Соединительная ткань

Изучение видов тканей внутренней среды. Структурно-функциональные свойства клеток. Общая особенность плотной волокнистой соединительной ткани. Ретикулярные клетки и фибробласты. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 16.01.2014
Размер файла 7,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Образования РБ

УО «Мозырский Государственный Педагогический университет им. И. П. Шамякина».

Биологический факультет

Отделение: Биология. Охрана природы

Контрольная работа по предмету:

«Гистология с основами эмбриологии».

Тема: «Соединительная ткань».

Студентки 3 курса 2 группы

Бузак Виктории

Преподаватель: Лаптиева Л.Н.

Мозырь 2013

План

1. Соединительная ткань

2. Клетки соединительной ткани

3. Разновидности соединительной ткани

4. Функции соединительной ткани

5. Структурно-функциональные особенности

6. Классификация

7. Состав и строение соединительной ткани

8. Изображения

Список использованной литературы

1. Соединительная ткань

Соединительная ткань состоит из клеток и хорошо выраженного межклеточного вещества. Количество и вид клеток и волокон, а также количество и состав основного вещества у различных видов соединительной ткани отличаются в зависимости от их функций. Соединительная ткань имеет очень много переходных форм, поэтому можно дать лишь общую классификацию видов соединительной ткани, основываясь на специфике их функций. Межклеточное вещество целиком зависит от клеток: оно образуется клетками, с их помощью в нем происходит обмен веществ. Вместе с тем оно имеет самостоятельное значение, определяя основные свойства той или иной разновидности тканей. Эта ткань вездесуща, всегда подстилает эпителий, окружает сосуды, с которыми она связана генетически и функционально. Соединительная ткань (textus connectivus) представляет собой большую группу тканей, включающую собственно соединительные ткани (рыхлая и плотная волокнистые), ткани со специальными свойствами (ретикулярная, жировая), жидкие (кровь) и скелетные (костная и хрящевая). Эти ткани выполняют многие функции: опорную, механическую (собственно соединительные ткани, хрящ, кость), трофическую (питательную), защитную (фагоцитоз и транспорт иммунокомпетентных клеток и антител). Соединительные ткани сформированы из многочисленных клеток и межклеточного вещества, состоящего из протеогликанов и гликопротеинов (адгезивных белков), а также различных волокон (коллагеновых, эластических, ретикулярных). Все виды соединительной ткани являются производными мезенхимы, которая, в свою очередь, образуется из мезодермы.

2. Клетки соединительной ткани

Фибробласты являются основными клетками соединительной ткани. Они веретенообразные, от поверхности фибробластов отходят тонкие короткие и длинные отростки. Количество фибробластов в разных типах соединительной ткани различное, особенно много их в рыхлой волокнистой соединительной ткани. Фибробласты имеют овальное ядро, заполненное мелкими глыбками хроматина, четко различимыми ядрышком и базофильной цитоплазмой, содержащей множество свободных и прикрепленных рибосом. У фибробластов хорошо развита зернистая эндоплазматическая сеть. Комплекс Гольджи развит также хорошо. На клеточной поверхности фибробластов располагается фибронектин - адгезивный белок, к которому прикреппяются коллагеновые и эластические волокна. На внутренней поверхности цитолеммы фибробластов имеются микропиноцитозные пузырьки. Их наличие свидетельствует об интенсивном эндоцитозе. Цитоплазму фибробластов заполняет трехмерная микротрабекулярная сеть, образованная тонкими белковыми филаментами толщиной 5-7 нм, которые соединяют между собой актиновые, миозиновые и промежуточные филаменты. Движения фибробластов возможны за счет связи их актиновых и миозиновых филаментов, расположенных под цитолеммой клетки.

