Концепции развития современных технологий

Понятие естественнонаучного подхода к технике и технологиям. Перспективные материалы для развития технического производства. Молекулярные процессы познания. Возможности биокатализа и генных технологий. Значение исследований ДНК для естествознания.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 23.01.2014
Размер файла 45,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНЦЕПЦИИ РАЗВИТИЯ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ

1. Естественнонаучные основы современных технологий

Понятие техники и технологии. Техника как умение создавать и применять искусственные орудия труда существует с тех пор, как существуют люди. Еще в древней Греции использовалось понятие «техно», которое обозначало мастерство, искусство как умение нечто сформировать, создать из естественного материала, преобразовать природное в человеческое. Техника в отличие от природы не является естественным образованием, она создается искусственно. Произведенный человеком предмет, процесс называется артефактом (в переводе с лат. - искусственно сделанный). Техника есть совокупность артефактов. Фундаментальное свойство техники - это принцип преобразования. Иными словами, техника есть то, при помощи чего человек преобразует природу, самого себя, общество. Понятие «технология» выражает способ, алгоритм преобразования, то как именно он воздействует на объекты. Технологией называется совокупность операций по целенаправленному использованию техники. Эффективное использование техники требует ее включения в технологические цепи. Технология выступает как развитие техники, достижение ею стадии системности.

Технологический этап в истории технического прогресса связан с возникновением индустриальной цивилизации, комплексной автоматизацией и превращением техники в технологию.

В развитии техники и технологий материализуются и опредмечиваются естественнонаучные знания о законах и явлениях природы. В своем техническом творчестве человек-изобретатель не просто копирует природу, а именно изобретает, то есть создает такие артефакты, которые не имеют аналогов в природе, начиная с колеса и кончая лазером.

В истории техники и технологии выделяются следующие этапы развития:

- техника ручного труда (инструменты);

- техника машинного производства (механизмы);

- техника автоматизированного труда (автоматы);

- техника компьютерная (робототехника), связанная с информационными технологиями.

Первоначально, на этапе ручного труда, техника имела в основном инструментальное значение: технические инструменты продолжали, расширяли возможности естественных органов человека, увеличивали его физическую мощь.

На этапе машинизации техника становится самостоятельной силой, труд механизируется. Техника как бы отделяется от человека, который ее обслуживает и сам человек превращается в придаток машины, он дополняет ее возможности. На третьем этапе развития техники, в результате комплексного развития автоматизации и превращения техники в технологию, человек выступает ее организатором, творцом и контролером. Здесь на первый план выходят уже не физические возможности человека, а сила его интеллекта, реализуемая посредством технологии. Происходит объединение науки и технологии.

Следствием которого является научно-технологический прогресс, называемый часто научно-технологической революцией.

Имеется в виду кардинальная перестройка всего технико-технологического базиса общества. Причем разрыв во времени между следующими друг за другом технико-технологическими перестройками становится все меньше. Более того, идет параллельное развитие различных сторон научно-технологического прогресса.

Если «революцию пара» от «революции электричества» отделяли сотни лет, то современные микроэлектроника, робототехника, информатика, энергетика, приборостроение, биотехнология в своем развитии дополняют друг друга, между ними вообще перестает существовать временной интервал. Подобное развитие техники стало возможным на основе научных достижений современного естествознания. Они открыли возможности, немыслимые в рамках прежней технической мысли, радикально изменили всю техническую сторону человеческой культуры.

Научно-технический прогресс как единое, взаимообусловленное, поступательное развитие науки и техники, производства и сферы потребления берет свое начало в эпохе Нового времени, когда дороги науки и техники стали перекрещиваться. До этого технический прогресс основывался на эмпирическом знании и опыте людей. Промышленная революция ХVIII века и возникновение машинного производства стали реализацией европейского научного естествознания Нового времени.

Они открыли новые, практически неограниченные возможности для технологического применения науки. С тех пор технологический прогресс во все большей степени определяется прогрессом естественных и технических наук. Наука и техника взаимно стимулируют развитие друг друга. Возникают специальные звенья научно-исследовательской деятельности, призванные доводить теоретические решения до технического воплощения: прикладные исследования, опытно-конструкторские разработки, производственные исследования.

Современный этап научно-технического прогресса связан с научно-технической революцией. Под ее воздействием расширяется фронт научных дисциплин, ориентирующихся на развитие техники.

В решении технических задач участвуют физики, химики, биологи, физиологи, психологи, лингвисты, логики, математики и др.

Целые отрасли производства и новые типы технологий возникают вслед за новыми научными направлениями и открытиями: радиоэлектроника, атомная энергетика, химия синтетических материалов, производство ЭВМ, лазерные технологии и т. д.

Сегодня влияние техники и новых технологий распространяется на органическую и неорганическую природу, на самые различные сферы общественной жизни. В области неорганической материи - это строительная техника, физико-химическая техника и технологии, энергетическая техника, электротехника, теплотехника, компьютерные и информационные технологии и т. д.

В области органической, живой природы - это техника и технологии сельского хозяйства, а также биотехнологии, позволяющие включать в предметное поле техники всю биологию. В последнее время особое внимание уделяется развитию современных социальных технологий, которые связаны с техникой как умением, искусством руководства людьми, государством, общественными отношениями, политическими процессами и т. п.

В то же время существует «техника» мышления, речи, памяти («мнемотехника»), техника рисунка, живописи, вязания, игры на музыкальных инструментах и т. д.

Поэтому в современном понимании техника и технология в широком их смысле представляют собой:

- область знания, выступающего в качестве связующего звена между практической деятельностью и теоретическим знанием;

- область человеческой деятельности (включая все возможные средства и процедуры), направленную на изменение природы и общества в соответствии с потребностями человека;

- совокупность умений и навыков, составляющих профессиональные особенности того или иного вида человеческой деятельности;

- искусство и мастерство человека, занимающегося этой деятельностью.

Техника и технология выражают стремление человека к преобразованию внутреннего и внешнего мира, природы для осуществления своих целей. А это требует знания и понимания процессов, происходящих в мире, в природе.

