Генетика популяций
Понятие популяции как группы особей, неоднородной в генетическом отношении. Характеристика основных типов: амфимиктические, панмиктические, инбредные, апомиктические. Рассмотрение генетической структуры популяций. Действие закона Харди-Вайнберга.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.01.2014 |
Размер файла | 356,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Московский Государственный Университет Леса
Кафедра селекции, генетики и дендрологии (СГД)
Реферат
По генетике
Генетика популяций. Закон Харди - Вайнберга
Выполнил студент группы ЛА-32
Сафонова А.А.
Проверил кандидат сельскохозяйственных наук,
Профессор Погиба С.П.
Москва 2012
Введение
Термин «популяция» происходит от латинского populus - население. Долгое время (начиная с конца XVIII в.) популяцией называли (а часто называют и сейчас) любую группировку организмов, обитающих на определенной территории.
В 1903 г. датский генетик Вильгельм Людвиг Иоганнсен впервые употребил термин «популяция» для обозначения группы особей, неоднородной в генетическом отношении.
В 1903 г. датский генетик Вильгельм Людвиг Иоганнсен впервые употребил термин «популяция» для обозначения группы особей, неоднородной в генетическом отношении.
Иоганнсен впервые применил комплекс генетических и статистических методов для изучения структуры популяции самооплодотворяющихся (самоопыляющихся) организмов. Он избрал объектом исследования популяции самоопылителей, которые можно было легко разложить на группы потомков отдельных самоопыляющихся растений, т. е. произвести выделение чистых линий. Анализу была подвергнута масса (размеры) семян фасоли Phaseolusvulgaris. В настоящее время известно, что масса семян определяется полигенно и в сильной степени подвержена влиянию факторов внешней среды.
Иоганнсен провел взвешивание семян одного сорта фасоли и построил вариационный ряд по этому показателю. Масса варьировала в пределах от 150 до 750 мг. В дальнейшем семена массой 250…350 и 550…650 мг были высеяны отдельно. С каждого выросшего растения семена были вновь взвешены.Тяжелые (550…650 мг) и легкие (250…350 мг) семена, выбранные из сорта, представляющего популяцию, дали растения, семена которых отличались по массе: средняя масса семян растений, выросших из тяжелых семян, составила 518,7 мг, а из легких - 443,4 мг. Этим было показано, что сорт - популяция фасоли состоит из генетически различных растений, каждое из которых может стать родоначальником чистой линии. На протяжении 6…7 поколенийИоганнсен отбирал тяжелые и легкие семена с каждого растения в отдельности. Ни в одной линии не произошло сдвига массы семян. Изменчивость размеров семян внутри чистой линии была ненаследственной, модификационной.
Таким образом, В. Иоганнсен генетически неоднородные (гетерогенные) популяции противопоставлял однородным чистым линиям (или клонам), в которых невозможен отбор.
Вскоре подобные исследования были выполнены и для перекрестно-оплодотворяющихся организмов (работы Д. Джонса и Е. Иста с табаком).
Английский математик Годфри Харди (1908) сформулировал понятия панмиксии (свободного скрещивания) и создал математическую модель для описания генетической структуры панмиктической популяции, т.е. популяции свободно скрещивающихся раздельнополых организмов. Немецкий врач-антропогенетик Вильгельм Вайнберг (в этом же 1908 г.) независимо от Харди создал сходную модель панмиктической популяции.
Учение о неоднородности популяций развил российский генетик Сергей Сергеевич Четвериков. Его работой «О некоторых аспектах эволюционного процесса с точки зрения современной генетики» (1926) было положено начало современной эволюционной и популяционной генетики. В 1928 г. Александр Сергеевич Серебровский создает учение о генофонде.
В течение 1920-1950-ых гг. в англоязычных странах формируется понятие идеальной популяции, и на основании этого понятия интенсивно развивается математическая генетика (Сьюелл Райт, Рональд Фишер, Джон Холдейн и др.).
В нашей стране, несмотря на господство лысенковщины, учение о популяциях развивалось в работах И.И. Шмальгаузена (популяция рассматривалась как элементарная единица эволюционного процесса), А.Н. Колмогорова (анализировались случайные процессы в популяциях) и других ученых. Однако в большинстве случаев популяция рассматривалась с экологической точки зрения (например, как форма существования вида; С.С. Шварц). Лишь в 1960-1970-е гг., благодаря работам Н.В. Тимофеева-Ресовского и его сотрудников формируется синтетический подход к определению популяции как эколого-генетической системы.(2.1)
Закон Харди -- Вайнберга -- это закон популяционной генетики -- в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны -- частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:
Где -- доля гомозигот по одному из аллелей; -- частота этого аллеля; -- доля гомозигот по альтернативному аллелю; -- частота соответствующего аллеля; -- доля гетерозигот.
(1)
1. Популяция
1.1 Идеальная популяция
Абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии - случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамет и банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом.
Реальные популяции в большей или меньшей степени отличаются от идеальной. Одним из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают следующие типы популяций:
амфимиктические - основным способом размножения является нормальное половое воспроизведение;
амфимиктические панмиктические - при формировании брачных пар наблюдается панмиксия (свободное скрещивание);
амфимиктические инбредные - при формирование брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;
апомиктические - наблюдаются различные отклонения от нормального полового процесса, например, апомиксис, партеногенез, гиногенез, андрогенез; наблюдается у агамных (бесполых) форм;
клональные - при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония - развитие нескольких зародышей из одной зиготы:
комбинированные - например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).
Определения
Панмиксия (свободное скрещивание) означает, что на формирование брачных пар не влияет генотип или возраст особей, участвующих в размножении. Фактически это означает, что рассматриваемый признак не оказывает заметного влияния на формирование брачных пар.
Инбридинг - близкородственное скрещивание у животных; инцухт - близкородственное скрещивание у растений; инцест (кровосмешение) - близкородственное скрещивание у человека.