Фибробласты синтезируют и секретируют основные компоненты межклеточного вещества, а именно аморфное вещество и волокна. Аморфное (основное) вещество представляет собой студнеобразную гидрофильную среду, состоит из протеогликанов, гликопротеинов (адгезивных белков) и воды. Протеогпиканы, в свою очередь, состоят из гликозаминогликанов (супьфатированных: кератинсульфат, дерматансульфат, хондроитинсульфат, гепаринсульфат и др.), связанных с белками. Протеогликаны вместе со специфическими белками объединяются в комплексы, соединенные с гиалуроновой кислотой (несульфатированными гликозаминогликанами). Гликозаминогликаны имеют отрицательный заряд, а вода является диполем (±), поэтому она связывается с гликозаминогликанами. Эту воду называют связанной. Количество связанной воды зависит от количества и длины молекул гликозаминогликанов. Например, в рыхлой соединительной ткани много гликозаминогликанов, поэтому в ней много воды. В костной ткани молекулы гликозаминогликанов короткие, в ней мало воды.

Коллагеновые волокна начинают образовываться в комплексе Гольджи фибробластов, где формируются агрегаты проколлагена, переходящие в «секреторные» гранулы. Во время секреции проколлагена из клеток этот проколлаген на поверхности превращается в тропоколлаген. Молекулы тропоколлагена во внеклеточном пространстве объединяются между собой путем «самосборки», образуя протофибриллы. Пять-шесть протофибрилл, соединяясь вместе с помощью боковых связей, образуют микрофибриллы толщиной около 10 нм. Микрофибриллы, в свою очередь, объединяются в длинные поперечно исчерченные фибриллы толщиной до 300 нм, которые формируют коллагеновые волокна толщиной от 1 до 20 мкм. Наконец, множество волокон, собираясь, составляют коллагеновые пучки толщиной до 150 мкм.

Важная роль в фибриллогенезе принадлежит самому фибробласту, который не только секретирует компоненты межклеточного вещества, но и создает направление (ориентацию) волокон соединительной ткани. Это направление соответствует длиной оси фибробластов, которые регулируют сборку и трехмерное расположение волокон и их пучков в межклеточном веществе.

Эластические волокна толщиной от 1 до 10 мкм состоят из белка эластина. Молекулы проэластина синтезируются фибробластами на рибосомах зернистой эндоплазматической сети и секретируются во внеклеточное пространство, где образуются микрофибриллы. Эластические микрофибриллы толщиной около 13 нм вблизи клеточной поверхности во внеклеточном пространстве образуют петлистую сеть. Эластические волокна анастомозируют и переплетаются между собой, образуя сети, фенестрированные пластины и мембраны. В отличие от коллагеновых эластические волокна способны растягиваться в 1,5 раза, после чего они возвращаются в исходное состояние.

Ретикулярные волокна тонкие (толщиной от 100 нм до 1,5 мкм), разветвленные, образуют мелкопетлистые сети, в ячейках которых расположены клетки. Вместе с ретикулярными клетками ретикулярные волокна образуют каркас (строму) лимфатических узлов, селезенки, красного костного мозга, а вместе с коллагеновыми эластическими волокнами участвуют в образовании стромы многих других органов. Ретикулярные волокна являются производными фибробластов и ретикулярных клеток. Каждое ретикулярное волокно содержит множество фибрилл диаметром 30 нм с поперечной исчерченностью, сходной с таковой коллагеновых волокон. Ретикулярные волокна содержат коллаген 3 типа, покрыты углеводами, что позволяет выявлять их с помощью реакции Шика. Они окрашиваются в черный цвет при импрегнации серебром.

Фиброциты также являются клетками соединительной ткани. Фибробласты по мере старения превращаются в фиброциты. Фиброцит представляет собой веретенообразную клетку с крупным эллипсоидным ядром, мелким ядрышком и небольшим количеством бедной органеллами цитоплазмы. Зернистая эндоплазматическая сеть и комплекс Гольджи развиты слабо. Каждая клетка содержит и лизосомы, и аутофагосомы, и другие органеллы.