В последнее время пристальное внимание уделяется разработке большого спектра наукоемких технологий - это биотехнологии, информационные технологии, лазерные и микроэлектронные технологии, которым принадлежит революционизирующая роль на пути человечества от индустриальной (техногенной) цивилизации к постиндустриальной как антропогенной, информационно-компьютерной.

Рассмотрим естественнонаучные основы современных технологий.

Современные биотехнологии. Биотехнологии основаны на использовании живых организмов и биологических процессах в промышленном производстве. На базе биотехнологии освоено массовое производство искусственных белков, питательных и многих других веществ. Успешно развиваются микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т. д.

Представляет практический интерес синтез других биологически активных веществ - гормональных препаратов и соединений, стимулирующих иммунитет - с применением современных методов генной инженерии и естественных биологических материалов.

Для увеличения продуктов питания весьма важны искусственные вещества, содержащие белки, необходимые для жизнедеятельности живых организмов. Благодаря важнейшим достижениям биотехнологии в настоящее время производится в промышленных масштабах целая гамма искусственных питательных веществ, по многим свойствам превосходящих продукты естественного происхождения.

Современные методы биотехнологии позволяют превратить огромные количества отходов древесины, соломы и других остатков растительных продуктов в ценные питательные белки. Такие методы включают процесс гидролизации промежуточного продукта - целлюлозы - с последующей нейтрализацией образующейся глюкозы и введением солей.

Полученный раствор глюкозы представляет собой питательный субстрат микроорганизмов - дрожжевых грибков. В результате жизнедеятельности микроорганизмов образуется светло-коричневый порошок - высоко качественный пищевой продукт, содержащий около 50% белка-сырца и различные витамины. Питательной средой для дрожжевых грибков могут служить и такие содержащие сахар растворы, как, например, паточная барда и сульфитный щелок, образующийся при производстве целлюлозы. Для получения пищевых дрожжей в бывшем СССР в 1980 г. было переработано около 3 миллионов тонн древесных отходов.

Определенные виды грибков могут превращать нефть, мазут, природный газ в пищевую биомассу, богатую белками. Из 100 т. неочищенного мазута с помощью грибков можно получить 10 т. дрожжевой биомассы, содержащей 5 т. чистого белка и 90 т. дизельного топлива. Такое же количество дрожжей может быть получено из 50 т. сухой древесины или 30 тыс. м. кв. природного газа. Для производства данного количества белка потребовалось бы стадо коров из 1000 голов, а для их содержания нужны огромные площади пахотных земель. Промышленное производство белков полностью автоматизировано, и скорость роста дрожжевых культур в тысячи раз выше, чем крупного рогатого скота. 1 т. пищевых дрожжей позволяет произвести около 800 кг. свинины, 1,5-2,5 т. птицы или 15-30 тыс. яиц и сэкономить при этом до 5 т. зерна.

Искусственные белковые питательные вещества - продукция бурно развивающейся микробиологической промышленности. Эпохальным событием микробиологии можно считать разработку в 1947 году промышленного производства пенициллина. Двумя годами позже в Японии на основе кислоты путем биосинтеза были впервые получены аминокислоты. Затем стали производится антибиотики, витаминно-белковые добавки к продуктам питания, препараты ферментов, ростовые вещества, бактериологические удобрения, средства защиты растений, к сожалению, стало возможным производство бактериологического оружия.

Биологам удалось расшифровать механизм рекомбинации ДНК в ходе синтеза ферментов, тем самым биотехнологи получили возможность производить многие ферменты при сравнительно их невысокой себестоимости. Открываются пути совершенствования технологии получения биокатализаторов, не существующих в природе. К примеру, кукурузный, пшеничный крахмал и сахар вполне пригодны для ферментации. Они легко превращаются в глюкозу, и далее в более сладкую продукцию - фруктозу. Известны микроорганизмы, перерабатывающие глюкозу во многие полезные химические продукты (метан, ацетон, уксусную кислоту, молочную и акриловую кислоты и т. д.).

Для ферментации можно использовать относительно большой объем биомассы из отходов сельского и лесного производства.

Генные технологии. Основываются на методах молекулярной биологии и генетики, связаны с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Генные технологии, часто называемые генной инженерией, родились в начале 70-х годов ХХ столетия под названием технологии рекомбинированных, ДНК. Основная операция генной технологии заключается в извлечении из клеток организма гена (кодирующего нужный продукт) или группы генов и соединение их с молекулами ДНК, способными проникать в клетки другого организма и размножаться в них.

На начальной стадии развития генных технологий получен ряд биологически активных соединений - инсулин, интерферон и др.

Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства. Основная цель генных технологий - видоизменить ДНК, закодировав ее для производства белка с заданными свойствами.

Современные экспериментальные методы позволяют анализировать и идентифицировать фрагменты ДНК и генетически видоизмененной клетки, в которую введена нужная ДНК. С их помощью целенаправленно осуществляются химические операции над биологическими объектами, что и составляет основу генных технологий. Генные технологии привели к разработке мощных методов анализа генов геномов, а они, в свою очередь - к синтезу, т. е., к конструированию новых, генетически модифицированных микроорганизмов.

К 1996 году установлены нуклеиновые последовательности 11 различных микроорганизмов, начиная от самой маленькой автономно размножающейся микроплазмы, содержащей всего 580 тысяч нуклеиновых пар. Среди них - и промышленные штаммы, и те, геном которых особо интересен для науки, в частности для обнаружения ранее неизвестных принципов организации геномов и для понимания механизмов эволюции микробов. Промышленные микробиологи в свою очередь убеждены, что знание нуклеотидных последовательностей геномов промышленных штаммов позволит «программировать» их на то, чтобы они приносили большой доход.

