Становление современного естествознания
Признаки живой материи. Гипотезы происхождения жизни. История генетики. Проблемы теории эволюции. Этапы изменения характера науки. Классификация наук и отраслей естествознания. Сущность, структура и уровни научного знания, средства и методы науки.
Рубрика | Биология и естествознание |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 28.01.2014 |
Размер файла | 394,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Не всякое состояние имеет сигнальные свойства, поскольку объект взаимодействует не только с тем объектом, информацию о котором требуется получить, но и с другими объектами, в результате чего соответствие состояний ослабевает. Условия, обеспечивающие установление и способствующие сохранению сигнального соответствия состояний, называют кодом, а посторонние воздействия, нарушающие это соответствие, - помехами или шумами. Нарушение соответствия состояний возможно не только вследствие помех, но и из-за рассогласования кодов взаимодействующих объектов. При этом предполагается, что в природных системах согласование кодов происходит в самой структуре систем путем естественного отбора различных вариантов.
Сигналы делятся на два типа:
1) статические сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти компьютера, положение триангуляционной вышки и т.д.);
2) динамические сигналы, в качестве которых могут выступать динамические состояния силовых полей. Изменение состояния таких полей приводит к распространению возмущения, конфигурация которого во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств. Примерами таких сигналов могут служить звуки (изменение состояния поля сил упругости в газе, жидкости или твердом теле), световые и радиосигналы (изменения состояния электромагнитного поля). Так как сигналы - это состояния физических объектов, можно математически описать данное явление. Например, можно зафиксировать звуковые колебания, соответствующие конкретному сигналу, в виде зависимости давления х от времени t и изобразить этот сигнал функцией x(t). Так же функцией можно изобразить и статический сигнал, например запись" звука на магнитной ленте, поставив в соответствие параметру t протяженность (длину) записи. Однако между просто состоянием объекта и сигналом имеется существенное различие: единственная функция x(t) не исчерпывает всех важных свойств сигналов. Дело в том, что понятие функции предполагает, что нам известно значение х (либо правило его вычисления) для каждого интервала времени t. Но если это известно получателю сигнала, то отпадает необходимость в его передаче, так как функция x(t) может быть и без этого воспроизведена на приемном конце. Следовательно, функция приобретает сигнальные свойства только тогда, когда она является одной из возможных функций. Моделью сигнала может быть набор (ансамбль) функций параметра t, причем до передачи сигнала неизвестно, какая из них будет отправлена. Каждая такая конкретная функция называется реализацией. Если ввести вероятностную меру на множество реализации, то получается математическая модель, называемая случайным процессом.
Специфическим для теории информации является понятие неопределенности случайного объекта, для которой и была введена количественная мера - энтропия. Пусть, например, некоторое событие может произойти с вероятностью 0,99 (99%) и не произойти с вероятностью 0,01 (1%), а другое событие имеет вероятности соответственно 0,5 (50%) и 0,5 (50%). В первом случае результатом опыта "почти наверняка" является наступление события, а во втором неопределенность исхода так велика, что от прогноза разумнее воздержаться.
В качестве меры неопределенности случайного объекта А с конечным множеством возможных состояний А,...,А" соответствующими вероятностями р,...,р" принимают величину
которую называют энтропией случайного объекта А (или распределения вероятностей {pi}) и используют в качестве меры неопределенности. Обобщение этой меры на непрерывные случайные величины выглядит следующим образом:
Функция h(X) получила название дифференциальной энтропии и является аналогом энтропии дискретной (прерывной) величины.
Это позволяет интерпретировать процесс получения информации как изменение неопределенности в результате приема сигнала. Тогда количество информации можно представить как меру снятой неопределенности: числовое значение количества информации о некотором объекте равно разности априорной и апостериорной энтропии этого объекта, иначе говоря, как меру уменьшения неопределенности в результате получения сигнала. При этом в результате обработки уже полученных данных содержащееся в них количество информации не может быть увеличено. Следовательно, обработка делается лишь для представления информации в более удобном, компактном виде и в лучшем случае без потери полезной информации.
Информация и энтропия - безразмерные величины. За единицу энтропии принимают неопределенность случайного объекта, такого, что
т.е. энтропия (неупорядоченность) равна единице (достигает максимального значения) при данном т, когда все исходы равновероятны, и равна нулю в том случае, когда одна из pi равна единице, а остальные равны нулю, т.е. когда исход опыта достоверен. Следует конкретизировать число т состояний объекта и основание логарифма. Наименьшее число возможных состояний, при котором объект остается случайным, равняется 2 (т = 2). Если в качестве основания логарифма также взять число 2, то единицей неопределенности служит энтропия объекта с двумя равновероятными состояниями - бит. Например, количество информации 1 бит дает бросание монеты. Для непрерывных величин обычно употребляется другая единица (нит), которая получается при использовании натурального логарифма.
При обмене информацией между системами возникают специфические эффекты, полезные для анализа систем. Например, избыточность - явление не всегда отрицательное. При искажениях, выпадениях и вставках символов именно избыточность позволяет обнаружить и исправить ошибки.
Важным понятием информационного характера является скорость передачи информации - количество информации, передаваемое в единицу времени. В дискретном случае единицей времени удобно считать время передачи одного символа. Для непрерывных каналов единицей времени может служить либо обычная единица (например, секунда), либо интервал между отсчетами. Для более наглядного представления об этой величине укажем, что темп обычной речи человека соответствует скорости примерно 20 бит/с, муравьи обмениваются информацией (путем касания усиками) со скоростью около 0,1 бит/с. Скорость передачи информации по каналу связи зависит от многих факторов (энергия сигнала, количество символов в алфавите, избыточность, способ кодирования и декодирования и т.д.) и не превышает некоторого предела, называемого пропускной способностью канала. Например, пропускные способности зрительного, слухового и тактильного (осязательного) каналов связи человека составляют приблизительно 50 бит/с (заметим, что распространено мнение о сильном отличии зрительного канала). Если включить в канал и "исполнительные" органы человека (например, предложить ему нажимать педаль или кнопку в темпе получения сигналов), то пропускная способность снизится до 10 бит/с.