Наряду с клетками, синтезирующими компоненты межклеточного вещества, в рыхлой волокнистой соединительной ткани присутствуют клетки, разрушающие его. Эти клетки - фибробласты - по своей структуре весьма напоминают фибробласты (по форме, развитию зернистой эндоплазматической сети и комплекса Гольджи). В то же время они богаты лизосомами, что делает их похожими на макрофаги. Фибробласты обладают большой фагоцитарной и гидролитической активностью.

В рыхлой волокнистой ткани также присутствуют и выполняют определенные функции макрофаги, лимфоциты, тканевые базофилы (тучные клетки), жировые, пигментные, адвентициальные, плазматические и другие клетки.

Макрофаги, или макрофагоциты (от греч. phagos - большой, пожирающий), являются подвижными клетками. Они захватывают и пожирают чужеродные вещества, взаимодействуют с клетками лимфоидной ткани - лимфоцитами. Макрофаги имеют различную форму, их размеры составляют от 10 до 20 мкм, цитолемма образует многочисленные отростки. Ядро у макрофагов округлое, овоидное или бобовидное. В цитоплазме много лизосом. Макрофаги выделяют (секретируют) в межклеточное вещество большое количество различных веществ: ферменты (лизосомные, коллагеназа, протеаза, эластаза) и другие биологически активные вещества, в том числе стимулирующие выработку В-лимфоцитов и иммуноглобулинов, повышающие активность Т-лимфоцитов.

Тканевые базофилы (тучные клетки) располагаются обычно в рыхлой волокнистой соединительной ткани внутренних органов, а также возле кровеносных сосудов. Они округлые или овоидные. В их цитоплазме много различной величины гранул, содержащих гепарин, гиалуроновую кислоту, хондроитинсульфаты. При дегрануляции (выделение гранул) гепарин снижает свертываемость крови, увеличивает проницаемость кровеносных сосудов, вызывая тем самым отек. Гепарин является антикоагулянтом. Эозинофилы, содержащие гистаминазу, блокируют эффект гистамина и медленного фактора анафилаксина. Следует отметить, что выброс гранул (дегрануляция) является результатом аллергии, реакции гиперчувствительности немедленного типа и анафилаксии.

Жировые клетки, или адипоциты, крупные (до 100-200 мкм в диаметре), шаровидные, почти полностью заполнены каплей жира, который накапливается в качестве резервного материала. Располагаются жировые клетки обычно группами, образуя жировую ткань. Потеря жира из адипоцитов происходит под влиянием гормонов липолитического действия (адреналин, инсулин) и липазы (липотетический фермент). При этом триглицериды жировых клеток расшепляются до глицерина и жирных кислот, которые поступают в кровь и переносятся в другие ткани. Адипоциты человека не делятся. Новые адипоциты могут образовываться из адвентициальных клеток, которые располагаются возле кровеносных капилляров.

Адвентициальные клетки представляют собой малодифференцированные клетки фибробластического ряда. Они прилежат к кровеносным капиллярам, веретенообразные или уплощенные. Ядро у них овоидное, органеллы развиты слабо.

Перициты (перикапиллярные клетки, или клетки Руже) располагаются кнаружи от эндотелия, внутри базального слоя кровеносных капилляров. Это отростчатые клетки, соприкасающиеся отростками с каждым соседним эндотелиоцитом.

Пигментные клетки, или пигментоциты, отростчатые, содержат в своей цитоплазме пигмент меланин. Этих клеток много в радужной и сосудистой оболочках глаза, коже соска и околососкового кружка молочной железы и в других участках тела.

Плазматические клетки (плазмоциты) и лимфоциты являются "рабочими" клетками иммунной системы, они активно перемещаются в тканях, в том числе и в соединительной, участвуют в реакциях гуморального и клеточного иммунитета.

3. Разновидности соединительной ткани

соединительный фибробласт трофический ретикулярный

Соединительная ткань составляет до 50 % массы человеческого организма. Это связующее звено между всеми тканями организма.