Одним из самых современных и перспективных методов генной инженерии для получения новых микробных штаммов является генетическое копирование (клонирование). Уже в начале 70-х годов ХХ столетия ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных, в последние годы достигнут огромный прогресс в клонировании полноценных животных (даже способных приносить потомство) из соматических (т. е., неполовых) клеток. Особенно большой резонанс у мировой общественности получили работы шотландских ученых из Рослинского Университета, которым удалось из клетки молочной железы беременной овцы получить генетически точную ее копию. Клонированная овца по кличке Долли нормально развивалась и произвела на свет сначала одного, а затем еще трех нормальных ягнят. Вслед за этим появился ряд новых сообщений о воспроизведении генетических близнецов коров, мышей, коз, свиней, обезьяны из соматических клеток этих животных. В 2000 году появились сведения о клональном размножении потомства приматов путем деления зародыша. Американским исследователям удалось получить генетически идентичные эмбрионы обезьяны резус путем разделения бластомеров зародыша на стадии деления. Из эмбриона родилась вполне нормальная обезьянка Тетра - генетический близнец первоначально зачатой особи. Такой тип клонирования обеспечивает генетически идентичное потомство и в результате можно получить двойню, тройню и более генетических близнецов, а следовательно, есть возможность повторять сложные научные эксперименты на абсолютно генетически идентичном материале, имплантируя последовательно зародыш одной и той же суррогатной матери можно изучить влияние ее организма на развитие плода. Разработанные методы клонирования животных пока еще далеки от совершенства. В процессе экспериментирования наблюдается высокая смертность и большой процент уродств новорожденных (из 226 опытов, проведенных в лаборатории Яна Вильмута в Рослинском институте, удачным оказался лишь один - на свет появилась овца Долли). Еще не ясны многие механизмы клонирования и развития животных из соматической клетки. Тем не менее, успех, достигнутый на данный момент, показал теоретическую возможность создания генетических копий даже человека из отдельной клетки, взятой из какого-либо органа. Многие ученые с энтузиазмом восприняли идею клонирования человека.

Например, «отец» первого ребенка «из пробирки» Л. Эдвардс, заявил, что этот метод можно использовать для получения «запасных» органов, которые пересаживались бы больному человеку. Опрос общественного мнения в США 2000 года показал, что 7% американцев готовы подвергнуться клонированию. Вместе с тем, многие ученые и общественные деятели озабочены потенциальной опасностью (в том числе моральной) и, высказываются против клонирования человеческих особей. Существует и биологическая проблема. Известно, что в процессе культивирования клеток в пробирках и получения клонов могут возникать различного рода мутации в геноме, вредные для организма.

К тому же, как установлено, клонированные особи имеют особенность быстрого старения и угнетения многих жизненных функций за короткий промежуток времени. Следовательно, клонирование людей может привести к возрастанию в человеческой популяции генетически неполноценных, в т. ч., психически больных людей. Кроме того, возникает целый ряд моральных, этических и даже юридических проблем, связанных с манипуляциями над эмбрионом человека.

Учитывая достижения генетической инженерии и реальную возможность создания генетически измененных не только животных, но и человека, 29-я сессия Генеральной Конференции ЮНЕСКО в 1997 году приняла «Всеобщую декларацию о геноме человека и правах человека». В статье 11-ой этого документа говорится, что не следует допускать практику, противоречащую достоинству человека, в т. ч., практику клонирования в целях воспроизводства человеческой особи, «цель прикладного использования результатов научных исследований по геному человека, в т. ч., в области биологии, генетики и медицины, должна заключаться в уменьшении страданий людей и в улучшении состояния здоровья отдельного человека и всех людей».

Совет Европы так же внес дополнения в Европейскую конвенцию о правах человека и биомедицине, которая гласит: «Запретить всякое вмешательство, преследующее цель создать человеческую особь, идентичную другой - живой или мертвой». Таким образом, современные генно-инженерные исследования все больше затрагивают интересы общества, а этические проблемы науки становятся важным компонентом научной деятельности не только биомедиков, но и этиков, философов, политиков и т. д.

Интеграция биологического и социально-гуманитарного знания. Естествознание и нравственность. Связи между естествознанием и нравственностью многочисленны и двусторонни. Естествознание, как и вся наука в целом, оказывает сильное влияние на общественную мораль, испытывая на себе ее обратное воздействие. Общество не может не ограничивать научный поиск, если сам поиск или его результаты могут входить в противоречие с актуальными нормами нравственности или представлениями о гуманности. Вопрос, можно ли запрещать истину во имя спасения морали, ответа не имеет. Те, кто находят у истины приоритет перед моралью, основывают это на том соображении, что мораль относительна и изменчива, а истина абсолютна и вечна. Их оппоненты считают, что не всякие истины людям нужны. Немецкий философ А. Шопенгауэр (1788-1860) однажды заметил: “Вы превозносите достоверность и точность математики, но зачем мне с достоверностью и точностью знать то, что мне знать не нужно?”.

Так или иначе, ставятся под сомнение или ограничиваются некоторые виды этнографических исследований, эксперименты над человеческими зародышами и многое другое. До сих пор бунтуют противники вивисекции - операции на живом животном с целью изучения функций организма, действия на него различных веществ, разработки методов лечения и т. п.

До сих пор спорят, нравственна ли пересадка органов.

Остается спорной правомерность евгеники - теории о наследственном здоровье человека и путях его улучшения. Прогрессивные ученые ставили перед евгеникой гуманные цели. Однако ее идеи использовались и для оправдания расизма. В современной науке многие проблемы евгеники, особенно борьба с наследственными заболеваниями, решаются в рамках генетики человека, в том числе и медицинской генетики.

Сказанное определяет лишь внешнюю, грубую форму воздействия морали на науку. В обществе, в котором преобладает рациональный, практический склад ума, и наука будет развиваться иначе, чем в обществе, где больше идеалистов и романтиков.

Запрещающие барьеры при этом проходят в головах ученых, несущих в себе национальные или сословные следы.

Влияние науки на мораль в обществе огромно, однако в нем никогда не было единогласия в вопросе об оценке этого влияния. С одной стороны, расширение горизонтов знания, разрушение унизительных предрассудков, обеспечение доступа к науке и культуре широчайшим кругам населения - все это имеет положительный нравственный оттенок. С другой - главный полигон науки испокон века до наших дней - война. Многие видели в науке воплощение зла и школу безнравственности. Сторонники науки в прошлых веках надеялись, что она поможет решить и нравственные проблемы. Противники же считали, что она уводит от религии, от духовности, иссушает души, порождает цинизм. Но, кажется, уже окончательно понятно, что из науки и особенно из естествознания трудно извлечь выводы о том, как надо и как не надо поступать. Взаимосвязь и сочетание естествознания как науки о природе и морали как правил нравственности - безусловно, сложный и многофакторный вопрос, в решении которого остается огромное поле деятельности. Ясно одно: естествознание вряд ли сможет претендовать на замещение морали.