Теория информации имеет большое значение для системного подхода. Ее конкретные методы и результаты позволяют проводить количественные исследования информационных потоков в изучаемой системе. Однако более важным является эвристическое значение основных понятий теории информации - неопределенности, энтропии, количества информации, избыточности, пропускной способности и др.
Этапы системного исследования
Любое системное исследование имеет определенную структуру и проводится по определенному алгоритму. Так, для целей экологии Дж. Джефферс рекомендует алгоритм, показанный на рис. 4.6 и включающий следующие этапы системного анализа: выбор проблемы, постановку задачи и ограничение степени ее сложности, установление иерархии целей и задач, выбор путей решения, моделирование, оценку возможных стратегий и, наконец, внедрение результатов [10]. Ф.И. Перегудов и Ф.П. Тарасенко предлагают другой алгоритм постановки задач системного исследования, изображенный на рис. 4.7, где помимо опорной последовательности действий (утолщенные сплошные линии) предусматривается возможность возврата к уже выполненным действиям в случае необходимости (штриховые линии) [22].
Однако системный анализ, а тем более системный подход не предполагает строго определенного набора рецептов. Поэтому, говоря о некоторых этапах и направлении системной деятельности, следует рассматривать их только как руководство к действию. При решении конкретных задач часть этапов может быть исключена или изменен порядок их следования. Иногда приходится повторять эти этапы в различном порядке. Например, если необходимо уточнить роль исключенных на первых этапах из рассмотрения факторов, требуется пройти несколько раз этапы моделирования и оценки возможных стратегий; для проверки адекватности целевой структуры исследования придется время от времени возвращаться к одному из ранних этапов даже после выполнения значительной части работы на более поздних этапах анализа и т.д.
Рассмотрим специфику системного исследования в естествознании на примере алгоритма Дж. Джефферса (см. рис. 4.6) [10]. 1. Выбор проблемы. Выбор некой проблемы, которую можно исследовать только с помощью системного анализа, не всегда оказывается тривиальным шагом, но всегда столь же важен, как и правильный выбор метода исследования. Ведь можно взяться за решение проблемы, не поддающейся системному анализу, либо выбрать проблему, которая не требует для своего решения всей мощи системного анализа и изучать которую данным методом неэкономично.
2. Постановка задачи и ограничение степени ее сложности. Этот этап связан с упрощением задачи в той мере, чтобы она могла иметь аналитическое решение и в то же время сохранить все те элементы, которые делают проблему интересной для изучения. Успех или неудача исследования во многом зависит от умения выбрать равновесие между упрощением и усложнением, при котором сохранены все связи с исходной проблемой, достаточные для того, чтобы аналитическое решение поддавалось интерпретации.
Может оказаться, что проект не осуществлен из-за того, что принятый уровень сложности затруднил последующее моделирование, не позволил получить решение или, напротив, в результате системного исследования получено тривиальное решение задачи, не требующее применения системного анализа.
3. Установление иерархии целей и задач. Обычно цели и задачи исследования образуют иерархию, причем основные задачи последовательно подразделяются на ряд второстепенных. В такой иерархии следует определить приоритеты различных этапов и соотнести их с теми усилиями, которые необходимо приложить для достижения поставленных целей. Так, в прикладном исследовании можно присвоить сравнительно малый приоритет тем целям и задачам, которые, хотя и важны с точки зрения получения научной информации, довольно слабо влияют на вид воздействий на систему и управление ею. Однако, когда данная задача составляет часть программы какого-то фундаментального исследования, исследователь заведомо ограничен в выборе форм управления и концентрирует усилия на решении задач, которые непосредственно связаны с конкретными процессами. В любом случае условием успешного применения системного анализа является четкое определение приоритетов различных задач.
4. Выбор путей решения задачи. В общем случае следует искать наиболее общее аналитическое решение, что позволит максимально использовать результаты исследования аналогичных задач. Обычно любую задачу можно решать более чем одним способом и применять решение, подобное известному, следует при допущениях, справедливых для данного конкретного случая. Поэтому полезно разрабатывать несколько альтернативных решений и выбрать то из них, которое лучше подходит для данной задачи.
5. Моделирование. Приступая к этапу моделирования, необходимо помнить, что моделируемым процессам, а также механизмам обратной связи присуща внутренняя неопределенность, а это может значительно усложнить как понимание системы, так и ее управляемость. Кроме того, в самом процессе моделирования при выработке решения о подходящей стратегии нужно учитывать ряд правил.
Процесс моделирования структурирован, т.е. состоит из последовательности этапов. Этапы различаются качественно, конкретными целями и средствами и должны выполняться в определенной очередности. Например, при имитационном моделировании выделяют: формирование целей моделирования - построение абстрактной модели - создание имитационной реальной модели - ее исследование - обработку и интерпретацию результатов.
Однако на практике чаще всего не удается строго выдержать рекомендуемую последовательность действий. Более того, очевидно, что нельзя выработать какой-то единый, пригодный для всех случаев алгоритм моделирования, поскольку в процессе создания моделей кроме осознанных формализованных, технических и научных приемов значительное место занимает творческое, интуитивное начало.
6. Оценка возможных стратегий. На этапе оценки потенциальных стратегий, полученных на модели, исследуется чувствительность результатов к допущениям, сделанным при построении модели, поскольку правомерность этих допущений можно проверить лишь в процессе использования модели. Если окажется, что основные допущения некорректны, возможно, придется вернуться к этапу моделирования, но часто удается улучшить модель, незначительно модифицировав исходный вариант. Обычно также исследуют чувствительность модели к тем аспектам проблемы, которые были исключены из формального анализа на этапе, когда ставилась задача и ограничивалась степень ее сложности.
7. Внедрение результатов. Если исследование проводилось по описанной выше схеме, то шаги, которые необходимо предпринять для внедрения результатов, достаточно очевидны. Заметим, что на последнем этапе может выявиться неполнота исследования на тех или иных этапах и необходимость их пересмотра, т.е. понадобится повторить какие-то этапы.