Виды соединительной ткани:

· костная

· хрящевая (гиалиновый, эластический и волокнистый хрящ)

· кровь, лимфа

· собственно соединительная ткань (рыхлая волокнистая, плотная волокнистая, ретикулярная).

· жировая

Костная ткань входит в состав костей. Она обладает особенными механическими свойствами: твердость, прочность благодаря особому составу межклеточного вещества. Межклеточное вещество состоит из минеральных солей, в основном солей кальция и фоcфора (70%) и органического вещества - белков оссеина и коллагена (30%). Клетки костной ткани - остеоциты, остеобласты, остеокласты. Остеоциты - это зрелые костные клетки. Остеобласты - молодые костные клетки, за счет которых кости нарастают в толщину и в длину. Остеокласты - это костные клетки-разрушители, участвующие в перестройке костей. Межклеточное вещество образует костные пластинки толщиной от 4 до 15 мкм. Структурной и функциональной единицей костной ткани является остеон. Остеон - это система концентрических цилиндрических костных пластинок, вставленных друг в друга. Между пластинками остеона находятся костные клетки. Внутри вдоль остеона лежит канал (гаверсов канал), в котором проходят мелкие кровеносные сосуды. В костях остеоны ориентированы по направлению действия наибольших нагрузок, поэтому остеонное строение придает костям дополнительную прочность. Между остеонами располагаются вставочные костные пластинки.

Рис. 1 Строение костной ткани (поперечный разрез через трубчатую кость)

Хрящевая ткань состоит из зрелых хрящевых клеток - хондроцитов и молодых хрящевых клеток - хондробластов. Межклеточное вещество содержит большое количество эластических и коллагеновых волокон и другие органические вещества. Выделяют три вида хрящевой ткани: гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ обладает твердостью, упругостью, эластичностью и высокой прочностью. Он образует хрящи гортани, трахеи и бронхов, переднюю часть ребер, покрывает суставные поверхности костей.

Эластический хрящ обладает большой прочностью и эластичностью за счет сильно развитых эластических и коллагеновых волокон. Он образует ушную раковину, переднюю часть перегородки носовой полости, надгортанник.

Волокнистый хрящ в межклеточном веществе имеет эластические и коллагеновые волокна, располагающиеся пучками. Образует межпозвонковые диски, диски и мениски внутри суставов.

Костная и хрящевая ткани входят в состав скелета и выполняют опорную, защитную, амортизационную функции.

Собственно соединительная ткань имеет особое строение межклеточного вещества. Оно представлено гелеобразной массой, в которой лежат в разных направлениях в виде сети тонкие волокна. Рыхлая волокнистая соединительная ткань покрывает сверху кровеносные и лимфатические сосуды, нервы, входит в состав кожи. Плотная волокнистая соединительная ткань характеризуется сильным развитием волокон, лежащих более упорядоченно, чем в рыхлой ткани. Образует надкостницу, сухожилия, связки.

Жировая ткань состоит из жировых клеток, в которых накапливаются капельки жира. Выполняет запасающую, депонирующую, теплоизоляционную, амортизационную функции. В основном развита в глубоком слое кожи, откладывается на поверхности внутренних органов. Подразделяется на два вида: белую жировую ткань и бурую жировую ткань. У человека преобладает белая жировая ткань. Бурая жировая ткань хорошо развита у новорожденных, она выполняет в основном функцию теплопродукции для согревания тела.

Кровь и лимфа - это жидкие соединительные ткани, основой их межклеточного вещества является вода. Клетки крови и лимфы называются форменными элементами. В крови представлены три группы клеток, имеющих определенное строение и функции: эритроциты, лейкоциты и тромбоциты. В лимфе основными клетками являются особый вид лейкоцитов - лимфоциты. Эти ткани входят в состав внутренней среды организма человека и выполняют основную функцию - транспортную.

4. Функции соединительной ткани

1. Структурная.

2. Обеспечение постоянства тканевой проницаемости.

3. Обеспечение водно-солевого равновесия.

4. Участие в иммунной защите организма.