Апомиксис - это множество форм образования зародышей, при которых не происходит объединения двух клеток. Обычно этот термин используют по отношению к растениям. При апомиксисе новый организм может развиваться из неоплодотворенной яйцеклетки (см. партеногенез), а также из какой-либо другой специализированной клетки зародышевого мешка (например, из клеток-антипод или синергид), реже - непосредственно из клеток нуцеллуса или покровов семязачатка. Примеры растений-апомиктов: ястребинки, одуванчики, манжетки.
Партеногенез - это девиантная форма полового процесса, при которой новый организм развивается из неоплодотворенной яйцеклетки без участия мужских гамет. Различают нередуцированный партеногенез с развитием зародыша из диплоидной клетки и редуцированный партеногенез с развитием зародыша из гаплоидной яйцеклетки. Как правило, партеногенез чередуется с нормальным половым размножением (при цикломорфозе у коловраток, дафний, тлей).
Гиногенез - это девиантная форма полового процесса, при которой мужские гаметы служат для стимуляции развития нового организма из яйцеклетки, но оплодотворения не происходит, и мужское ядро (пронуклеус) погибает. В этом случае у дочернего организма сохраняются только материнские хромосомы. Гиногенез встречается у гибридов рыб, земноводных, а также в бессамцовых популяциях.
Андрогенез - это девиантная форма полового процесса, при которой происходит оплодотворение, но затем женское ядро (пронуклеус) погибает, а мужское ядро замещает его в качестве ядра зиготы. В этом случае у дочернего организма сохраняются только отцовские хромосомы. Андрогенез обычно наблюдается в лабораторных условиях.
Агамные формы - организмы, у которых отсутствует нормальный половой процесс.
1.2 Генетическая структура популяций
Каждая популяция обладает собственной генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».
Аллелофонд. Аллелофонд популяции - это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: pA + qa = 1. В этом уравнении символом pA обозначается относительная частотааллеля А, символом qa - относительная частота аллеля а.
Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называютсястационарными.
Если рассматриваются три аллеля одного гена: а1, а2,, а3, то структура аллелофонда описывается уравнением: p а1 + q а2 + r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.
Если рассматриваются несколько аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:
p1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1
q1 b1 + q2 b2 + q3 b3 + ... + qi bi = 1
r1 c1 + r2 c2 + r3 c3 + ... + ri ci = 1
В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А-а. В популяции с общей численностью особей Nобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:
p (A) = |
2 N (AA) + N (Aa) |
|
2 N общ. |
q (a) = |
2 N (aa) + N (Aa) |
|
2 N общ. |
1.3 Генофонд
Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.
При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот АА и гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций. (2 http://afonin-59-salix.narod.ru, http://darwin200.narod.ru )
2. Популяционно-генетические процессы
2.1 Дрейф генов
Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец - A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1, A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец - A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 иA2 сохраняют те же частоты, что и в исходном поколении - 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.
Рис. 1 Изменение частот аллелей при дрейфе
Представлены результаты моделирования процесса дрейфа генов в двух популяциях численности N = 25 и двух популяциях численности N = 250, при частоте аллеля равной 0,5 в исходном поколении. Под действием дрейфа частота данного аллеля хаотически меняется из поколения в поколение, причем «скачки» частот более выражены в популяциях меньшей численности. За 50 поколений дрейф привел к фиксации аллеля в одной популяции численности N = 25, и к полной его элиминации - в другой. В популяциях большей численности этот аллель еще находится на промежуточных частотах, но популяции уже заметно отличаются друг от друга начиная с 60-го поколения
Описанный нами процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно - это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других - другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, - это мутации и миграции.
2.2 Мутации
При образовании гамет происходят случайные события - мутации, когда родительский аллель, скажем A1, превращается в другой аллель (A2, A3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «…TЦTТГГ…», кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет TЦЦ. Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.
Вероятность, с которой происходит мутация, называется частотой, или темпом, мутирования. Темпы мутирования разных генов варьируют от 10-4 до 10-7 на поколение. На первый взгляд, эти величины кажутся незначительными. Однако следует учесть, что, во-первых, геном содержит много генов, а, во-вторых, что популяция может иметь значительну ю численность. Поэтому часть гамет всегда несет мутантные аллели, и практически в каждом поколении появляется одна или больше особей с мутациями. Их судьба зависит от того, насколько сильно эти мутации влияют на приспособленность и плодовитость. Мутационный процесс ведет к увеличению генетической изменчивости популяций, противодействуя эффекту дрейфа генов.
2.3 Миграции
Популяции одного вида не изолированы друг от друга: всегда есть обмен особями- миграции. Мигрирующие особи, оставляя потомство, передают следующим поколениям аллели, которых в этой популяции могло вовсе не быть или они были редки; так формируется поток генов из одной популяции в другую. Миграции, как и мутации, ведут к увеличению генетического разнообразия. Кроме того, поток генов, связывающий популяции, приводит к их генетическому сходству.
2.4 Системы скрещивания
В популяционной генетике скрещивание называют случайным, если генотипы особей не влияют на образование брачных пар. Например, по группам крови скрещивание может рассматриваться как случайное. Однако окраска, размеры, поведение могут сильно влиять на выбор полового партнера. Если предпочтение оказывается особям сходного фенотипа (т.е. со сходными индивидуальными характеристиками), то такое положительное ассортативное скрещивание ведет к увеличению в популяции доли особей с родительским генотипом. Если при подборе брачной пары предпочтение имеют особи противоположного фенотипа (отрицательное ассортативное скрещивание), то в генотипе потомства будут представлены новые сочетания аллелей; соответственно в популяции появятся особи либо промежуточного фенотипа, либо фенотипа, резко отличающегося от фенотипа родителей.
Во многих регионах мира высока частота близкородственных браков (например, между двоюродными и троюродными родственниками). Образование брачных пар на основе родства называют инбридингом. Инбридинг увеличивает долю гомозиготных особей в популяции, поскольку в этом случае высока вероятность того, что родители имеют сходные аллели. С повышением числа гомозигот возрастает и количество больных рецессивными наследственными болезнями. Но инбридинг способствует также большей концентрации определенных генов, что может обеспечить лучшую адаптацию данной популяции.