В заключение еще раз заметим, что возможности системного подхода огромны, но предлагаемые для исследования естественно-научные проблемы не всегда требуют использования арсенала системного подхода. Этот подход не отменяет и не заменяет классические исторически сложившиеся методы изучения природы - он его дополняет и обогащает, определяя специфику современного естествознания.
5.Эволюция взглядов на пространство и время
5.1 Пространство и время в естествознании
Пространство и время - фундаментальные категории современного естествознания'. Физические, биологические, географические и другие величины непосредственно или опосредованно связаны с пространственно-временными характеристиками объектов. Ученые ведут дискуссии о сущности пространства и времени, об их основных свойствах. Проблемы пространства и времени во многом решаются в рамках господствующей в данную эпоху парадигмы. Картинам мира разных исторических эпох с присущими им культурами соответствовали свои пространственно-временные представления. Более того, выбор самих моделей пространства и времени зависит от конкретных целей и масштабов, в которых существует изучаемое явление или объект.
Нашим далеким предкам мир представлялся маленьким и кратковременным; для них пространство замыкалось видимыми очертаниями моря и гор [1]. Пространство первобытных людей было очень неоднородным. На территории племени выделялись тотемные центры - места, где пространство, по мнению членов племени, обладало максимально благоприятными качествами. Место обитания племени было также благотворным пространством, ибо здесь похоронены предки, охраняющие племя. За относительно упорядоченным пространством племенной территории; располагалось внешнее пространство, наделенное отрицательны^ ми качествами. Развитие межплеменных связей обусловило появление представлений о множественности оазисов упорядоченного бытия. Постепенно мифологический мир приобретает многоуровневый характер: верхний уровень предков или иных сакральных персонажей, средний уровень людей и нижний уровень мертвых. Подобные уровни объединяются с помощью "мирового древа", креста и т.п.
Что касается восприятия времени, то первобытное мышление не ощущало как однородные следующие друг за другом отрезки времени и приписывало некоторым периодам дня и ночи, лунного месяца, года и т.д. свойство оказывать благоприятное или гибельное влияние. В более развитой мифологии каждому уровню мира присуще свое время, отличающееся такими параметрами, как ритм, длительность и т.п. Для мифологического времени характерна ориентация на прошлое. Мифологический прамир помещается в то время, когда еще не было времени, оно само еще созидалось. Более того, мифологическое время, соотнесенное с прошлым, оказывается вместе с тем настоящим и даже будущим, так как первобытные представления порождены циклическим видением времени. Колесо времени двигалось из прошлого, захватывало настоящее и через будущее уносило их в прошлое. Прошлое претерпевало изменения, аккумулируя достижения первобытного мышления и познания.
Древним грекам мир не представлялся столь маленьким [1]. Они были смелыми мореплавателями; установили торговые и культурные связи со многими народами, населявшими берега Средиземного моря. Древнегреческому ученому Эратосфену удалось определить длину земной окружности. В античной натурфилософии на смену опоясывающему Землю Океану приходит линейно упорядоченная река времени, которая катит свои воды из прошлого через настоящее в будущее, унося нас из детства в старость. (Эту линейную модель восприняло христианство, где присутствуют три момента времени: сотворение мира, распятие Христа и загробный мир - конечный пункт. Однако в христианстве река времени потекла вспять: настоящее непрерывно переходит из будущего в прошлое. Здесь более приемлем образ песочных часов. Бог сотворил время и, отмерив нужное количество, "засыпал" его в верхнее отделение часов - это и есть будущее, которое через отверстие (настоящее) стекает в нижнее отделение - в прошлое.)
В античности существовал широкий спектр представлений о сущности пространства и времени. Представители элейской школы в Древней Греции отрицали возможность существования пустого пространства, или, по их выражению, небытия.
Эмпедокл, поддерживая учение о невозможности пустоты, высказывался в пользу реальности изменения и движения, считая, что пустого пространства не существует, и в качестве доказательства указывал: если рыбы передвигаются в воде, следовательно, все объекты также существуют в определенной среде. Напротив, Демокрит утверждал, что пустота существует и необходима для перемещений и соединений атомов. У древнегреческого математика Евклида пространственные характеристики объектов обрели строгую математическую форму. В это время зарождаются геометрические представления об однородном и бесконечном пространстве, высказываются предположения о шарообразности Земли и о Солнце как центре Вселенной.
В античное время возникает первая целостная система мира -геоцентрическая система К. Птолемея, в которой планеты, Солнце и другие небесные тела обращаются вокруг Земли по орбитам, представляющим сложное сочетание круговых орбит -деферентов и эпициклов. В центр деферента помещалась Земля, и принималось, что планета движется по эпициклу (системе эпициклов), центр которого равномерно перемещается по деференту. Система Птолемея представляла собой универсальную модель мира, где время было бесконечным, а пространство - конечным, в котором происходит равномерное круговое движение небесных тел вокруг неподвижной Земли.
Согласно Библии, Вселенная состоит из круглой плоской Земли, накрытой сверху твердым куполообразным небесным сводом, под которым движутся облака и небесные светила. Все религии зиждятся на том, что мир был некогда сотворен, и при этом называют срок 6-9 тыс. лет.
Начиная с XV в. представления о пространстве и времени значительно расширяются. Этому активно способствовали Великие географические открытия, давшие представления о пространстве в пределах Земли и эмпирически доказавшие шарообразность нашей планеты. Изменение научной картины мира произошло с появлением гелиоцентрической системы мира, предложенной Н. Коперником (1543), где Солнце - центральное тело, вокруг которого обращаются планеты. Гелиоцентрическая система мира сменила представление о Земле как центре мироздания. Теория Коперника направила движение естественнонаучной мысли к признанию безграничности и бесконечности пространства. Система мира Коперника унаследовала высказанные ранее, но не воспринятые современниками идеи Аристарха Самосского (III в. до н.э.), который полагал, что звезды и Солнце неподвижны, Земля вращается вокруг Солнца по окружности, расстояние от Земли до звезд бесконечно большое, а также мыслителя раннего Возрождения Николая Кузанского (XV в.), который утверждал, что Земля, как и любое другое тело, не может быть центром Вселенной. Развитие взглядов Николая Кузанского и Коперника получило в теории Дж. Бруно, который связал бесконечность Вселенной и пространства. Бруно писал, что Вселенная должна быть бесконечной благодаря возможности и сообразности бытия бесчисленных миров, подобных нашему.