5. Структурно-функциональные особенности

1. Внутреннее расположение в организме;

2. Преобладание межклеточного вещества над клетками;

3. Многообразие клеточных форм;

4. Общий источник происхождения - мезенхима.

6. Классификация

1. Кровь и лимфа

2. Собственно соединительные ткани

3. Волокнистые: рыхлая, плотная

4. Специальные: ретикулярная, жировая, слизистая, пигментная

5. Скелетные ткани

6. Хрящевые: гиалиновая, эластическая, фиброзно- волокнистая

7. Костные: пластинчатая, ретикуло- фиброзная

7. Состав и строение соединительной ткани

В соединительной ткани различают: межклеточное (основное) вещество, клеточные элементы, волокнистые структуры (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

Межклеточное (основное) вещество

Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30 % массы межклеточного вещества. Оставшиеся 70 % - это вода.

Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - глюкозоаминогликаны (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.

По строению мономеров различают 7 типов глюкозаминогликанов.

1. Гиалуроновая кислота.

2. Хондроитин-4-сульфат.

3. Хондроитин-6-сульфат.

4. Дерматансульфат.

5. Кератансульфат.

6. Гепарансульфат.

7. Гепарин.

Гиалуроновая кислота.

Молекулярная масса этого полимера- до 1 000 000 Da. Мономер построен из глюкуроновой кислоты и N-ацетилглюкозамина. Внутри мономера - 1,3-бета-гликозидная связь, между мономерами - 1,4-бета-гликозидная связь. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель глюкозаминогликанов, который не сульфатирован.

Хондроитин-сульфаты.

Два вида:хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Все они содержат остаток серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.

Дерматан-сульфат.

Его мономер построен из идуроновой кислоты и галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.

Кератан-сульфат.

Мономер кератан-сульфата состоит из галактозы и N-ацетилглюкозамин-6-сульфата.

Гепатан-сульфат и гепарин.

Они сильно сульфатированы (в мономере 2-3 остатка серной кислоты). В состав их входят глюкуронат-2-сульфат и N-ацетилглюкозамин-6-сульфат.

Длинные полисахаридные цепи складываются в глобулы.Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. Глюкозаминогликаны являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп). Значительный отрицательный заряд способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду, а также способствует диссоциации молекул этих веществ в соединительной ткани.

Глюкозаминогликаны входят в состав сложных белков, которые называются протеогликанами. Глюкозаминогликаны составляют в протеогликанах 95 % их веса. Остальные 5 % веса - это белок. Белковый и небелковый компоненты в протеогликанах связаны прочными, ковалентными связями. Как построена молекула протеогликанов?

Белковый компонент- это особый COR-белок. К нему при помощи трисахаридов присоединяются глюкозаминогликаны. 1 молекула COR-белка может присоединить до 100 ГАГ.

В клетке протеогликаны связаны с гиалуроновой кислотой. Образуется сложный надмолекулярный комплекс. В его составе: гиалуроновая кислота, особые связующие белки, а также протеогликаны. Упругие цепи глюкозаминогликанов в составе протеогликанов образуют образуют макромолекулярные сетчатые структуры. Такое химическое строение обеспечивает выполнение функции молекулярного сита с определенными размерами пор при транспорте различных веществ и метаболитов. Размер пор определяется типом ГАГ, преобладающим в данной конкретной ткани. Например, соединительнотканая капсула почечного клубочка обеспечивает селективный транспорт веществ в процессе ультрафильтрации. За счет множества сульфо- и карбоксильных групп сетчатые структуры являются полианионами, способными депонировать воду, некоторые катионы (К+, Na+, Ca+2, Mg+2).

Кроме протеогликанов, основное вещество содержит гликопротеины.

Гликопротеины.

Их углеводный компонент- это олигосахарид, состоящий 10-15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, метилпентозы рамноза и фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот - значит, идет распад межклеточного матрикса. Это бывает при воспалении.