2.5 Отбор
Различия в плодовитости, выживаемости, половой активности и т.п. приводят к тому, что одни особи оставляют больше половозрелых потомков, чем другие - с иным набором генов. Различный вклад особей с разными генотипами в воспроизводство популяции называют отбором.
Изменения нуклеотидов могут влиять, а могут и не влиять на продукт гена - полипептидную цепь и образуемый ею белок. Например, аминокислота серин кодируется шестью разными триплетами - ТЦА, ТЦГ, ТЦТ, TЦЦ, АГТ и АГЦ. Поэтому мутация может превратить один из этих триплетов в другой, но при этом не изменить самой аминокислоты. Напротив, аминокислота триптофан кодируется только одним триплетом - ТГГ, и потому любая мутация заменит триптофан на другую аминокислоту, например на аргинин (ЦГГ) или серин (ТЦГ), или даже приведет к обрыву синтезируемой полипептидной цепи, если в результате мутации появится т.н. стоп-кодон (ТГА или ТАГ). Различия между вариантами (или формами) белка могут быть незаметны для организма, но могут и существенно влиять на его жизнедеятельность. Например, известно, что когда в 6-й позиции бета-цепи гемоглобина человека вместо глутаминовой кислоты стоит другая аминокислота, а именно валин, это приводит к тяжелой патологии - серповидноклеточной анемии. Изменения в других участках молекулы гемоглобина приводят к иным формам патологии, называемым гемоглобинопатиями.
Следует иметь в виду, что варианты белков не всегда можно трактовать как лучшие или худшие. Например, дефектный гемоглобин в серповидных эритроцитах не разрушается паразитом - малярийным плазмодием, поэтому больные серповидноклеточной анемией не заболевают малярией даже там, где велика смертность от нее у лиц с нормальным гемоглобином. Наличие той или иной группы крови системы AB0 не сказывается на жизнедеятельности человека, но может обеспечить иммунную защиту организма от определенных заболеваний, а в редких случаях обусловливает несовместимость плода и матери. Для ряда белков как животных, так и растений описан такой феномен: один вариант молекулы устойчив к высокой температуре, а другой хорошо работает в условиях холода. Такие примеры наглядно показывают, как индивидуальные различия в ДНК приводят к различиям в наследственной приспособленности особей к разным условиям среды.
Еще большие различия в приспособленности наблюдаются по генам, определяющим размеры, физиологические признаки и поведение особей; таких генов может быть много. Отбор, как правило, затрагивает их все и может вести к формированию ассоциаций аллелей разных генов.
2.6 Генетические параметры популяции
При описании популяций или их сравнении между собой используют целый ряд генетических характеристик.
Полиморфизм. Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степеньполиморфизма, которая является показателем генетического разнообразия популяции.
Гетерозиготность. Важной генетической характеристикой популяции является гетерозиготность - частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие.
Коэффициент инбридинга. С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции.
Ассоциация генов. Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации.
Генетические расстояния. Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями.
Различные популяционно-генетические процессы по-разному влияют на эти параметры: инбридинг приводит к уменьшению доли гетерозиготных особей; мутации и миграции увеличивают, а дрейф уменьшает генетическое разнообразие популяций; отбор изменяет частоты генов и генотипов; генный дрейф увеличивает, а миграции уменьшают генетические расстояния и т.д. Зная эти закономерности, можно количественно исследовать генетическую структуру популяций и прогнозировать ее возможные изменения. Этому способствует солидная теоретическая база популяционной генетики - популяционно-генетические процессы математически формализованы и описаны уравнениями динамики. Для проверки различных гипотез о генетических процессах в популяциях разработаны статистические модели и критерии.
Прилагая эти подходы и методы к исследованию популяций человека, животных, растений и микроорганизмов, можно решить многие проблемы эволюции, экологии, медицины, селекции и др. Рассмотрим несколько примеров, демонстрирующих связь популяционной генетики с другими науками. (3.1 Тимофеев-Ресовский Н.В., Яблоков А.В., Глотов Н.В. Очерк учения о популяции. М., 1973 )
3. Популяционная генетика и эволюция
Нередко думают, что основная заслуга Чарлза Дарвина в том, что он открыл явление биологической эволюции. Однако это совсем не так. Еще до издания его книги Происхождение видов (1859) биологи сходились во мнении, что старые виды порождают новые. Разногласия имелись лишь в понимании того, как именно это могло происходить. Наиболее популярной была гипотеза Жана Батиста Ламарка, согласно которой в течение жизни каждый организм изменяется в направлении, соответствующем среде, в которой он живет, и эти полезные изменения («благоприобретенные» признаки) передаются потомкам. При всей своей привлекательности эта гипотеза не прошла проверку генетическими экспериментами.
Напротив, эволюционная теория, разработанная Дарвином, утверждала, что 1) особи одного и того же вида отличаются друг от друга по многим признакам; 2) эти различия могут обеспечить приспособление к разным условиям среды; 3) эти различия наследственны. В терминах популяционной генетики данные положения можно сформулировать так: больший вклад в следующие поколения дают те особи, которые имеют наиболее подходящие для данной среды генотипы. Изменись среда, и начнется отбор генов, более соответствующих новым условиям. Таким образом, из теории Дарвина следует, чтоэволюционируют генофонды.