В начале XVII в. И. Кеплер в гелиоцентрической картине движения планет увидел действие единой физической силы. Он установил универсальную зависимость между периодами обращения планет и средними расстояниями их до Солнца, ввел представление об их эллиптических орбитах.
Огромную роль в развитии представлений о пространстве сыграл сформулированный Г. Галилеем принцип относительности, расширение которого во многом привело к современным научным представлениям о пространстве и времени. Он заметил, что, находясь в помещении под палубой корабля и наблюдая за всем, что там происходит, нельзя определить, покоится корабль или он движется равномерно и прямолинейно. Галилей сделал вывод, что механическое движение относительно, а законы, которые его определяют, абсолютны, т.е. безотносительны. Его взгляды коренным образом отличались от общепринятых в то время представлений Аристотеля о существовании "абсолютного покоя" и "абсолютного движения".
Дальнейшее развитие представлений о пространстве и времени связано с именем Р. Декарта, который полагал, что все явления природы объясняются механическим взаимодействием элементарных материальных частиц. Взаимодействие он представлял в виде давления или удара при соприкосновении частиц друг с другом и ввел, таким образом, в естествознание идею близкодействия. Он поставил знак равенства между материальностью и протяженностью, т.е., отрицая пустое пространство, отождествил пространство с протяженностью.
Новая картина мира была предложена И. Ньютоном. Распространив на всю Вселенную закон тяготения, он пришел к выводу, что Вселенная бесконечна. Лишь в этом случае в ней может находиться множество космических объектов - центров гравитации, связанных между собой силой тяготения. Пространство и время Ньютон характеризует как вместилища самих себя и всего существующего: во времени все располагается в порядке последовательности, в пространстве - в порядке положения. При этом Ньютон различал два типа понятий пространства и времени - абсолютные (истинные, математические) и относительные (кажущиеся, обыденные). Абсолютное время само по себе и без всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью, а абсолютное пространство безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное время есть постигаемая чувствами внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного времени (час, день, месяц, год), а относительное пространство есть мера или какая-либо его ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которая в обыденной жизни принимается за пространство неподвижное. Для своих построений Ньютон использовал модели абсолютного пространства и времени.
Немецкий ученый Г.В. Лейбниц развивал реляционную концепцию пространства и времени, отрицающую существование пространства и времени как абсолютных сущностей. Указывая на чисто относительный (реляционный) характер пространства и времени, Лейбниц считал, что пространство и время есть нечто относительное (пространство - порядок сосуществования, а время - порядок последовательностей) и не могут рассматриваться в отрыве от самих "вещей". Однако идеи Лейбница о пространстве и времени не получили распространение среди его современников.
Ньютоновская концепция пространства и времени и принцип относительности Галилея, на основе которых строилась физическая картина мира, господствовали вплоть до конца XIX в. Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной стало основой для теории дальнодействия. В качестве дальнодействующей силы выступало тяготение, которое с бесконечной скоростью, мгновенно и прямолинейно распространялось на бесконечные расстояния. Эти мгновенные, вневременные взаимодействия объектов служили физическим каркасом для обоснования абсолютного пространства, существующего независимо от времени.
Изучение электромагнитных явлений выявило ряд существенных отличий их свойств от механических свойств тел. Если в механике Ньютона силы зависят от расстояний между телами и направлены по прямым, то в электродинамике (теории электромагнитных процессов), созданной в XIX в. английскими физиками М. Фарадеем и Дж. К. Максвеллом, силы зависят от расстояний и скоростей и не направлены по прямым, соединяющим тела, распространение же сил происходит не мгновенно, а с конечной скоростью. Из этого вытекал вывод о конечной скорости распространения электромагнитных взаимодействий и существовании электромагнитных волн. Свет, магнетизм, электричество стали рассматриваться как проявление единого электромагнитного поля. Открытие существования поля в пространстве между зарядами и частицами было значимо для описания свойств пространства и времени. Перенос принципа относительности на электродинамику не представлялся возможным, так как в то время считалось, что все пространство заполнено особой средой - эфиром, натяжения в котором истолковывались как напряженности электрического и магнитного полей. Эфир не влиял на механические движения тел, но на электромагнитных процессах движение относительно эфира ("эфирный ветер") должно было сказываться. В частности, предполагалось, что "эфирный ветер" должен влиять на распространение света. Однако попытки обнаружить "эфирный ветер" не увенчались успехом. Так, американский физик А. Майкельсон поставил опыт, который доказывал независимость скорости света от движения Земли. Результаты опыта Майкельсона не поддавались объяснению с помощью понятий классической механики.
Расширение представлений о пространстве и времени связано с распространением принципа относительности Галилея на системы отсчета, которые движутся по отношению друг к другу равномерно и прямолинейно под действием инерции (инерциальные системы отсчета) со скоростями, сопоставимыми со скоростью света с. Для таких систем X. Лоренц предложил преобразования, носящие его имя. При v " с преобразования Лоренца переходят в преобразования Галилея, но если скорость v сопоставима со скоростью света с, то проявляются существенные отличия от нерелятивистской картины пространства - времени:
О события, которые происходят одновременно в одной системе отсчета, перестают быть одновременными в другой; меняется и закон преобразования скоростей;
О пространственные и временные промежутки не остаются неизменными при переходе из одной системы отсчета в другую, движущуюся относительно первой со скоростью v.
Важный шаг в понимании сущности пространства и времени связан с созданием А. Эйнштейном (1905) специальной теории относительности. Он показал, что в преобразованиях Лоренца отражаются не реальные изменения размеров тел при движении (что можно представить лишь в абсолютном пространстве), а изменения результатов измерения в зависимости от движения системы отсчета. Относительными оказывались и "длина", и "промежуток времени" между событиями, и даже "одновременность" событий, иначе говоря, не только всякое движение, но и пространство, и время. Исходя из невозможности обнаружить абсолютное движение, Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два постулата, делавших излишней гипотезу о существовании эфира и составивших основу обобщенного принципа относительности:
1) все законы физики одинаково применимы в любой инерциальной системе отсчета и не должны меняться при преобразованиях Лоренца;
2) свет всегда распространяется в свободном пространстве с одной и той же скоростью независимо от движения источника.