Гликопротеины делят на 2 группы:

1. растворимые;

2. нерастворимые.

Углеводная часть гликопротеинов очень вариабельна. Важное значение имеет последовательность моносахаридов, как и последовательность аминокислот в белковой части.

Из гликопротеинов наиболее изучены растворимый фибронектин и нерастворимый ламинин.

Растворимые гликопротеины представлены особым белком - фибронектином. Молекулярная масса фибронектина - 440 kDa. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами, гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем". Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.

К растворимым гликопротеинам также относятся COR-белок - компонент протеогликанов, связующие белки, а также целый ряд белков плазмы крови.

Нерастворимые гликопротеины образуют "каркас", "строму" межклеточного матрикса.

К нерастворимым гликопротеинам относится ламинин. Молекулярная масса этого белка - 10 000 kDa. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран.

Углеводные компоненты гликопротеинов также, как и углеводные компоненты гликопротеинов обладают свойствами тканевых антигенов.

Катаболизм компонентов основного вещества. Идет под действием некоторых гидролаз.

Например, нейраминидаза отщепляет от гликопротеинов N-ацетилнейраминовую (сиаловую) кислоту, и уже дестабилизированный гликопротеин поглощается макрофагами. Поэтому концентрация сиаловых кислот в крови - характеристика состояния соединительной ткани. При воспалительных процессах эта концентрация намного возрастает.

При недостаточности ферментов катаболизма основного вещества развиваются заболевания - мукополисахаридозы, при которых в тканях происходит накопление тех или иных ГАГ.

Волокна соединительной ткани

В межклеточном матриксе находятся 2 типа волокнистых структур: Коллагеновые и эластиновые волокна. Основным их компонентом является нерастворимый белок коллаген.

Коллаген - сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30 % от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х -цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70 % аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин (триада (или группа): (гли-X-Y)n, где X - любая аминокислота или оксипролин, Y - любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются.

Необычна и вторичная структура коллагена: шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х -1-цепей и одной -2-цепи. В каждой цепи 1000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.

Синтез коллагена.

Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

1-й этап

Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.

2-й этап

С помощью сигнального пептида "пре" транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется "пре" - образуется "проколлаген".

3-й этап

Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ).

При недостатке витамина "С"- аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

4-й этап

Посттрасляционная модификация- гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

5-й этап

Заключительный внутриклеточный этап- идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

6-й этап

Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.

7-й этап

Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.

Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

8-й этап

Ассоциация молекул нерастворимого коллагена по принципу "бок-в-бок". Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

Эластические волокна

Второй вид волокон - эластические.В основе строения - белок эластин. Эластин еще более гидрофобен, чем коллаген. В нем до 90 % гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется - эластин. За счет остатков лизина происходит взаимодействие между молекулами - эластина.

В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура десмозина. Десмозин - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул -эластина.

Клеточные элементы соединительной ткани

Это фибробласты, тучные клетки и макрофаги.В них происходят процессы синтеза структурных компонентов, а также процесс распада соединительной ткани. Коллаген обновляется на 50 % за 10 лет. В фибробластах идут синтетические процессы: синтез коллагена, эластина.

8. Изображения

Атлас микрофотографий

Рис. 2 Рыхлая волокнистая соединительная ткань

Рис. 3 Формальдегид-индуцированная флуоресценция

Рис. 4 Жировые клетки: Окраска суданом III

Рис. 5 Пигментные клетки: Неокрашенный препарат

Хрящевая ткань, плотная волокнистая соединительная ткань (сухожилие)

Рис. 6 Гиалиновый хрящ: Окраска гематоксилин-эозином 1-клетки хряща 2-межклеточное вещество 3 - надхрящница

Рис. 7 Гиалиновый хрящ: Окраска гематоксилин-эозином 1-клетки хряща 2-межклеточное вещество 3 - надхрящница

Рис. 8 Гиалиновый хрящ: Окраска гематоксилин-эозином 1-клетки хряща 2-межклеточное вещество 3 - надхрящница