Эволюцию можно определить как необратимое изменение генофондов популяций во времени. Совершается она путем накопления мутационных изменений ДНК, возникновения новых генов, хромосомных преобразований и др. Важную роль при этом играет то, что гены обладают способностью удваиваться (дуплицироваться), а их копии - встраиваться в хромосомы. В качестве примера вновь обратимся к гемоглобину. Известно, что гены альфа- и бета-цепи произошли путем дупликации некоего предкового гена, который, в свою очередь, произошел от предка гена, кодирующего белок миоглобин - переносчик кислорода в мышцах. Эволюционно это привело к возникновению гемоглобина - молекулы с тетрамерной структурой, состоящей из четырех полипептидных цепей: двух альфа- и двух бета-. После того как природа «нашла» тетрамерную структуру гемоглобина (у позвоночных), остальные типы структур для транспорта кислорода оказались практически неконкурентоспособными. Затем уже в течение десятков миллионов лет возникали и отбирались лучшие варианты гемоглобина (свои - в каждой эволюционной ветви животных), но в рамках тетрамерной структуры. Сегодняшний отбор по этому признаку у человека стал консервативным: он «охраняет» единственный прошедший миллионы поколений вариант гемоглобина, и любая замена в любой из цепей этой молекулы приводит к болезни. Однако многие виды позвоночных имеют два или более равноценных вариантов гемоглобина - отбор «поощрял» их одинаково. И у человека есть белки, по которым эволюция «оставила» несколько вариантов.( 3 Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3, М., 1988 )
Рис. 2 Эволюция глобиновых генов человека
На диаграмме показана часть глобиновых генов человека с оценкой времени их дивергенции (расхождения) друг от друга. Видно, что гены, кодирующие альфа- и бета-цепи гемоглобина, дивергировали друг от друга примерно полмиллиарда лет тому назад, а их предок и миоглобин отделились друг от друга на несколько сот миллионов лет раньше. Затем произошли дальнейшие дупликации и их дивергенция в пределах этих семейств генов. При этом возникли как гены, несущие определенные функции, так и гены, которые не имеют какой-либо функции, - т.н. псевдогены (помечено греческой буквой ш).
Популяционная генетика позволяет оценить время, когда произошли те или иные события в эволюционной истории. Вновь вернемся к примеру с гемоглобином. Пусть, например, желательно оценить время, когда произошло разделение предковых генов альфа- и бета-цепей и, следовательно, возникла такая система дыхания. Мы анализируем структуру этих полипептидных цепей у человека или какого-либо животного и, сравнивая их, определяем, насколько отличаются друг от друга соответствующие нуклеотидные последовательности. Поскольку в начале своей эволюционной истории обе предковые цепи были идентичными, то, зная скорость замены одного нуклеотида на другой и число различий в сравниваемых цепях, можно узнать время от момента их дупликации. Таким образом, здесь белки выступают в качестве своеобразных «молекулярных часов». Другой пример. Сравнивая гемоглобин или другие белки у человека и приматов, можно оценить, сколько миллионов лет назад существовал наш общий с ними предок. В настоящее время в качестве молекулярных часов используют «безмолвные», не кодирующие белки участки ДНК, менее подверженные внешним воздействиям.
Популяционная генетика позволяет заглянуть в глубь веков и проливает свет на такие события в эволюционной истории человечества, которые невозможно было бы выяснить по современным археологическим находкам. Так, совсем недавно, сравнивая генофонды людей из различных частей света, большинство ученых сошлись на том, что общий предок всех рас современного человека возник примерно 150 тысяч лет назад в Африке, откуда он и расселился по всем континентам через Переднюю Азию. Более того, сопоставляя ДНК людей в разных регионах Земли, можно оценить время, когда популяции человека стали расти в численности. Исследования показывают, что это произошло нескольких десятков тысяч лет назад. Таким образом, в изучении истории человечества популяционно-генетические данные начинают играть столь же важную роль, как и данные археологии, демографии и лингвистики.(3 Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3, М., 1988 )
4. Популяционная генетика и экология
Обитающие в каждом регионе виды животных, растений и микроорганизмов образуют целостную систему, известную как экосистема. Каждый вид представлен в ней своей, уникальной популяцией. Оценить экологическое благополучие данной территории или акватории позволяют данные, характеризующие генофонд ее экосистемы, т.е. генофонд слагающих ее популяций. Именно он обеспечивает существование экосистемы в данных условиях. Поэтому за изменениями в экологической обстановке региона можно проследить, изучая генофонды популяций обитающих там видов.
Осваивая новые территории, прокладывая нефте- и газопроводы, следует заботиться о сохранении и восстановлении природных популяций. Популяционная генетика уже предложила свои меры, например выделение природных генетических резерватов. Они должны быть достаточно обширными, чтобы содержать основной генофонд растений и животных данного региона. Теоретический аппарат популяционный генетики позволяет определить ту минимальную численность, которая необходима для поддержания генетического состава популяции, чтобы в ней не было т.н. инбридинговой депрессии, чтобы она содержала основные генотипы, присущие данной популяции, и могла воспроизводить эти генотипы. При этом каждый регион должен иметь свои собственные природные генетические резерваты. Нельзя восстанавливать загубленные сосняки Севера Западной Сибири, завозя семена сосны из Алтая, Европы или Дальнего Востока: через десятки лет может оказаться, что «чужаки» генетически плохо приспособлены к местным условиям. Вот почему экологически грамотное промышленное освоение территории должно обязательно включать популяционные исследования региональных экосистем, позволяющие выявить их генетическое своеобразие.
Сказанное относится не только к растениям, но и к животным. Генофонд той или иной популяции рыб эволюционно приспособлен именно к тем условиям, в которых он обитал в течение многих поколений. Поэтому интродукция рыб из одного природного водоема в другой порой приводит к непредсказуемым последствиям. Например, попытки развести сахалинскую горбушу в Каспии оказались безуспешными, ее генофонд оказался не в состоянии «освоить» новое местообитание. Та же горбуша, интродуцированная в Белое море, покинула его и ушла в Норвегию, образовав там временные стада «русского лосося».
Не надо думать, что основными объектами заботы о природе должны быть только экономически ценные виды растений и животных, такие, как древесные породы, пушные звери или промысловые рыбы. Травянистые растения и мхи, мелкие млекопитающие и насекомые - их популяции и их генофонды наравне со всеми другими обеспечивают нормальную жизнь территории. То же относится к микроорганизмам - тысячи их видов населяют почву. Изучение почвенных микробов - задача не только микробиологов, но и популяционных генетиков.
