Обмены веществ, происходящие в клетках человека
Прокариоты и эукариоты, строение и функции клетки. Обмен веществ и превращения энергии в клетке. Понятие ассимиляции. Энергетический и пластический обмен. Фотосинтез и биосинтез белка. Процесс гликолиза в цитоплазме. Световая фаза и фотолиз воды.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 11.02.2014 |
Размер файла | 22,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное государственное бюджетное образовательное учреждение среднего профессионального образования
"Медицинский колледж" Управления делами Президента Российской Федерации
Специальность: "Лечебное дело"
Реферат
по микробиологии
Тема: "Обмены веществ, происходящие в клетках человека"
Москва 2013
Содержание
1. Строение и функции клетки
2. Обмен веществ и превращения энергии в клетке
3. Энергетический обмен
4. Пластический обмен. Фотосинтез
5. Пластический обмен. Биосинтез белка
6. Этапы биосинтеза
Список используемой литературы
1. Строение и функции клетки
По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты.
Прокариоты (безъядерные организмы) - примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариотов отсутствуют многие органоиды. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии и синезеленые водоросли (цианеи).
Эукариоты - истинно ядерные, имеют четко оформленное ядро и все основные структурные компоненты клетки. К эукариотам относятся растения, животные, грибы. Эукариотная клетка имеет сложное строение. Она состоит из трех неразрывно связанных частей:
1) наружной клеточной мембраны, у некоторых дополнительно имеется оболочка;
2) цитоплазмы и ее органоидов;
3) ядра.
Наружная клеточная мембрана - двумембранная клеточная структура, которая ограничивает живое содержимое клетки всех организмов. Обладая избирательной проницаемостью, она защищает клетку, регулирует поступление веществ и обмен с внешней средой, поддерживает определенную форму клетки. Клеточная мембрана состоит из двойного слоя фосфолипидов, обращенных друг к другу своими гидрофобными концами из радикалов высших жирных кислот; снаружи располагаются гидрофильные остатки фосфорной кислоты и глицерина. В билипидный слой мозаично вкраплены молекулы белков, одна часть которых пронизывает мембрану, а другая - располагается на поверхности или частично погружена в нее. С наружной стороны с белками и липидами соединены углеводы.
Вещества поступают в клетку различными путями: диффузно (низкомолекулярные ионы); осмосом (вода); активным транспортом (через специальные белковые каналы) с затратой энергии; с помощью эндоцитоза (крупные частицы).
Клетки растительных организмов, грибов кроме мембраны снаружи имеют еще и оболочку. Эта неживая клеточная структура состоит из целлюлозы, придает прочность клетке, защищает ее, является "скелетом" растений и грибов. В оболочке имеются поры, через которые идет поступление веществ.
В цитоплазме, полужидком содержимом клетки, находятся все органоиды.
Эндоплазматическая сеть (ЭПС) - одномембранная система канальцев, трубочек, цистерн, которая пронизывает всю цитоплазму. Она разделяет ее на отдельные отсеки, в которых идет синтез различных веществ, обеспечивает сообщение между отдельными частями клетки и транспорт веществ. Различают гладкую и гранулярную ЭПС. На гладкой - идет синтез липидов, на гранулярной - располагаются рибосомы и синтезируется белок.
Рибосомы - мелкие тельца грибовидной формы, в которых идет синтез белка. Они состоят из рибосомальной РНК и белка, образующих большую и малую субъединицы.
Аппарат Гольджи - одномембранная структура, связанная с ЭПС, обеспечивает упаковку и вынос синтезируемых веществ из клетки. Кроме того, из его структур образуются лизосомы.
Лизосомы - шарообразные тельца, содержащие гидролитические ферменты, которые расщепляют высокомолекулярные вещества, т. е. обеспечивают внутриклеточное переваривание.
Митохондрии - полуавтономные двумембранные структуры продолговатой формы. Наружная мембрана гладкая, а внутренняя имеет складки - кристы, увеличивающие ее поверхность. Внутри митохондрия заполнена матриксом, в котором находятся кольцевая молекула ДНК, РНК, рибосомы.
Количество митохондрий в клетках различно, с ростом клеток их число увеличивается в результате деления. Митохондрии - это "энергетические станции" клетки. В процессе дыхания в них происходит окончательное окисление веществ кислородом воздуха. Выделяющаяся энергия запасается в молекулах АТФ, синтез которых происходит в этих структурах.
Пластиды характерны для растительных клеток. Существуют три вида пластид: хлоропласты, лейкопласты и хромопласты.
Хлоропласты - полуавтономные двумембранные органоиды продолговатой формы, зеленого цвета. Внутренняя часть заполнена стромой, в которую погружены граны. Граны образованы из мембранных структур - тилакоидов. В строме имеются кольцевая молекула ДНК, РНК, рибосомы. На мембранах располагается фотосинтезирующий пигмент - хлорофилл. В хлоропластах протекает процесс фотосинтеза. На мембране тилакоида идут реакции световой фазы, а в строме - темновой.