Более двадцати лет назад в калифорнийском стэндфордском университете двум ученым впервые удалось заменить у бактерии ее наследственный материал на чужеродный, взятый у бактерии-донора. Этот метод переделки живой природы назвали генной инженерией. По разным направлениям распространялся стэндфордский успех. Обратили на него внимание и в пищевой промышленности. Молочное, сыроваренное производства, выпечка хлеба, изготовление колбас, пивоварение и многое другое основано на жизнедеятельности микроорганизмов.

Крупные пищевые концерны издавна имели лаборатории, где вели отбор, селекцию наиболее действенных производительных штаммов бактерий, придающих желательный вкус продукту. Лучшие разновидности невидимых тружеников фирма-хозяин строго засекречивала. Бактерии-мутанты, защищенные патентами, использовались для того, чтобы получать консервирующееся молоко, быстрые в приготовлении сыры, хороший хлеб, глюкозу, сиропы и многое другое. Ферменты - микроскопические белковые “топоры” для разрубания длинных молекул - были так усовершенствованы генной инженерией, что перевернули технологию производства многих продуктов. Так, в 1991 г. фирма “Магги”, известная своими бульонными кубиками, отказалась от старого способа их получения с участием соляной кислоты. В новой, более безопасной, технологии действуют высокоактивные ферменты. В США стали получать сахар из кукурузы и пшеницы. Особый микроб превращает это сырье в сироп, который затем поступает на рафинадный завод. Сироп обходится на треть дешевле, нежели из тростника, который поставляли в США Филиппины. По сведениям журнала “Шпигель”, сейчас в мире действуют более 3 тысяч лабораторий, работающих с генами. Биотехнологические фирмы рассчитывали к 2000 г., в 16 раз увеличить свои обороты. От генной инженерии можно ожидать и более масштабных, скажем, даже глобальных, результатов.

Но генная инженерия не ограничивается миром невидимых организмов. Она вторгается в наследственный материал растений и животных, прежде всего сельскохозяйственных. Например, картофель претерпел несколько полезных превращений. Получены клубни, не боящиеся падений, ударов - важное качество при транспортировке и хранении. Другой сорт - для стола, содержит мало крахмала, но много высокоценных протеинов. Третий сорт дает много крахмала.

Томаты, подвергнутые генетическим операциям, дали две разновидности. У одного вида из молекулы наследственности был удален ген, определяющий способность плода к быстрому загниванию. Новый помидор, уже хорошо созревший, можно хранить без холодильника до двадцати дней. Другая разновидность томатов содержит вдвое меньше воды. Это выгодно при транспортировке и переработке. С помощью генной инженерии получены не боящиеся заболеваний растения какао, стойкая к заморозкам клубника, кофейные зерна без кофеина. Пятьдесят сельскохозяйственных культур уже улучшены благодаря вмешательству человека в их наследственность.

Достигнуты первые успехи и в животноводстве. Корректировка наследственности у свиньи позволила вывести новую породу животных, лишенных такого недостатка, как излишняя жирность, свинина становится диетическим мясом. Другое новшество: корова дает молоко, не скисающее в тот же или на следующий день, как обычно, потому что это молоко уже включает в себя консервирующие вещества, вырабатываемые самим организмом животного.

Лаборатории, занимающиеся генной инженерией, воодушевлены первыми удачами. Ученые уверены, что в недалеком времени они смогут передать сельскому хозяйству такое разнообразие растений и животных, улучшенных их методами, что можно будет удовлетворить все человечество продуктами питания. При этом речь идет не только о количестве, но и о качестве. Уже сегодняшние успехи генной инженерии убеждают, что люди в XXI в., не столкнутся с голодом. В конце 90-х годов ХХ столетия зашла речь о генетическом вмешательстве в структуры наследственной информации человека, его геном. Говорят не только о модификациях (изменениях) генома человека, но и о создании его точных копий (методы клонирования животных и человека).

Достижения биологии и медицины последних лет с еще большей остротой поднимают вопрос о нравственных пределах познания живого. В связи с этим в 70-80-х годах ХХ столетия возникает новое междисциплинарное направление биологическая этика (биоэтика), уделяющая внимание нравственным вопросам биологического познания. Это направление возникает на стыке естественнонаучных (биология, медицина, генетика, экология) и социально-гуманитарных дисциплин (философия, этика, право), в последние годы в решение биоэтических проблем вовлечена даже церковь. Принципиальной основой их понимания и решения должно служить гуманистическое измерение научно-технического прогресса, ибо «все прогрессы реакционные, если рушится человек».

2. Перспективные материалы и технологии

Обновление технической базы энергосистем и практически всех важнейших отраслей промышленности во многом связано с внедрением перспективных материалов и новейших технологий. В настоящее время во всем мире признаны перспективными керамические, композиционные, тонкопленочные и другие материалы.

Керамические материалы обладают чрезвычайно высокой твердостью и теплостойкостью. Используются они при изготовлении высокотвердых и термостойких деталей двигателей, инструмента, различного рода машин. Исследования на молекулярном уровне позволили установить, что небольшие структурные дефекты существенно влияют на прочность керамических изделий. Разработанные новые методы, основанные на управлении кинетикой реакций и формировании заданных молекулярных свойств, позволяют получить керамический материал с заданной структурой. Так, высокую степень однородности материала обеспечивает управляемый гидролиз металлоорганических соединений. При выжигании полимерного скелета в металлоорганическом полимере, скрученном в нить, образуется высоко термостойкий материал, подобный карбиду кремния. С помощью высокотемпературных реакций летучих соединений с последующим осаждением конечных продуктов на подложку заданной формы формируется однородное термостойкое покрытие. Такая технология применяется, например, при изготовлении деталей реактивного двигателя. Небольшое добавление примесей может вызвать значительное изменение свойств материала. Например, при небольшой добавке оксида циркония ZrO2 существенно повышается прочность керамического материала с оксидом алюминия. Синтез сверхпрочных волокон на основе графита, внедренного в органический полимер, привел к разработке нового вида материалов - композиционных материалов с улучшенными свойствами.