Изменение генофонда популяций при грубых вмешательствах в природу выявляется не сразу. Могут пройти десятилетия, прежде чем станут очевидными последствия в виде исчезновения одних популяций, а за ними - других, связанных с первыми.(3 Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3, М., 1988)
5. Популяционная генетика и медицина
Один из насущнейших вопросов человечества - как лечить наследственные болезни. Однако до недавнего времени сама постановка такого вопроса казалась фантастической. Речь могла идти только о профилактике наследственных заболеваний в форме медико-генетического консультирования. Опытный врач-генетик, изучая историю болезни пациента и исследуя, сколь часто наследственное заболевание проявлялось среди его близких и дальних родственников, давал заключение о том, может ли у пациента появиться ребенок с такой патологией; и если может, то какова вероятность данного события (например, 1/2, 1/10, или 1/100). Основываясь на этой информации, супруги сами решали, иметь им ребенка или не иметь.
Бурное развитие молекулярной биологии существенно приблизило нас к заветной цели - лечению наследственных болезней. Для этого прежде всего необходимо найти среди множества генов человека тот, который ответствен за болезнь. Популяционная генетика помогает решить эту сложную задачу.
Известны генетические метки - т.н. ДНК-маркеры, которые позволяют отметить в длинной нити ДНК, скажем, каждую тысячную или десятитысячную «бусинку». Исследуя больного, его родственников и здоровых лиц из популяции, можно установить, какой из маркеров сцеплен с геном болезни. С помощью специальных математических методов популяционные генетики выявляют тот участок ДНК, в котором расположен интересующий нас ген. После этого в работу включаются молекулярные биологи, которые детально анализируют этот отрезок ДНК и находят в нем дефектный ген. Таким способом картированы гены большинства наследственных болезней. Теперь врачи получили возможность в первые месяцы беременности прямо судить о здоровье будущего ребенка, а родители - решать вопрос, сохранять или не сохранять беременность, если заранее известно, что ребенок родится больным. Более того, уже предпринимаются попытки исправлять допущенные природой ошибки, устранять «поломки» в генах.
С помощью ДНК-маркеров можно не только искать гены болезней. Используя их, проводят своеобразную паспортизацию индивидов. Такая ДНК-идентификация - распространенный вид судебно-медицинской экспертизы, позволяющий определить отцовство, опознать перепутанных в роддоме детей, выявить личность участников преступления, жертв катастроф и военных действий. (3.2 Фогель Ф., Мотульски А. Генетика человека, тт. 1-3. М., 1990)
6. Популяционная генетика и селекция
Согласно теории Дарвина, отбор в природе направлен только на непосредственную пользу - выжить и размножиться. Например, у рыси окраска шерсти палево-дымчатая, а у льва - песчано-желтая. Окраска, как маскировочная одежда, служит тому, чтобы особь сливалась с местностью. Это позволяет хищникам незаметно подкрадываться к жертве или выжидать. Поэтому хотя цветовые вариации постоянно появляются в природе, дикие кошки с такой «меткой» не выживают. Лишь человек с его вкусовыми пристрастиями создает все условия для жизни домашних кошек самых разнообразных окрасок.
Переходя к оседлому образу жизни, люди уходили от охоты на животных и собирательства растений к их воспроизводству, резко уменьшая свою зависимость от катаклизмов природы. Тысячелетиями размножая особей с нужными признаками и ведя тем самым отбор соответствующих генов из генофондов популяций, люди постепенно создали все те сорта домашних растений и породы животных, что нас окружают. Это был тот же отбор, что проводила миллионами лет природа, но только теперь в роли природы выступил человек, направляемый разумом.
С началом развития популяционный генетики, т.е. с середины 20 в., селекция пошла по научному пути, а именно по пути прогнозирования ответа на отбор и выбора оптимальных вариантов селекционной работы. Например, в скотоводстве племенная ценность каждого животного вычисляется сразу по многим признакам продуктивности, определяемым не только у данного животного, но и у его родственников (матерей, сестер, потомков и др.). Все это сводится в некий общий индекс, учитывающий как генетическую обусловленность признаков продуктивности, так и их экономическую значимость. Это особенно важно при оценке производителей, у которых собственную продуктивность определить невозможно (например, у быков в молочном скотоводстве или у петухов яичных пород). С внедрением искусственного осеменения появилась необходимость в разносторонней популяционной оценке племенной ценности производителей при их использовании в разных стадах с разным уровнем кормления, содержания и продуктивности. В селекции растений популяционный подход помогает количественно оценить генетическую способность линий и сортов давать перспективные гибриды и прогнозировать их приспособленность и продуктивность в разных по климату и почвам регионах.
Таким образом, из чисто академической отрасли знаний, какой она была до недавнего времени, популяционная генетика превращается в науку, решающую многие теоретические и прикладные задачи. (3.2 Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3, М., 1988)
7. Закон Харди -- Вайнберга
Структура генофонда в панмиктической стационарной популяции описывается основным законом популяционной генетики -законом Харди-Вайнберга, который гласит, что в идеальной популяции существует постоянное соотношение относительных частот аллелей и генотипов, которое описывается уравнением:
(p A + q a)2 = р2 АА + 2•р•q Aa + q2 aa = 1
Если известны относительные частоты аллелей p и q и общая численность популяции Nобщ, то можно рассчитать ожидаемую, или расчетную абсолютную частоту (то есть численность особей) каждого генотипа. Для этого каждый член уравнения нужно умножить наNобщ:
p2 AA · Nобщ + 2·p·q Aa · Nобщ + q2 aa · Nобщ = Nобщ
В данном уравнении:
p2 AA · Nобщ - ожидаемая абсолютная частота (численность) доминантных гомозигот АА
2·p·q Aa · Nобщ - ожидаемая абсолютная частота (численность) гетерозигот Аа
q2 aa · Nобщ - ожидаемая абсолютная частота (численность) рецессивных гомозигот аа
С точки зрения генетики, популяция - это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики сложились на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения - амфимиксиса, или объединения женских и мужских гамет. В таких случаях группировка особей, способных скрещиваться между собой и производить полноценное (т.е. жизнеспособное и плодовитое) потомство, называется генетической, илименделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, то есть популяция должна существовать длительное число поколений.