В рамках общей теории относительности Эйнштейна считается, что структура пространства-времени определяется распределением масс материи. Так, в классической механике принимается, что если бы вдруг все материальные вещи исчезли, то пространство и время остались бы. Согласно теории относительности, пространство и время исчезли бы вместе с этими вещами.
Пространство и время в различных отраслях естествознания
В современной науке используются такие понятия, как физическое, геологическое, географическое, биологическое, психологическое, социальное пространство и время [4, 11, 12 и др.]. Проиллюстрируем это на двух видах пространства и времени - биологическом и психологическом.
Биологическое пространство и время характеризуют специфические пространственно-временные свойства параметров органической материи: асимметрию расположения атомов в молекулах белка и нуклеиновых кислот; собственные временные ритмы и темпы изменения внутриорганизменных и надорганизменных биосистем; взаимосвязь и синхронизацию ритмов друг с другом, а также с вращением Земли вокруг оси и сменой времен года.
Для анализа биологического времени человека полезно обратиться к рис. 5.1 [2], где дана зависимость темпа биологического времени человека от его физического возраста. График построен на основе анализа данных о длительности заживления ран, температуре тела, составе крови, концентрации ДНК в организме, содержании глюкозы в тканях и показывает, что если для 10-летнего человека принять темп биологического времени за один год, то в трехлетнем возрасте этому времени соответствует 6 лет, а в 70-летнем - всего несколько месяцев. Аналогичные графики построены для рыб, мух дрозофил, мышей, лошадей, моллюсков. Более того, такие графики зависимости темпа времени системы от его возраста можно строить и для неживой природы в виде графика скорости разрушения горных систем разного возраста, скорости роста оврага на разных стадиях его развития и т.д.
Психологическое пространство и время характеризуют основные структуры пространства и времени, связанные с восприятием и так называемыми перцептивными (вкусовыми, визуальными и т.д.) полями. Исследователями выявлены неоднородность перцептивного пространства, его асимметрия, эффект обратимости времени в бессознательных и транспсихических процессах, а также синхронизм психических процессов, состоящий в одновременном параллельном проявлении идентичных психических переживаний у двух или нескольких человек. Для иллюстрации психологического времени можно привести широко известное высказывание немецкого философа А. Шопенгауэра о том, что в детстве время идет очень медленно, в юности - быстрее, но все равно еле "передвигает ноги", в зрелом возрасте оно уже "идет в ногу" со старением, а в старости мчится, как стрела. Конечно же, каждый человек испытывал моменты, когда время "мчится, как стрела" или "тянется, как резина". Проиллюстрировать различное восприятие пространства можно, например, напомнив о том, что одно и то же помещение одним людям может казаться большим, а другим - маленьким.
Кроме рассмотренных типов пространства и времени в литературе обсуждаются проблемы геологического, географического, социального и других типов пространств и времен, выделяются их специфические черты и характерные особенности. При этом обычно анализируются неоднородность пространственно-временных структур, специфические пространственные отношения между элементами, ритмы и темпы изменения, ускорение или замедление темпов развития рассматриваемых в конкретной отрасли естествознания объектов.
5.2 Свойства пространства и времени
Самостоятельность пространства и времени
До настоящего времени нет единой модели пространства и времени, применимой во всех областях естествознания. Скорее можно говорить о выборе и создании подходящей модели пространства и времени для решения конкретных задач в разных отраслях науки о природе. Выбор некоторой модели пространства и времени или ее изменение имеет смысл лишь в случае, если это приведет к новой исследовательской программе, способствующей более глубокому проникновению в сущность изучаемого явления, получению нового знания.
Существуют разные подходы к решению проблемы о таких специфических свойствах пространства и времени, как самостоятельность, мерность, симметрия, обратимость, кривизна, соотношение физического и геометрического подходов [5, 10, 11, 13, 14]. Одно из наиболее обсуждаемых свойств пространства и времени связано с выявлением его самостоятельной сущности. Здесь-говорят о двух концепциях: субстанциальной и реляционной (релятивистской).
Субстанциальная концепция подразумевает, что при описании природных процессов используются средства классической механики и пространство и время воспринимаются как нечто самостоятельное: пространство - некоторое пустое вместилище тел, а время - нечто протекающее равномерно и иначе называющееся длительностью. Само слово "субстанция" (от лат. substantia - сущность; то, что лежит в основе) подразумевает нечто относительно устойчивое или, другими словами, то, что существует само по себе, не зависит ни от чего другого.
В связи с самостоятельностью сущности пространства и времени возникает потребность в поиске специфических их свойств. В литературе эта проблема рассматривается применительно ко времени. Например, советский астрофизик Н.А. Козырев в 1963 г. в своей работе "Причинная механика и возможность экспериментального исследования свойств времени" обратил внимание на следующие обстоятельства [10]. Большинство законов механики по отношению ко времени симметрично. Однако в действительности наблюдается направленное развитие мира. Несимметричность этого процесса обычно объясняется переходом систем из маловероятного состояния в более вероятное. Но реальная картина наблюдаемой Вселенной противоречит этому утверждению. Козырев предположил, что несимметричность есть свойство самого времени, а ход времени должен быть универсальной постоянной и определяться по отношению к некоторому инварианту, которым может служить пространство. Он ввел три аксиомы причинности: 1) причины и следствия всегда разделяются пространством; 2) причины и следствия всегда разделяются временем; 3) время обладает абсолютным свойством, отличающим будущее от прошедшего. Если это так, то в пространстве-времени должна существовать точка, не принадлежащая ни причине, ни следствию, а наличие хода времени должно служить объяснением того, что при изотропности пространства (независимости свойств физических явлений от направления) в нем всегда различаются правое и левое начала.