Технология изготовления такого материала основана на внедрении тонкого волокна, состоящего из графитовых углеродных цепей, минеральных или углеводородных полимерных нитей, в обычный высокомолекулярный полимер, например в эпоксидную смолу. Полученный таким образом композиционный материал по прочности не уступает лучшим маркам конструкционной стали. Благодаря сравнительно высокому показателю прочность/масса такие материалы находят широкое применение для изготовления деталей и узлов авиационной и космической техники, автомобилей, судов и т. п.

Благодаря исследованиям полимерного механизма взаимодействия поверхностных слоев, сопряженных на границе раздела между различными полимерами, удалось разработать комбинированный полимерный материал, называемый иногда полимерным сплавом, с высокими эксплуатационными свойствами. К таким материалам относится, например, нейлон, усиленный эластичным углеводородным полимером.

В последние десятилетия уделяется все больше внимания разработке новых тонкопленочных материалов. Тонкопленочные защитные, упрочняющие, полупрозрачные, диэлектрические, магнитные и другие покрытия, тонкопленочные элементы интегральных схем современной микро- и наноэлектроники - все это примеры применения тонкопленочных материалов. В зависимости от выполняемой функции толщина слоя осаждаемого материала может колебаться в пределах от нескольких ангстрем до нескольких десятков микрометров. К настоящему времени налажена технология формирования микроэлектронного элемента с размером до нескольких десятых долей микрометра. Для формирования тонкопленочных слоев и элементов применяются разные технологии: механическое и термическое напыление, гальваноосаждение, вакуумное ионно-плазменное осаждение и др.

Наряду с перспективной микроэлектронной технологией в настоящее время интенсивно внедряется биотехнология, основанная на видоизменении структуры молекулы ДНК (сшивание нитями ДНК и т. д.).

В микроэлектронной технологии уменьшить элементы интегральных схем до нанометровых размеров - это только полдела. Нужно еще соединять их между собой и с микроэлектродами. В осуществлении такой операции могут помочь нуклеиновые кислоты, поскольку в них четко проявляется молекулярная сборка. В лаборатории уже удалось нитями ДНК связать наночастицы из золота в трехмерную решетку. Кроме того, из отрезка ДНК построили мостик, связывающий два электрода, а затем его использовали как матрицу, на которую из раствора осаждали серебро, так что получился проводящий металлический провод диаметром 100 нм, что значительно меньше размера широко применяемых сейчас в микроэлектронике электропроводящих полос. Приведенный пример показывает, как удачно могут сочетаться совершенно разные биотехнология и зарождающаяся наноэлектронная технология.

Микроэлектронные технологии. Микроэлектронные технологии оказали и будут оказывать огромное влияние на индустриальный мир и общество в целом. Наиболее широко известная продукция, изготавливаемая на основе микроэлектронной технологии - микропроцессор, представляющий собой устройство обработки информации, выполненное в виде одной или нескольких больших интегральных схем. Эта удивительно сложная и функционально интегрированная электрическая цепь построена на небольшой пластине, называемой чипом. Некоторые современные микропроцессоры, в том числе и отдельные чипы машинной памяти большой емкости, содержат миллионы транзисторов или других электронных компонентов, расположенных на кремниевой пластине площадью в несколько квадратных сантиметров.

Чипы изготавливаются из кремния высокой чистоты, в них целенаправленно имплантируют различные добавки для формирования элементов отдельных устройств, выполняющих вполне определенные функции: усиление, выпрямление или переключение сигналов, запоминание или воспроизведение информации. Решающую роль в изготовлении таких сложнейших систем играет тонкопленочная технология, включающая ряд последовательных операций.

С помощью тонкопленочных органических слоев, чувствительных к излучению, в кремний избирательно вводятся легирующие примеси с образованием заданного рисунка электрической цепи. Легирование производится при высокой температуре, поэтому для защиты поверхности используется тонкая пленка диоксида кремния. Рисунок формируется с помощью органического материала - фоторезиста, в котором химические изменения инициируются световым потоком. Такие изменения приводят к разрыву (или образованию) ковалентных связей в светочувствительных химических группах, закрепленных на полимерной структуре. В результате происходит локальное увеличение (или уменьшение) растворимости фоторезиста в заданном растворителе. При пропускании света через маску засвечиваются лишь определенные области фоторезиста, которые удаляются (или остаются) после промывания растворителем. Затем производят вытравливание рисунка с последующим удалением фоторезиста.

С применением излучения в видимой части спектра и специального высокочувствительного фоторезиста можно формировать рисунок электронной схемы с линейным размером 1-2 мкм. Однако при изготовлении элементов схемы, близких по размеру к длине волны света, равной 0,4 (для коротковолновой части спектра), начинают сказываться дифракционные эффекты. Их можно ослабить, пользуясь более коротковолновым излучением и чувствительными к нему резистивными материалами.

Это означает, что дальнейший прогресс в микроэлектронике и ее трансформация в наноэлектронику возможны только с применением коротковолнового ультрафиолетового, рентгеновского излучения и даже электронных лучей, что, естественно, влечет за собой принципиальное техническое переоснащение сложного микроэлектронного технологического процесса. Миниатюризация электронных устройств - характерная черта современной микроэлектроники. Миниатюрный размер электронного элемента современной схемы составляет около 1 мкм. Дальнейшее его уменьшение, как отмечалось, требует перехода к гораздо более сложной коротковолновой технологии. Возникает вопрос: нельзя ли найти другой путь решения данной проблемы? Один из таких путей предложен. Он основан на идее хранения и обработки информации с помощью отдельных молекул или молекулярных агрегатов, т. е., на идее создания молекулярного компьютера.

При трехмерной архитектуре применение молекулярных компонентов цепей с промежутком около 0,01 мкм обеспечило бы в миллионы раз большую плотность элементов, чем та, что реализуется в настоящее время. Такие цепи можно было создать из разнообразных молекул - от полностью синтетических электропроводящих полимеров до природных белков. Основные элементы памяти молекулярных компьютеров могли бы функционировать по принципу переменного заряда в полиэтилене или молекулярной ориентации в твердом теле.