Таким образом, с точки зрения генетики, популяция представляет собой множество особей, объединенных достаточно высокой степенью родства.
В рамках генетического подхода выделяется представление об идеальной популяции. (1)
8. Действие закона Харди-Вайнберга
8.1 Действие закона Харди-Вайнберга при неполном доминировании
Рассмотрим действие закона Харди-Вайнберга при неполном доминировании на примере наследования окраски шерсти у лис. Известно, что основное влияние на окраску шерсти у лисиц оказывает ген А, который существует в виде двух основных аллелей: А и а. Каждому возможному генотипу соответствует определенный фенотип:
АА - рыжие, Аа - сиводушки, аа - черно-бурые (или серебристые)
На заготовительных пунктах пушнины в течение многих лет (в России с XVIII века) ведется учет сданных шкурок. Откроем книгу учета сданных шкурок лис на одном из заготовительных пунктов Северо-Востока России и выберем произвольно 100 идущих подряд записей. Подсчитаем число шкурок с различной окраской. Предположим, что получены следующие результаты: рыжие (АА) - 81 шкурка, сиводушки (Аа) - 18 шкурок, черно-бурые (аа) - 1 шкурка.
Подсчитаем число (абсолютную частоту) доминантных аллелей А, учитывая, что каждая лиса - диплоидный организм. Рыжие лисы несут по 2 аллеля А, их 81 особь, всего 2АЧ81=162А. Сиводушки несут по 1 аллелю А, их 18 особей, всего 1АЧ18=18А. Общая сумма доминантных аллелей NА = 162 + 18 = 180. Аналогичным образом подсчитаем число рецессивных аллелей а: у черно-бурых лис 2аЧ1=2а, у сиводушек 1аЧ18=18а, общая сумма рецессивных аллелей Nа = 2 + 18 = 20.
Общее число всех аллелей гена А = NA + Na =180 + 20 = 200. Мы проанализировали 100 особей, у каждой по 2 аллеля, общая сумма аллелей равна 2 Ч 100 = 200. Число аллелей, подсчитанных по каждому гено/фенотипу, и число аллелей, подсчитанных по общему количеству особей, в любом случае равно 200, значит, расчеты проведены правильно.
Найдем относительную частоту (или долю) аллеля А по отношению к общему количеству аллелей:
рА = NA : ( NA + Na ) = 180 : 200 = 0,9
Аналогично найдем относительную частоту (или долю) аллеля а:
qa = Na : (NA + Na ) = 20 : 200 = 0,1
Сумма относительных частот аллелей в популяции описывается соотношением:
рА + qa = 0,9 + 0,1 = 1
Приведенное уравнение является количественным описанием аллелофонда данной популяции, отражает его структуру. Поскольку в книге учета особи представлены случайным образом, и выборка в 100 особей достаточно большая, то полученные результаты можно обобщить (экстраполировать) на всю популяцию.
Рассмотрим изменение структуры аллелофонда (то есть частот всех аллелей) и генофонда (то есть частот всех генотипов) данной популяции при чередовании поколений. Все самцы и самки дают аллели А и а в соотношении 0,9А : 0,1а.
В этом отличие генетики популяций от классической генетики. При рассмотрении законов Менделя изначально задавалось соотношение 1А : 1а, поскольку родители всегда были гомозиготны: АА и аа.
Для нахождения относительных частот генотипов составим решетку Пеннета. При этом учтем, что вероятность встречи аллелей в зиготе равна произведению вероятностей нахождения каждого аллеля.
Гаметы самок |
Гаметы самцов |
||
A pA = 0,9 |
a qa = 0,1 |
||
A pA = 0,9 |
AA p2 AA = 0,81 рыжие |
Aa pq Aa = 0,09 сиводушки |
|
a qa = 0,1 |
Aa pq Aa = 0,09 сиводушки |
aa q2 aa = 0,01 черно-бурые |
Найдем итоговые относительные и абсолютные частоты генотипов и фенотипов:
Генотипы (фенотипы) |
Сумма |
||||
p2 AA рыжие |
2 pq Aa сиводушки |
q2 aa черно-бурые |
|||
Относительные частоты |
0,81 |
0,18 |
0,01 |
1,00 |
|
Абсолютные частоты (в пересчете на 100 особей) |
81 |
18 |
1 |
100 |
Сравнивая полученный результат с первоначальным состоянием популяции, видим, что структура аллелофонда и генофонда не изменились. Таким образом, в рассмотренной популяции лис закон Харди-Вайнберга выполняется с идеальной точностью.
8.2 Действие закона Харди-Вайнберга при полном доминировании
Рассмотрим действие закона Харди-Вайнберга при полном доминировании на примере наследования окраски шерсти у кошек.
Известно, что черная окраска шерсти у кошек определяется генотипом аа. При этом черная окраска может быть или сплошной, или частичной. Генотипы АА и Аа обусловливают все остальное разнообразие типов окраски, но черный цвет при этом полностью отсутствует.
Предположим, что в одной из городских популяций кошек на о. Сахалин из 100 просмотренных животных полную или частичную черную окраску имели 36 животных.
Прямой расчет структуры аллелофонда популяции в этом случае невозможен из-за полного доминирования: гомозиготы АА и гетерозиготы Аа фенотипически неразличимы. Согласно уравнению Харди-Вайнберга частота черных кошек составляет q2 аа. Тогда можно рассчитать частоты аллелей:
q2aa = 36/100 = 0,36; qa = 0,36 -1/2 =0,6; pA = 1 - 0,6 = 0,4
Таким образом, структура аллелофонда данной популяции описывается соотношением: р А + q a = 0,4 + 0,6 = 1. Частотарецессивного аллеля оказалась выше, чем частота доминантного.