Реляционная (релятивистская) концепция используется в случае, если описание явлений действительно требует привлечения теории относительности А. Эйнштейна, где пространство и время существуют постольку, поскольку существует материя, т.е. если вдруг исчезнет материя, то исчезнет и пространство, и время. Эта концепция отрицает самостоятельную сущность пространства и времени, рассматривая время как отношение или систему отношений между физическими событиями. В ее рамках для времени наиболее ясно раскрываются отношения раньше-позже, очень важные с точки зрения причинно-следственного анализа.
Мерность пространства и времени
В литературе обсуждается такое свойство пространства и времени, как их мерность. Обычно под мерностью понимают количество замеров, которые следует сделать для однозначного определения места некоторой точки. Так, чтобы однозначно определить место точки в пространстве в фиксированный момент времени, необходимо и достаточно указать три ее координаты. В наиболее привычной прямоугольной декартовой системе координат это x, y, z- длина, ширина и высота (рис. 5.2, а); в сферической системе координат требуется указать радиус-вектор г и углы а и (3 (рис. 5.2, б); в цилиндрической системе -высоту h, радиус-вектор г и угол а (рис. 5.2, в).
Считается, что все материальные процессы и взаимодействия реализуются именно в пространстве трех измерений. В одномерном (линия) или двухмерном (плоскость) пространстве не могут происходить взаимодействия частиц и полей. Три измерения являются необходимым и достаточным минимумом, в рамках которого могут осуществляться все типы взаимодействий материальных объектов. В настоящее время не известно каких-либо форм движения и взаимодействия, которые требовали бы четырех- или пятимерного пространства, и возможность таких процессов не вытекает ни из каких установленных законов природы.
В литературе нередки рассуждения о возможности существования пространств большего количества измерений. Так, в последнее время была выдвинута гипотеза о реальных 11 измерениях в области микромира в первые моменты рождения нашей Вселенной: 10 - пространственных и одно - временное; затем они образуют 4-мерный пространственно-временной континуум. Эта гипотеза связана со следующими обстоятельствами. В математике и физике широкое применение получило представление о многомерных (и-мерных) пространствах. Данная математическая абстракция играет важную роль. Каждая координата многомерного пространства может указывать на какое-то любое свойство рассматриваемой физической реальности - температуру, плотность, скорость, массу и т.д. Если число таких параметров вместе с пространственно-временными характеристиками равно п, то считается, что они образуют "-мерное пространство, а конкретные значения свойств определяются как точки в "-мерном пространстве. При достаточно большом количестве свойств и взаимосвязанных переменных можно прийти к понятию многомерного и даже бесконечномерного пространства. Однако понятие пространства здесь имеет условный характер, так как применяется для характеристики совершенно других свойств.
Что касается мерности времени, то чаще всего указывают на его одномерность: для определения времени достаточно задать одну координату. По мнению СТ. Мелюхина, если бы время имело не одно, а два, три измерения и больше, то это означало бы, что параллельно нашему миру существуют аналогичные и никак не связанные с нашим миры-двойники, в которых те же события разворачиваются в той же последовательности. Соответственно у каждого человека должны были бы существовать двойники в каждом из параллельных миров. Но для таких предположений нет оснований [19].
Другой точки зрения придерживается российский географ Ю.Г. Симонов [5]. Он полагает, что вполне возможно предложить двухмерную модель времени, полезную для описания и изучения некоторого класса событий, и рассматривает ее на примере некоторых географических явлений. Здесь следует вспомнить о двух типах времени - солнечном и лунном. С фазами лунного и солнечного календарей могут быть связаны различные события. Известно, что эти векторы времени независимы и не совпадают по фазам, а их периоды не являются кратными друг другу. Так, изучая явления на Земле, можно отыскать среди них те, которые связаны лишь с гравитационными полями Земля - Луна и Земля - Солнце. Эти поля могут накладываться друг на друга, то суммируясь, то вычитаясь. В таком случае можно говорить об изучении гравитационной системы из трех тел. В такой системе количество векторов времени совпадает с количеством степеней свободы. Пусть в пространстве двух векторов времени ось х совпадает с вектором солнечного времени, а ось у - с лунным. В фазу новолуния силы лунного и солнечного притяжений складываются, а в фазу полнолуния - вычитаются. Поэтому в фазу новолуния максимальные гравитационные возмущения испытывают Земля и Солнце, а в фазу полнолуния - Луна и Солнце; минимум гравитационной напряженности Земли приходится на полнолуние, когда гравитационные поля вычитаются. Таким образом, на Земле гравитационная напряженность нарастает от полнолуния к новолунию, а затем убывает. При нарастании гравитационной волны возникают одни эффекты, а на фоне убывания (снятия) напряженности - другие! Так, тектонические трещины в разные фазы сжимаются и расширяются; процессы, связанные с трещинно-поровым давлением грунтовых вод, протекают с разной силой и т.д.
В общем случае, по мысли Симонова, векторов времени может быть не два, а больше. Выбор модели многомерного времени (в частности, определение количества временных векторов) удается осуществить довольно просто в том случае, когда изучаемые процессы причинно не зависят друг от друга и их можно представить себе как циклически проявляющиеся, причем циклы могут длиться не часами и сутками, а годами, столетиями и даже тысячелетиями.
Симметрия и асимметрия пространства и времени
Симметрия - одно из свойств пространства и времени. Это свойство заключается в переходе объектов в самих себя или друг в друга при осуществлении определенных преобразований. В наиболее широком смысле симметрия - свойство неизменности (инвариантности) отдельных сторон, процессов и отношений объектов относительно некоторых преобразований. Симметричными могут быть вещи, процессы, геометрические фигуры, математические уравнения, живые организмы, произведения искусства и т.д. Преобразования симметрии могут быть и реальными, и мысленными (пространственный сдвиг, вращение, зеркальное отражение в пространстве, зарядовое сопряжение - замена частицы на античастицу).