Молекулярный компьютер по своему устройству и функциям напоминает систему памяти, которой наделены многие живые существа. Создание молекулярного компьютера может показаться фантастической идеей. Но в свое время и полет на Луну, и расшифровка структуры ДНК, и многое другое было предметом научной фантастики.

3. Молекулярный уровень биотехнологии

Живой организм часто сравнивают с химической фабрикой, которая перерабатывает поступающие исходные вещества в различные продукты, необходимые для поддержания жизнедеятельности. Что же производит такая фабрика? В первую очередь - другие подобные ей фабрики, а это означает, что происходит процесс воспроизводства. Для такого воспроизводства нужен носитель информации, содержащий алгоритмы операций и своеобразные инструкции для создания нового независимого организма со своим носителем информации.

Современный молекулярный уровень познания химического состава, структуры и функций молекул и макромолекул, принимающих участие в жизнедеятельности живого организма, позволяет однозначно утвердить, что функцию носителя информации выполняют молекулы ДНК. Структура их молекул такова, что они легко воспроизводятся при создании новых носителей информации.

Молекулы ДНК содержат всю информацию, необходимую для синтеза белков, которые можно представить условно в виде производственных мощностей новых организмов. Они управляют сложным процессом формирования и роста составных частей организма.

К разновидности белков относятся ферменты. Выполняя роль высокоселективных катализаторов, ферменты принимают участие в химическом синтезе многих необходимых для организма веществ. Их высокая селективность обусловливается специфической структурой поверхности, благодаря которой распознаются и выбираются необходимые реагенты среди питательных веществ, из которых формируются промежуточные или конечные продукты для выполнения вполне определенных функций. Биотехнология заключается в применении фабрик, созданных природой для производства требуемых продуктов. Иногда для такого производства нужна часть фабрики, но ее вначале нужно обнаружить, а потом задействовать. Подобного рода биотехнологии известны давно. На них основано производство уксуса, вина, крахмала и многих других продуктов. Современные биотехнологии позволяют решать более сложные задачи. Естествоиспытатели научились разрабатывать способы модификации природных носителей информации, благодаря которым природные фабрики способны производить новые полезные продукты. Для более глубокого понимания сущности таких способов целесообразно рассмотреть подробнее структуру и функции молекул ДНК.

4. Биокатализ

Способность рекомбинантной ДНК управлять синтезом ферментов расширяет область применений микроорганизмов в биотехнологии. Появляется возможность сравнительно недорого производить многие природные ферменты. Открываются пути совершенствования технологии получения биокатализаторов, не существующих в природе.

Успеху в биокатализе в значительной степени способствовал разработанный в недалеком прошлом метод иммобилизации ферментов, который заключается в удерживании фермента в неподвижном состоянии на твердой подложке. При иммобилизации фермент стабилизируется, в результате выход конечного продукта увеличивается. При этом упрощается и операция очистки конечного продукта.

Технология иммобилизации фермента позволяет, например, улучшить качество пенициллина. Под воздействием ферментов кукурузный крахмал превращается в глюкозу. С помощью иммобилизации фермента изомеразы некоторая часть глюкозы преобразуется в более сладкую продукцию - фруктозу. Например, в США ежегодно производится более 2 млн. т. кукурузной патоки с высоким содержанием фруктозы.

Иммобилизация не требует обязательного выделения определенного фермента. Клетка, содержащая нужный фермент, поддается операции иммобилизации. Например, иммобилизованные клетки дрожжей применяются при ферментации в массовом производстве этилового спирта.

Кукурузный, пшеничный крахмал и сахар вполне пригодны для ферментации. Они легко превращаются в глюкозу. Известны микроорганизмы, перерабатывающие глюкозу во многие полезные химические продукты. Однако такое растительное сырье потребляется преимущественно в качестве пищевых продуктов.

Для ферментации можно использовать относительно большой объем биомассы из отходов сельского и лесного хозяйств. Такая биомасса состоит в основном из лигноцеллюлозы (лигнин, целлюлоза и гемицеллюлоза). Лигнин - одеревеневшая часть растительных тканей сопротивляется биокаталитическому расщеплению и препятствует ферментации целлюлозных компонентов. Поэтому природную биомассу необходимо предварительно освободить от лигнина, который идет в отходы. Осуществление рациональной биокаталитической переработки биомассы в виде отходов сельского и лесного хозяйств требует дальнейших исследований, направленных, на разработку способов химической модификации исходных материалов.

Биологам удалось расшифровать механизм рекомбинации ДНК в ходе синтеза ферментов, тем самым биотехнологии получили возможность производить многие ферменты при сравнительно их невысокой себестоимости. Открываются пути совершенствования технологии получения биокатализаторов, не существующих в природе. К примеру, кукурузный, пшеничный крахмал и сахар вполне пригодны для ферментации. Они легко превращаются в глюкозу, и далее в более сладкую продукцию - фруктозу. Известны микроорганизмы, перерабатывающие глюкозу во многие полезные химические продукты (метан, ацетон, уксусную кислоту, молочную и акриловую кислоты и т. д.). Для ферментации можно использовать относительно большой объем биомассы из отходов сельского и лесного производства.

5. Генные технологии

Основываются на методах молекулярной биологии и генетики, связаны с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Генные технологии, часто называемые генной инженерией, родились в начале 70-х годов ХХ столетия под названием технологии рекомбинированных, ДНК. Генная инженерия включает методы молекулярной биологии и генетики, связанные с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Основная операция генной технологии заключается в извлечении из клеток организма гена (кодирующего нужный продукт) или группы генов и соединение их с молекулами ДНК, способными проникать в клетки другого организма и размножаться в них. На начальной стадии развития генных технологий получен ряд биологически активных соединений - инсулин, интерферон и др.

Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства. Основная цель генных технологий - видоизменить ДНК, закодировав ее для производства белка с заданными свойствами. Современные экспериментальные методы позволяют анализировать и идентифицировать фрагменты ДНК и генетически видоизмененной клетки, в которую введена нужная ДНК.