Рассчитаем частоты генотипов:
р2 АА = 0,42 = 0,16; 2 pq Аа = 2 ? 0,4 ? 0,6 = 0,48; q2aa = 0,62 = 0,36
Однако проверить правильность расчетов в данном случае невозможно, поскольку неизвестны фактические частоты доминантных гомозигот и гетерозигот. (2)
Статистическое обоснование закономерности
Рассмотрим популяцию бесконечно большого размера, в которой на частоты аллелей изучаемого гена не действуют какие-либо факторы, а также имеет место панмиксия. Изучаемый ген имеет два аллельных состояния A и a. В момент времени (или в поколение) n, частота аллеля A = , частота аллеля a = , тогда, + = 1. Пусть , , -- частоты генотипических классов AA, Aa и aa в момент времени n. Тогда
= + ,
= +
Так как в условиях панмиксии вероятность встречи гамет, происходящих от разных генотипических классов (P, H, Q) родителей подчиняется статистическим закономерностям, то можно рассчитать частоты классов потомков (, , ) в следующем поколении (n+1). Возможны следующие варианты скрещивания
, вероятность
, вероятность
, вероятность
, вероятность
, вероятность
, вероятность
Потомками от скрещиваний 1, 3 и 6 будут особи с генотипами AA, Aa и aa соответственно; в результате скрещивания 2 -- будет по половине особей с генотипами AA и Aa; в результате скрещивания 5 -- будет по половине особей с генотипами Aa и aa; скрещивание 4 -- даст все три возможных класса потомков (AA, Aa и aa) в пропорции 1 : 2 : 1. Исходя из вероятностей скрещиваний и пропорций в потомках от этих скрещиваний можно рассчитать частоты генотипических классов в поколении n+1.
Так как, и и исходя из соотношений написанных выше между частотами аллелей а генотипических классов эти выражения можно привести к виду:
Аналогично можно рассчитать, что соотношение между классами P, H, Q в поколении n+2 и последующих не изменится, и будет соответствовать приведённому в начале статьи уравнению.
В случае, если число рассматриваемых аллелей гена более двух, формула, описывающая равновесные частоты генотипов усложняется и её можно записать в общем виде как:
где p, q, ... , z -- частоты аллельных вариантов гена в исследуемой популяции. Разложив в левой части уравнения квадрат суммы получим выражение, состоящее из суммы квадратов частот аллелей и удвоенных произведений всех попарных комбинаций этих частот:
9. Выполнение закона Харди-Вайнберга в природных популяциях
В ряде случаев (например, в случае полного доминирования) при описании структуры генофонда природных популяций приходится допустить, что они обладают чертами идеальных популяций.
Сравнительная характеристика идеальных и природных популяций
Идеальная популяция |
Природные популяции |
|
1. Численность популяции бесконечно большая, и случайнаяэлиминация (гибель) части особей не влияет на структуру популяции |
1. Популяция состоит из конечного числа особей |
|
2. Отсутствует половая дифференцировка, женские и мужские гаметы равноценны (например, при гомоталличнойизогамии у водорослей) |
2. Существуют различные типы половой дифференцировки, различные способы воспроизведения и различные системы скрещивания |
|
3. Наличие панмиксии - свободного скрещивания; существованиегаметного резервуара;равновероятность встречи гамет и образования зигот независимо от генотипа и возраста родителей |
3. Существует избирательность при образовании брачных пар, при встрече гамет и образования зигот |
|
4. В популяции отсутствуют мутации |
4. Мутации происходят всегда |
|
5. В популяции отсутствует естественный отбор |
5. Всегда существует дифференциальное воспроизведение генотипов, включающее дифференциальное выживание и дифференциальный успех в размножении |
|
6. Популяция изолирована от других популяций этого вида |
6. Существуют миграции - поток генов |
В большинстве изученных популяциях отклонения от перечисленных условий обычно не влияют на выполнение закона Харди-Вайнберга. Это означает, что:
- численность природных популяций достаточно большая;
- женские и мужские гаметы равноценны; самцы и самки в равной степени передают свои аллели потомкам);
- большинство генов не влияет на образование брачных пар;
- мутации происходят достаточно редко;
- естественный отбор не оказывает заметного влияния на частоту большинства аллелей;
- популяции в достаточной степени изолированы друг от друга.
Если же закон Харди-Вайнберга не выполняется, то по отклонениям от расчетных величин можно установить эффект ограниченной численности, различие между самками и самцами при передаче аллелей потомкам, отсутствие свободного скрещивания, наличие мутаций, действие естественного отбора, наличие миграционных связей между популяциями.
В реальных исследованиях всегда существуют отклонения эмпирических, или фактических абсолютных частот (Nфакт или Nф) отрасчетных, или теоретических (Nрасч, Nтеор или Nт). Поэтому возникает вопрос: закономерны эти отклонения или случайны, иными словами достоверны или недостоверны? Для ответа на этот вопрос нужно знать фактические частоты доминантных гомозигот и гетерозигот. Поэтому в популяционно-генетических исследованиях выявление гетерозигот играет очень важную роль.(2)
10. Биологическое разнообразие. Генетический полиморфизм популяций как основа биологического разнообразия. Проблема сохранения биоразнообразия
Под биологическим разнообразием понимается все «множество различных живых организмов, изменчивость среди них и экологических комплексов, частью которых они являются, что включает разнообразие внутри видов, между видами и экосистемами»; при этом следует различать глобальное и локальное разнообразие. Биологическое разнообразие представляет собой один из важнейших биологических ресурсов (биологическим ресурсом считается «генетический материал, организмы или их части, либо экосистемы, используемые или потенциально полезные для человечества, включая природное равновесие внутри экосистем и между ними»).
Различают следующие типы биологического разнообразия: альфа, бета, гамма и генетическое разнообразие. Под б -разнообразием понимают видовое разнообразие, под в-разнообразием - разнообразие сообществ на определенной территории; г-разнообразие - это интегральный показатель, включающий б- и в-разнообразие. Однако в основе перечисленных типов биоразнообразия лежит генетическое (внутривидовое, внутрипопуляционное) разнообразие.
Наличие двух и более аллелей (а, соответственно, и генотипов) в популяции называется генетическим полиморфизмом. Условно принято, что частота наиболее редкого аллеля при полиморфизме должна быть не менее 1% (0,01). Существование генетического полиморфизма - обязательное условие сохранения биоразнообразия.
