познание мира "вглубь" и "вширь".
реферат [53,3 K], добавлен 26.07.2010Биография Антони ван Левенгука, его роль в развитии микробиологии. Совершенствование конструкции микроскопа, его использование в микробиологических исследованиях. Изучение Левенгуком причинных связей и способов появления и размножения микроорганизмов.
реферат [250,4 K], добавлен 28.10.2015История открытия вирусов, их детальное исследование после изобретения микроскопа. Характеристика вирусов: свойства, формы существования, строение, химический состав и процесс размножения. Гипотеза о происхождении вирусов из "беглой" нуклеиновой кислоты.
презентация [553,5 K], добавлен 18.01.2014Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.
презентация [1,4 M], добавлен 28.11.2013Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.
презентация [1,4 M], добавлен 19.10.2013Особенности строения и роста растительных клеток. Методы изучения растительной клетки. Электронная микроскопия, возможности светового микроскопа. Метод замораживания-скалывания. Дифференциальное центрифугирование, фракционирование. Метод культуры клеток.
реферат [30,9 K], добавлен 04.06.2010Закон сохранения массы как один из фундаментальных законов естествознания. Соотношение между энергией покоя и массой тела Эйнштейна, теория относительности. Взаимное преобразование массы и энергии в ядерной энергетике. Физическая суть огня, природа массы.
реферат [24,4 K], добавлен 23.04.2010Клетка как наименьшая морфофизиологическая единица живых систем. Особенности методов получения трехмерных изображений клеток. Определение уравнения поверхности клетки в трехмерных координатах. Проектирование трехмерной модели формы клетки, ее параметры.
контрольная работа [485,3 K], добавлен 30.09.2009История открытия закона сохранения и превращения энергии. Фундаментальные законы природы. Закон сохранения и превращения энергии. Количественное соотношение теплоты и механической работы, механический эквивалент тепла. Смысл закона сохранения энергии.
контрольная работа [44,0 K], добавлен 03.10.2011Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.
презентация [967,8 K], добавлен 27.05.2015Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.
презентация [881,2 K], добавлен 12.09.2014Понятие, классификация и причины возникновения хромосомных заболеваний. Технология выявления аномального хромосомного набора. Установление кариотипа ядер лимфоцитов периферической крови с помощью микроскопа Leica DM2500 и программы Видео-Карио-Тест.
научная работа [821,8 K], добавлен 24.02.2015История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.
реферат [130,0 K], добавлен 05.12.2010Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.
реферат [24,0 K], добавлен 05.01.2008Задачи медицинской микробиологии, вирусологии, иммунологии и бактериологии. История развития микробиологии на мировом уровне. Изобретение микроскопа А. Левенгуком. Зарождение отечественной бактериологии и иммунологии. Работы отечественных микробиологов.
реферат [68,2 K], добавлен 16.04.2017Теория самоорганизации в современном естествознании. Энгельс о гипотезе тепловой смерти Вселенной и превращении форм движения. Второй закон термодинамики - закон деградации энергии. Принцип существования энтропии. Необратимость природных процессов.
реферат [47,7 K], добавлен 02.04.2011