Рис. 9 Эластический хрящ: Окраска железным гематоксилином 1-клетки хряща 2-межклеточное вещество 3 - надхрящница

Рис. 10 Эластический хрящ: Окраска железным гематоксилином 1-клетки хряща 2 - межклеточное вещество

Рис. 11 Эластический хрящ: Окраска орсеином 1-клетки хряща 2 - межклеточное вещество

Рис. 12 Волокнистый хрящ межпозвоночного диска: Окраска гематоксилин-эозином 1-клетки хряща 2-межклеточное вещество 3-студенистое ядро 4 - фиброзное кольцо

Рис. 13 Волокнистый хрящ межпозвоночного диска: Окраска гематоксилин-эозином 1-клетки хряща 2-межклеточное вещество 3-студенистое ядро 4 - фиброзное кольцо

Рис. 14 Сухожилие (продольный срез): Окраска гематоксилин-эозином 1 - эндотеноний (образует пучки I порядка) 2 - перитеноний (образует пучки II порядка)

Рис. 15 Сухожилие (продольный срез): Окраска гематоксилин-эозином 1 - эндотеноний (образует пучки I порядка)

Рис. 16 Сухожилие (поперечный срез): Окраска гематоксилин-эозином 1 - эндотеноний (образует пучки I порядка) 2 - перитеноний (образует пучки II порядка)

Рис. 17 Костная ткань пластинчатая (зрелая) кость: Окраска тионином и пикриновой кислотой 1-остеон 2-канал остеона (Гаверсов канал) 3 - вставочные костные пластинки

Рис. 18 Грубоволокинстая (незрелая) кость: Окраска гематоксилин-эозином 1 - межклеточное вещество кости 2-остеоциты 3 - надкостница

Рис. 19 Грубоволокинстая (незрелая) кость: Окраска гематоксилин-эозином 1 - межклеточное вещество кости 2-остеоциты 3-надкостница 4 - остеокласт

Рис. 20 Клетки крови базофилы эозинофилы нейтрофилы

Рис. 21 Лимфоциты моноциты

Список использованной литературы

1. Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский «Гистология» -- 5-е издание, переработанное и дополненное. «Медицина», Москва 2002.

2. В.В. Серов, А.Б. Шехтер «Соединительная ткань», «Медицина», Москва 1981.

3. Р.К. Данилов «Гистология, эмбриология, цитология», «МИА», Москва 2006.

4. Э.Г. Улумбеков, Ю.А. Челышев «Гистология, эмбриология, цитология», Издательская группа ГЭОТАР - Медиа 2009.

5. С.Л. Кузнецов, Н.Н. Мушкамбаров, «Гистология, цитология и эмбриология», ООО «Медицинское информационное агенство» 2005.

6. Н.В. Бойчук, Р.Р. Исламов, С.Л. Кузнецов, «Гистология», Издательская группа ГОЭТАР - МЕД 2002.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

    презентация [364,9 K], добавлен 12.05.2011

  • Функции крови, ее форменные элементы. Атипичные формы эритроцитов. Рыхлая неоформленная волокнистая соединительная ткань, ее функции. Общая особенность плотной волокнистой соединительной ткани. Ретикулярные клетки и волокна. Назначение эндотелия.

    контрольная работа [39,4 K], добавлен 17.06.2014

  • Опорная, защитная и трофическая функции соединительной ткани. Межклеточная структура (волокно и основное вещество). Неоформленные или диффузные, оформленные или ориентированные, ретикулярные, жировые, скелетные и хрящевые ткани. Слизистая оболочка языка.

    курсовая работа [1,8 M], добавлен 14.01.2014

  • Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация [309,1 K], добавлен 08.11.2013

  • Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

    презентация [2,5 M], добавлен 05.06.2014

  • Эпителиальная ткань, ее регенерационная способность. Соединительные ткани, участвующие в поддержании гомеостаза внутренней среды. Клетки кровы и лимфы. Поперечнополосатые и сердечные мышечные ткани. Функции нервных клеток и тканей животных организмов.