Представления о необходимости сохранения генетического полиморфизма в природных популяциях были сформулированы еще в 1920-ых гг. нашими выдающимися соотечественниками. Николай Иванович Вавилов создал учение об исходном материале, обосновал необходимость создания хранилищ мирового генофонда культурных растений. Александр Сергеевич Серебровский создал само учение о генофонде. В понятие «генофонд» вкладывалось то генетическое разнообразие вида, которое сложилось в ходе его эволюции или селекции и обеспечило его адаптивные и продукционные возможности. Сергей Сергеевич Четвериков заложил основы учения и методов оценки генетической гетерогенности популяций диких видов растений и животных.
...Подобные документы
Показатели структуры популяций: численность, распределение особей в пространстве, соотношение групп по полу и возрасту, их морфологические, поведенческие особенности. Динамика популяции, ее биотический потенциал, рождаемость, смертность, миграция особей.
доклад [56,2 K], добавлен 13.02.2010Различия в строении, размножении и поведении особей, обусловленные разными условиями среды обитания популяций. Численность особей в популяциях, ее изменение во времени. Возрастной состав популяции, возможность ее прогнозирования на ближайший ряд лет.
презентация [2,8 M], добавлен 26.02.2015Свойства популяции – совокупности особей одного вида, населяющих определенную территорию. Типы и закономерности динамики численности популяций. Роль факторов различных категорий в ее регуляции. Плодовитость насекомых и способность их к размножению.
реферат [32,6 K], добавлен 13.08.2015Микроэволюция как процесс преобразования генетической структуры популяций под действием факторов эволюции. Элементарная единица эволюции и её характеристики. Особенности популяций, их генетический состав. Элементарные эволюционные факторы, мутации.
реферат [127,7 K], добавлен 09.12.2013Рассмотрение популяции как элементарной единицы эволюционного процесса, изучение ее демографической структуры. Особенности возрастной, половой и пространственной популяции. Исследование роли социальных контактов в индивидуализированных сообществах.
реферат [23,0 K], добавлен 05.09.2014История батрахологических и герпетологических исследований в Беларуси. Биология и экология прыткой ящерицы. Значение рептилий в естественных экосистемах. Анализ численности, суточной активности и фенетической структуры особей исследуемой популяции.
курсовая работа [1,7 M], добавлен 16.12.2013Способы видообразования и роль в них полиплодий. Характеристика хромосомных перестроек и модификаций гетерохроматина. Роль множественных геномных перестроек и работа изолирующих механизмов. Изучение стадий эволюционной дивергенции и динамика популяций.
реферат [2,6 M], добавлен 11.12.2011Популяции и их свойства: самовоспроизводимость, генетическая изменчивость, рождаемость, смертность, эмиграция, иммиграция. Закономерности и типы динамики численности популяций. Плодовитость насекомых и способность их к размножению - биотический потенциал.
реферат [32,5 K], добавлен 12.08.2015Метод светорассеяния в изучении микробных популяций, использование установки для регистрации светорассеяния. Анализ зависимости светорассеяния популяций Staphilococcus aureus и Esherichia coli в питательном бульоне с добавками и физиологическом растворе.
лабораторная работа [38,5 K], добавлен 02.08.2013Понятие и сущность популяции; функция системы. Ареал, численность, плотность, рождаемость и смертность как основные популяционные характеристики. Возрастная и половая структура внутри вида. Изучение периодических колебаний популяции зайца-беляка и рыси.
презентация [1008,2 K], добавлен 14.06.2014Динамические характеристики популяции: рождаемость, смертность, выживаемость. Пространственное распределение особей, составляющих популяции. Рассмотрение колебания численности популяции как авторегулируемого процесса. Число доступных для жизни мест.
презентация [867,8 K], добавлен 25.03.2015Популяція як одиниця еволюційного процесу. Панміктичні або менделівські популяції. Частоти генотипів та частоти алелів. Застосування закону Харди-Вайнберга у розрахунках частоти гетерозигот. Вивчення структури популяцій. Елементарна еволюційна подія.
презентация [2,0 M], добавлен 04.10.2013Исследование эволюции экологической системы при различных условиях. Прогнозирование развития популяции. Определение стационарных значений численности популяций хищников и жертв. Определение начальных условий, при которых возможно вымирание популяции.
лабораторная работа [329,9 K], добавлен 22.03.2015Три категории популяций: географические, экологические и элементарные. Характеристика популяций: численность, плотность, распределение, возрастная структура. Основные демографические показатели: темп полового размножения, плодовитость, скорость отмирания.
презентация [339,6 K], добавлен 01.10.2015Роль генетики в сельском хозяйстве и медицине. Суть и понятие о множественном аллелизме, особенности фенотипической гетерогенности популяций, закономерности наследственности и изменчивости организмов. Примеры наследования по типу множественных аллелей.
реферат [572,1 K], добавлен 20.12.2011Вид как совокупность связанных между собой популяций. Препятствия, затрудняющие обмен генами (изоляция), между популяциями и группами популяций. Географическая и биологическая изоляция, их длительность. Отсутствие новых генотипов и внутривидовых форм.
реферат [26,6 K], добавлен 06.05.2015Модификация и регуляция популяций в биоценозах; средний уровень, отклонения и динамика их численности как авторегулируемый процесс. Влияние климатических изменений на организмы: колебания смертности; видовое приспособление к условиям существования.
презентация [748,4 K], добавлен 30.01.2012Методы изучения генетики человека: генеалогический, популяционно-статистический, генодемографический. Открытие групп крови и направления исследований в данной сфере. Полиморфизм гематологических признаков. Группы крови по системе АВО и инфекционные.
курсовая работа [345,8 K], добавлен 06.02.2014Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.
контрольная работа [69,6 K], добавлен 08.02.2011Сущность хищничества и определение его роли на уровне популяций, значение в истреблении больных и слабых особей, повышении устойчивости вида. Особенности паразитизма и его основные отличия от хищничества. Организация и функционирование сообществ.
реферат [14,9 K], добавлен 08.07.2010