Представления о симметрии имеют большое значение практически во всех отраслях естествознания. Истоки этого понятия восходят к античным представлениям о гармонии, которые имели преимущественно эстетический смысл соразмерности, уравновешенности, упорядоченности, красоты и совершенства. Специальные научные разработки понятия симметрии начались в XIX в. в кристаллографии. Усилиями И. Гесселя (Франция), А. Шенфлиса (Германия), А.В. Гадолина и Е.С. Федорова (Россия) было создано учение о пространственной симметрии, в котором выделены 230 возможных групп симметрии. Внутренняя симметрия определяется молекулярным строением вещества, о чем свидетельствуют формы кристаллов природных минералов различного химического состава и их кристаллической решетки (рис. 5.3). Особенно совершенных форм можно добиться, выращивая искусственные кристаллы.
В окружающем нас мире преобладают два вида симметрии -зеркальная, или билатеральная, симметрия и радиально-лучевая [20]. Как оказалось, все, что растет или движется вертикально относительно земной поверхности, имеет радиально-лучевую симметрию в виде веера пересекающихся плоскостей симметрии, а все, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии (одна плоскость симметрии). Однако известно, что земное тяготение влияет лишь на внешнюю форму природных тел. Следовательно, форма любого объекта связана как с его внутренними свойствами, так и с внешними факторами, воздействующими на этот объект.
Соотношения внутренней и внешней симметрии получили отражение в принципе симметрии П. Кюри. В упрощенной^ форме он звучит так: симметрия порождающей среды накладывается на симметрию тела, образующегося в этой среде. Получившаяся в результате форма тела сохраняет только те элементы своей собственной симметрии, которые совпадают с наложенными на него элементами симметрии среды.
Идея симметрии лежит в основе многих исследований современной науки. Так, Ф. Клейн (Германия), рассматривавший различные геометрии как теории инвариантов определенных групп преобразований, внес существенный вклад в формирование современного понятия симметрии, тесно связав его с понятием инвариантности и теории групп. Теоремы Э. Нетера (Германия) позволили связать пространственно-временную симметрию (инвариантность) уравнений математической физики с сохранением фундаментальных физических величин - энергии им пульса, момента количества движения. В дальнейшем исследование взаимосвязи принципов симметрии с законами сохранения стало одним из магистральных направлений развития физики.
В химии и биологии на первый план часто выходит асимметрия как определенное нарушение симметрии, особенно характерное для живых организмов на молекулярном и морфологическом уровнях их структурной организации. Эволюционное развитие материи от простых химических соединений к сложным органическим и биологическим системам обнаруживает общую тенденцию уменьшения степени симметрии и соответственно возрастание асимметрии. В.И. Вернадский видел в симметрии ключ к разделению живой и неживой природы, указывая на то, что правизна и левизна в мире кристаллов не играют принципиальной роли, а для живых организмов наблюдается иная картина. Л. Пастер показал, что в продуктах биохимических процессов преобладают либо правые, либо левые изомеры вещества. В обобщенном виде в биологии установлено, что пространство, занимаемое живым веществом, характеризуется асимметрией. Следует также отметить, что в мире кристаллов отсутствуют оси симметрии пятого, седьмого, восьмого и более высоких порядков, а в мире растений и простейших животных они встречаются достаточно часто.
Обратимость пространства и времени
Обратимость пространства и времени - свойство, тесно связанное с симметрией. Как известно, в каждую точку пространства можно снова и снова возвращаться. В этом отношении пространство является как бы обратимым. Что касается времени, то обычно подчеркивается его необратимость, означающая однонаправленное изменение от прошлого к будущему: нельзя возвратиться назад в какую-либо точку времени, но нельзя и перескочить через какой-либо временной промежуток в будущее. Отсюда делается вывод, что время составляет как бы рамки для причинно-следственных связей.
В более общем виде решение проблемы обратимости связано с рассмотрением двух противоположных концепций - статической и динамической [13].
Согласно статической концепции времени, события прошлого, настоящего и будущего существуют в известной мере одновременно. Кроме того, все физические законы инвариантны относительно замены знака времени, поскольку время в уравнениях движения классической и квантовой механики берется в квадрате. Это наводит на мысль, что все физические процессы могут происходить одинаково как в прямом направлении, так и в обратном. Если это действительно так, то имеется принципиальная возможность, перемещаясь во времени, оказываться в событиях прошлого или будущего, а также возвращаться из них в настоящее. Статическая концепция допускает возможность построения "машины времени" и некоторые другие эффекты и парадоксы. Так, если течение времени зависит от скорости движения его носителя, то можно принять парадокс близнецов в теории относительности, о котором говорилось ранее, а именно: возвратившийся из космического путешествия космонавт по существу попадает в свое будущее, а его брат, оставшийся на Земле, встречается со своим прошлым. Эти события происходят одновременно, т.е. в некоторый момент времени встречаются настоящее с прошлым и настоящее с будущим. В такой встрече отсутствует симметрия: один и тот же человек не встречается сразу и со своим прошлым, и со своим будущим.
Еще один пример. Свет от различных звезд долетает до нас за разные интервалы времени; следовательно, об их современном состоянии мы ничего не знаем, а изучаем их далекое прошлое, принимая его за настоящее.
В науках о Земле также обсуждаются такие явления. Еще в 1938 г. российский географ акад. К.К. Марков описал явление, которое он назвал метахронностью. Оно проявляется в том, что наступление и чередование фаз и стадий развития геосистем происходят несинхронно в разных частях земного шара, даже если эти геосистемы располагаются на одной широте. Например, установлено, что формирование ледникового щита Антарктиды началось значительно раньше, чем оледенение в Северном полушарии.
В настоящее время в науках о Земле обсуждают такое явление, как полихронность, которая предполагает одновременное наличие нескольких пластов времени в одном объекте. Все они существуют в настоящем, но, располагая их в некоторой хронологической последовательности, можно самые древние из них называть прошлым, средней давности - настоящим, а самые молодые - будущим. Полихронность свойственна многим природным явлениям. Поэтому статическая концепция не так уж нелепа, как ее иногда пытаются представить [5].
Динамическая концепция времени противоположна статической: в ней есть лишь настоящее, прошлое существовало, а будущее только еще будет существовать. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события - это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те явления, которые реально существуют и способны к взаимодействию между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов.