С их помощью целенаправленно осуществляются химические операции над биологическими объектами, что и составляет основу генных технологий. Генные технологии привели к разработке мощных методов анализа генов геномов, а они, в свою очередь, - к синтезу, т. е., к конструированию новых, генетически модифицированных микроорганизмов.

К 1996 году установлены нуклеиновые последовательности 11 различных микроорганизмов, начиная от самой маленькой автономно размножающейся микроплазмы, содержащей всего 580 тысяч нуклеиновых пар. Среди них - и промышленные штаммы, и те, геном которых особо интересен для науки, в частности для обнаружения ранее неизвестных принципов организации геномов и для понимания механизмов эволюции микробов. Промышленные микробиологи в свою очередь убеждены, что знание нуклеотидных последовательностей геномов промышленных штаммов позволит «программировать» их на то, чтобы они приносили большой доход.

Многие вакцины, защищающие от вирусных инфекций, часто выделяют из природных источников. Действие вакцин сводится к стимулированию выработки организмом антител в качестве ответной реакции на вирусы, что повышает сопротивляемость организма данной вирусной инфекции. Введение при вакцинации активного вируса, вызывающего заболевание, сопряжено с определенным риском. Более безопасные вакцины можно создать с применением генной инженерии, позволяющей получить ДНК, кодирующий белок поверхностного слоя вируса. В таком случае иммунитет достигается введением белковой оболочки вируса, что исключает случайное заражение организма.

Химически приготовленные последовательности ДНК можно использовать для выявления генетических дефектов, свидетельствующих о предрасположенности организма к тому или иному заболеванию. Можно надеяться, что генетические болезни будут излечиваться путем замещения дефектных генов или введения генов, полученных методами генной инженерии. Следует ожидать, что технология рекомбинантных ДНК поможет выяснить природу регуляции генов в клетке.

Природные молекулы обладают биологической активностью и, следовательно, представляют интерес для медицины. Однако из-за сравнительно высокой стоимости или нежелательных побочных действий их не всегда можно применять для приготовления фармацевтических препаратов. Поэтому часто используют химически сходные молекулы или фрагменты природного вещества. Генная инженерия может помочь производить лекарственные препараты модифицированной формы для повышения их биологической активности. Например, модифицированный инсулиновый белок, производимый бактериями E.coli., позволил получить новый биологически активный гормон. На базе современной биотехнологии синтезируются фармацевтические препараты, блокирующие биологическую активность той или иной природной биомолекулы. К настоящему времени разработаны биотехнологические приемы приготовления биомолекул для тестирования химически синтезированных соединений с целью разработки новых эффективных фармацевтических препаратов. В современной медицине большое внимание уделяется разработке безопасных и эффективных методов введения лекарственных препаратов, а также созданию специальных устройств для замены оказавшихся неработоспособными органов. Проведение таких работ требует объединения усилий специалистов разной профессиональной ориентации: врачей, инженеров, биохимиков, физиков и др.

Уже производятся и успешно внедряются электрокардиостимуляторы, клапаны сердца, искусственные сухожилия, сердечно-легочные и почечные диализаторы, искусственное сердце и др.

Разработка кровезаменителей привела к открытию перспективных соединений, таких, как фторуглеродные химические эмульсии и компоненты сыворотки, например альбумин. Синтезированные тонкие мембраны, используемые в качестве искусственной кожи, и культуры клеток эпителия обещают серьезные успехи в лечении ожогов. Разрабатываются материалы для имплантации зубов и замены костей. Миниатюрные насосы, вживляемые в ткани человека, страдающего диабетом, делает лечение инсулином регулярным и управляемым, что, естественно, снижает угрозу летального исхода. В более отдаленном будущем модифицированные с помощью генной инженерии клетки будут имплантироваться непосредственно в организм и лечить, таким образом, генетические болезни. Технология пересадки здоровых генов пациенту, нуждающемуся в исправлении генных дефектов, разработана и применяется на практике. Она реализуется с помощью безвредных вирусов. Однако есть вероятность, что вирусы могут вызвать нежелательные реакции иммунной системы или разрушить гены, предохраняющие организм от раковых заболеваний. Проведенные несколько лет назад эксперименты показали, что клетка может принять искусственную хромосому. Полученный результат эксперимента поможет понять механизм работы хромосомы и разработать безопасные способы пересадки нормальных молекул ДНК пациентам с генетическими дефектами.

Такая пересадка поможет лечить наследственные заболевания без побочных эффектов.

6. Геном человека

В современном естествознании третьего тысячелетия нет, наверное, проблемы более захватывающей, трудоемкой и значительной, чем познание генома человека - всей совокупности его генов.

Многие десятилетия молекула ДНК была предметом изучения химиков и биохимиков, которых интересовал ее химический состав и строение, и физиков, изучавших ее форму и трехмерную структуру. Никто не пытался расшифровать последовательность в ДНК четырех ее "кирпичиков" - нуклеотидов, т. е., понять самое главное в ее структуре.

С рождением в 70-е годы нашего столетия генной инженерии появилась интересная мысль: а нельзя ли с помощью новых методов решить задачу, которая ранее казалась совершенно фантастической - расшифровать строение всего генома человека, т. е., получить в доступной форме информацию о всей совокупности генов человека, число которых, по разным оценкам, составляет от 50 до 100 тыс., а кроме генов существуют и между генные участки. Весь геном человека - это более трех миллиардов нуклеотидных пар, что, конечно, очень-очень много, но ведь и прогресс в данной области стремителен.

Еще 15 лет назад расшифровка тысячи пар нуклеотидов считалась большим достижением, и такие результаты печатали самые престижные биологические журналы. Сейчас скорость расшифровки достигла многих миллионов нуклеотидных пар в месяц.

Темпы расшифровки структуры генома оказались выше скорости осмысления накопленной информации.

Расшифровка генома человека - титаническая по объему и сложности задача - должна была стать международной. И вот в 1988 г. по инициативе одного из первооткрывателей двойной спирали ДНК Дж. Уотсона создана международная организация "Геном человека", объединяющая специалистов многих ведущих стран: США, России, Франции, Японии и др.