    реферат [634,0 K], добавлен 16.01.2015

  • Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    реферат [20,9 K], добавлен 04.12.2011

  • Изучение понятия соединительной ткани, которая составляет примерно 50% от массы тела. Рыхлая, плотная соединительная ткань, хрящ, кость, кровь. Строение соединительной ткани по Слуцкому. Межклеточный органический матрикс соединительной ткани. Коллаген.

    презентация [496,4 K], добавлен 02.12.2016

  • Функции и строение эпителия, регенерация его клеток. Типы соединительной ткани, преобладание межклеточного вещества над клетками. Химический состав и физические свойства межклеточного вещества. Костная, жировая, хрящевая, мышечная и нервная ткани.

    реферат [1,1 M], добавлен 04.06.2010

  • Классификация тканей в организме человека: эпителиальная, соединительная, мышечная и нервная. Рассмотрение видов растительных тканей: образовательная, покровная, механическая, адсорбционная, ассимиляционная, проводящая, секреторная и аэренхима.

    презентация [976,0 K], добавлен 24.05.2015

  • Ткань как группа клеток, сходных по строению, функциям и имеющих общее происхождение. Типы тканей растений, их функциональные особенности и структура. Поперечный разрез листа, его элементы: верхняя и нижняя кожица, основная и механическая ткань.

    презентация [1,7 M], добавлен 13.10.2014

  • Непрерывный слой плотно прилегающих клеток как особенность строения эпителиальной ткани. Защита органов от механических повреждений и инфекции как функция эпителия, его участие в функциях секреции, всасывания и газообмена. Признаки эпителиальной ткани.

    реферат [2,1 M], добавлен 10.09.2011

  • Процесс отражения (рефлекс), основанный на отражении объективных явлений внешней или внутренней среды организма, как основа функции нервной системы. Строение, классификация и функции нервных клеток. Ядро и цитоплазма нервной клетки, виды нейроглии.

    курсовая работа [6,1 M], добавлен 22.09.2009

  • Структурно-функциональные единицы гладкой ткани. Скелетная мышечная ткань. Миозиновые и актиновые нити. Внутриклеточная регенерация, пролиферация и дифференцировка стволовых клеток. Саркоплазматическая сеть агранулярного типа. Скелетные мышечные волокна.

    реферат [13,4 K], добавлен 04.12.2011

  • Уровень клеточной организации, промежуточное отношение клеток и всего организма. Основные группы тканей. Мышечная, нервная, эпителиальная и соединительная ткань. Состав слизистых оболочек. Верхушечная, боковая и вставочные меристемы растительных тканей.

    презентация [4,7 M], добавлен 11.05.2012

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Общая характеристика тканей человека: эпителиальная, нервная, соединительная, мышечная. Репаративная регенерация как процесс восстановления тканей при их повреждении. Нейрон как функциональная единица нервной системы. Роль и значение мышечной ткани.

    презентация [5,9 M], добавлен 18.05.2014

  • Изучение особенностей строения тканей животных, функционирование и разновидности. Проведение исследования характерной черты строения соединительной и нервной тканей. Структура плоской, кубической, мерцательной и железистой эпителии. Виды мышечной ткани.

    презентация [2,1 M], добавлен 08.02.2015

  • Виды, функции и особенности тканей. Эпителиальная, соединительная и нервная ткань. Понятие и функции клетки. Связь человека и всех живых существ между собой соединительными структурами. Питание и обмен веществ клетки. Кровь как внутренняя среда организма.

    конспект урока [549,4 K], добавлен 22.01.2011

  • Общая характеристика и возрастные особенности хрящевой ткани. Виды хрящевой и костной ткани. Общая характеристика и возрастные особенности костной ткани. Особенности строения мышечной ткани в детском и в пожилом возрасте. Скелетная мышечная ткань.

    презентация [1,3 M], добавлен 07.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.