В рамках динамической концепции невозможно построение "машины времени" для перемещения в прошлое и будущее. Если бы путешествие в прошлое было реально возможным, тогда, дойдя до некоторого момента, "машина времени" исчезла бы вместе с экипажем, поскольку в прошлом их реально не существовало. А при путешествии в будущее надо еще воссоздать некоторый будущий мир из ничего, куда-то "спрятав" существующий мир, чтобы затем возвратиться в него.
С этой концепцией связана неопределенность понятия настоящего, поскольку неясно, какой именно отрезок времени можно считать настоящим - миг, день или более продолжительное время. (Эта проблема стоит и перед представителями гуманитарных дисциплин, например современность в истории.) Представление о настоящем можно предельно сузить, выбирая все более и более короткие отрезки времени и доведя их до интервала, достаточного для того, чтобы его невозможно было принять за настоящее. Появляется ощущение, что нет не только прошлого и будущего, но и настоящего. Все, что было, - уже прошлое, все последующее - еще в будущем. Но настоящее может быть и расширено в зависимости от сопоставляемых интервалов и масштабов события до часа, дня, года и т.д.
Обычно говорят, что для объектов и явлений настоящее время охватывает тот интервал, в течение которого они физически могут взаимодействовать между собой путем обмена веществом и энергией. Если бы скорость распространения воздействий была бесконечной, то это настоящее представляло бы собой сколь угодно малый миг, дающий мгновенное сечение всех событий во Вселенной - настоящих, прошлых и будущих. Но скорость распространения воздействий конечна и, по современным представлениям, не превышает скорости света в вакууме. Поэтому физически проявляющееся во взаимодействиях настоящее материальных систем охватывает тот временной интервал, в течение которого они способны провзаимодействовать. Для элементарных частиц это будут очень малые отрезки времени, но для Галактики они возрастают до сотни тысяч лет. Внутри этого настоящего для крупных систем могут укладываться события прошлого, настоящего и будущего малых систем, существующих намного меньшее время. Только сейчас мы воспринимаем излучение от звезд и галактик, испущенное тысячи и миллионы лет назад. Взаимодействия между ними могут осуществляться в течение миллионов лет в обоих направлениях. Отсюда следует относительность понятия настоящего. При этом из систем будущего никаких воздействий и информации не может поступать, ибо эти системы еще не возникли, не обладают реальным существованием. Действие всегда происходит только в одном направлении: от прошлого к настоящему и от настоящего к ближайшему будущему, в которое настоящее переходит, но никогда наоборот. Принято считать, что последнее исключается законом причинности.
...Подобные документы
Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.
учебное пособие [3,2 M], добавлен 21.09.2010Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.
учебное пособие [49,9 K], добавлен 27.01.2010Эмпирические методы познания. Идеи античной науки. Законы классической механики. Становление химии, историческая система знания. Масштаб мегамира, измерение и рост между его объектами. Признаки живой системы. Структурные уровни организации живой материи.
контрольная работа [62,2 K], добавлен 08.06.2013Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.
книга [353,5 K], добавлен 21.03.2009Эволюция познавательной деятельности от античных времен до современности. Специфические черты науки; ее первоначальное деление на естественнонаучные и гуманитарные знания, их дальнейшее объединение в дисциплину "концепции современного естествознания".
курсовая работа [38,8 K], добавлен 08.05.2011Эволюция научного метода и естественнонаучной картины мира. Развитие научных исследовательских программ. Пространство, время и симметрия. Системные уровни организации материи. Порядок и беспорядок в природе. Панорама современного естествознания.
курс лекций [47,6 K], добавлен 15.01.2011Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.
лекция [28,4 K], добавлен 18.01.2012Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.
реферат [54,1 K], добавлен 29.12.2009Предпосылки возникновения и история развития естествознания, его значение как науки. Виднейшие философы античности, их взгляды и особенности мировоззрения. Характеристика эпохи средневековья. Строение и состав Вселенной. Этапы развития основных наук.
курсовая работа [27,0 K], добавлен 29.04.2009Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.
шпаргалка [136,9 K], добавлен 12.02.2011Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.
контрольная работа [49,2 K], добавлен 06.10.2012Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.
контрольная работа [40,6 K], добавлен 18.11.2009История и этапы развития естествознания и общества, их взаимодействие. Новейшая революция в естествознании. Дифференцированные знания о сферах деятельности людей. Становление теоретического естествознания, основанного на экспериментах и наблюдениях.
реферат [22,1 K], добавлен 29.07.2010Эмпирический и теоретический уровни и структура научного познания. Анализ роли эксперимента и рационализма в истории науки. Современное понимание единства практической и теоретической деятельности в постижении концепции современного естествознания.
контрольная работа [18,7 K], добавлен 16.12.2010Определение понятия естествознания. Естествознание подразделяется на фундаментальные, прикладные, естественные, технические науки, социальные и гуманитарные науки. История развития науки и её зарождение. Естествознание в античности и в средние века.
реферат [26,4 K], добавлен 12.12.2010Место естествознания в современной научной картине мира. Вклад средневековой науки в развитие научного знания. Пример смены парадигм в археологии – борьба концепций эволюционизма и миграционизма. Развитие науки в Средние века, вклад Леонардо да Винчи.
реферат [31,6 K], добавлен 09.12.2010Сущность донаучного, вненаучного (обыденного) и научного познания. Представления о материи, суть эффекта замедления времени в теории относительности. Формулировки второго начала термодинамики, понятие "химическая связь", этапы и проблемы антропогенеза.
контрольная работа [54,5 K], добавлен 05.02.2010Определение естествознания как отрасли научного познания, его отличие от других наук, разделы естествознания. Наука как одна из форм общественного сознания. Описание и объяснение различных процессов и явлений действительности как основные цели науки.
реферат [19,6 K], добавлен 16.04.2011Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.
реферат [30,2 K], добавлен 11.02.2011История естествознания: древнегреческий период. Черты научного знания на эллинистическом этапе. Древнеримский период античной натурфилософии. Вклад арабского мира в ее формирование. Развитие знаний в средневековой Европе. Сущность научной революции.
презентация [1,4 M], добавлен 10.11.2014