По прогнозам экспертов, первый этап по расшифровке генома человека, заключающийся в определении последовательности расположения нуклеотидных пар, будет завершен не позднее 2005 г.

Познание генома - вовсе не прихоть ученых, которым захотелось прочитать книгу жизни, расшифровать все, что записано в молекуле ДНК, этой своеобразной запоминающей ленте, скрученной в одной клетке и хранящей гигантское количество информации, записанной на молекулярном языке. Ныне медицина без знания генома часто оказывается беспомощной. Осознание этого и привело к возникновению в последние годы совершенно новой интересной области на границе между изучением генома человека и медициной. Эту область называют генотерапией. Уже из самого названия ясно, что речь идет о лечении генами. Подобно тому, как ангину можно лечить антибиотиками или сульфаниламидами, точно так же наследственные болезни станет возможно лечить с помощью генов.

Как это можно будет сделать? Совершенно ясно, что, если болезнь возникла в результате повреждения генов, то существуют только два способа: или вылечить эти гены, или ввести в клетки те же гены, но нормальные, неповрежденные, чтобы они могли выполнять работу поврежденных. Молекулярное "протезирование" приведет к восстановлению деятельности клетки. Значит, первая задача - узнать, какой ген заболел (для многих болезней уже решена), вторая задача - получить нормальный ген (тоже решена), и третья, самая сложная, - сделать так, чтобы вводимый ген оказался во всех больных клетках и смог там работать. Причем нужно не просто запустить его, но сделать так, чтобы ген был подвластен регулирующим системам клетки. Иначе не избежать беды - это будет взбесившийся ген, работающий бесконтрольно, не сообразуясь с запросами клетки в данном месте и в данное время. Мы знаем огромное количество регуляторных элементов, которые входят в состав генов и осуществляют эту задачу, и потому, можно полагать, налаживание регуляции введенных генов - задача решаемая, хотя и непростая. Она сложна, прежде всего потому, что любой ген имеет несколько систем регуляции, и мы должны их знать и суметь пристроить к данному гену так, чтобы клетка могла им руководить.

Генотерапия уже вышла из лабораторий в клиники. К середине 1997 г., согласно официальным данным, около 2000 человек излечено с помощью генотерапии: половина из них - в США, половина - в странах Европы. Речь идет пока в основном о генных болезнях (ясно, что их лечить проще). К сожалению, нельзя пока говорить о том, что достигнуто радикальное, пожизненное, а не временное излечение пациента. Почему - по очень простой причине: мы не знаем, будет ли введенный ген жить в этих клетках на протяжении всей их жизни или через некоторое время клетка инактивирует его либо вообще изгонит, и тогда болезнь вернется. К тому же мы не можем исключить вероятности того, что этот ген окажется более подвержен мутациям, и тогда через какое-то время лечение придется повторить.

...

Подобные документы

  • Естествознание как отрасль науки. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса. Этапы развития научной рациональности.

    реферат [32,7 K], добавлен 07.01.2010

  • Перспективные направления развития генных технологий на современном этапе. Порядок и правила использования законов и методов биотехнологии в создании фармацевтических средств, оценка практической эффективности и экономической выгоды данного производства.

    реферат [23,4 K], добавлен 24.01.2010

  • Естественнонаучные основы современных технологий. Научно-технический прогресс как единое, взаимообусловленное развитие науки и техники, производства и сферы потребления. Современные биотехнологии. Интеграция биологического и социо-гуманитарного знания.

    реферат [32,5 K], добавлен 11.02.2011

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Предмет изучения и задачи естествознания. Иерархическая последовательность наук по степени возрастания их сложности (лестница Кекуле). Методы естественнонаучного познания. Мифы, религии и искусство как формы отражения окружающей действительности.

    презентация [268,4 K], добавлен 20.06.2013

  • Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

    курс лекций [279,5 K], добавлен 15.11.2014

  • Сущность процесса естественнонаучного познания. Особые формы (стороны) научного познания: эмпирическая, теоретическая и производственно–техническая. Роль научного эксперимента и математического аппарата исследования в системе современного естествознания.

    доклад [21,7 K], добавлен 11.02.2011

  • Развитие и унификация технических средств информационных технологий. Современные средства накопления информации. Проблемы воспроизведения живого образа, голографическая память и нейронные сети, лазерные технологии. Истоки микроэлектронной технологии.

    реферат [77,8 K], добавлен 13.12.2009

  • Особенности естественнонаучного познания, его методы и история формирования. Панорама современного естествознания, тенденции его развития. Структурные уровни функционирования материи. Оболочки Земли, их роль и организация. Происхождение и сущность жизни.

    курс лекций [63,7 K], добавлен 22.11.2010

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Актуальные достижения биомедицины и преодоление "ценностей" нейтральности естественнонаучного познания. Трансформация ценностей техногенной цивилизации. Правовые проблемы современного научного познания живого и органической взаимосвязи мироздания.

    контрольная работа [33,5 K], добавлен 27.12.2010

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Цель естествознания: гипотезы, анализ вопроса. Математика как отправная точка естествознания. История развития химических концепций. Эволюционная химия. Динамическая биохимия. Генная инженерия: предпосылки ее возникновения, история развития.

    контрольная работа [43,8 K], добавлен 28.01.2008

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.

    реферат [21,3 K], добавлен 29.11.2009

  • Предпосылки появления и развития рака в организме человека, его доля в общем количестве смертей людей. Рак как совокупность генных болезней, характеризующихся клеточной пролиферацией, опухолевые клетки и их действие. Факторы, стимулирующие канцерогенез.

    лекция [26,8 K], добавлен 21.07.2009

  • Предпосылки возникновения и история развития естествознания, его значение как науки. Виднейшие философы античности, их взгляды и особенности мировоззрения. Характеристика эпохи средневековья. Строение и состав Вселенной. Этапы развития основных наук.

    курсовая работа [27,0 K], добавлен 29.04.2009

  • Закономерный характер систематического развития естествознания. Естественнонаучные революции и их закономерный характер. Периодичность в развитии естествознания: корреляция всплесков творческой и солнечной активности. Естественнонаучная картина мира.

    контрольная работа [78,1 K], добавлен 10.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.