Хромопласты - двумембранные органоиды шарообразной формы, содержащие красный, оранжевый и желтый пигменты. Хромопласты придают окраску цветкам и плодам, образуются из хлоропластов.
Лейкопласты - бесцветные пластиды, находящиеся в неокрашенных частях растения. Содержат запасные питательные вещества, могут на свету переходить в хлоропласты.
Кроме хлоропластов растительные клетки имеют и вакуоли - мембранные тельца, заполненные клеточным соком и питательными веществами.
Клеточный центр обеспечивает процесс деления клетки. Он состоит из двух центриолей и центросферы, которые образуют нити веретена деления и способствуют равномерному распределению хромосом в делящейся клетке. Характерны для животных клеток.
Ядро - центр регуляции жизнедеятельности клетки. Ядро отделено от цитоплазмы двойной ядерной мембраной, пронизанной порами. Внутри оно заполнено кариоплазмой, в которой находятся молекулы ДНК. Ядерный аппарат регулирует все процессы жизнедеятельности клетки, обеспечивает передачу наследственной информации. Здесь происходит синтез ДНК, РНК, рибосом. Часто в ядре можно увидеть одно или несколько темных округлых образований - ядрышек, в которых формируются и скапливаются рибосомы. Молекулы ДНК несут наследственную информацию, которая определяет признаки данного организма, органа, ткани, клетки. В ядре молекулы ДНК не видны, так как находятся в виде тонких нитей хроматина. Во время деления ДНК сильно спирализуются, утолщаются, образуют комплексы с белком и превращаются в хорошо заметные структуры - хромосомы.
Кроме перечисленных некоторые клетки имеют специфические органоиды - реснички и жгутики, которые обеспечивают движение, преимущественно одноклеточных организмов. Имеются они и у некоторых клеток многоклеточных организмов (ресничный эпителий). Реснички и жгутики представляют собой выросты цитоплазмы, окруженные клеточной мембраной. Внутри выростов находятся микротрубочки, сокращение которых приводит в движение клетку.
2. Обмен веществ и превращения энергии в клетке
Основой жизнедеятельности клетки является обмен веществ и превращение энергии. Обмен веществ - совокупность всех реакций синтеза и распада, протекающих в организме, связанных с выделением или поглощением энергии. Обмен веществ и энергии состоит из двух взаимосвязанных и противоположных процессов: ассимиляции и диссимиляции.
Ассимиляция, или пластический обмен, - совокупность реакций синтеза высокомолекулярных органических веществ, сопровождающихся поглощением энергии за счет распада молекул АТФ.
Диссимиляция, или энергетический обмен, - совокупность реакций распада и окисления органических веществ, сопровождающихся выделением энергии и запасанием ее в синтезируемых молекулах АТФ.
Все реакции обмена веществ идут в присутствии ферментов. АТФ является основным веществом, которое обеспечивает все энергетические процессы в клетке, запасает энергию в процессе энергетического обмена и отдает в процессе пластического обмена.
Единственным источником энергии на земле является солнце. Клетки растений с помощью хлоропластов улавливают энергию солнца, превращая ее в энергию химических связей молекул синтезированных органических веществ. В растениях идет первичный синтез органических веществ из неорганических: углекислого газа и воды за счет энергии солнца. Все остальные организмы используют готовые органические вещества, расщепляют их, а выделяющаяся энергия запасается в молекулах АТФ. Запасенная энергия расходуется в процессе пластического обмена на синтез органических веществ, специфичных для каждого организма. Часть энергии в процессе обмена веществ постоянно теряется в виде тепла, поэтому в системы живых организмов необходим постоянный приток энергии. Таким образом, солнечная энергия аккумулируется в органических веществах, а затем используется в процессе жизнедеятельности организма.
По способу питания, источнику получения органических веществ и энергии организмы делятся на автотрофные и гетеротрофные.
Автотрофные организмы синтезируют органические вещества в процессе фотосинтеза из неорганических (углекислого газа, воды, минеральных солей), используя энергию солнечного света. К ним относятся все растительные организмы, сине-зеленые водоросли (циано бактерии). К автотрофному питанию способны и хемо-синтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ: серы, железа, азота.
Гетеротрофные организмы получают готовые органические вещества от автотрофов. Источником энергии являются органические вещества, которые распадаются и окисляются в процессе диссимиляции. К ним относятся животные, грибы, многие бактерии.
Автотрофы способны усваивать неорганический углерод и другие элементы. Гетеротрофы усваивают только органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергии.
3. Энергетический обмен
Энергетический обмен состоит из трех этапов:
I этап - подготовительный. На первом этапе происходит расщепление высокомолекулярных органических веществ до низкомолекулярных в процессе реакций гидролиза, идущих при участии воды. Он протекает в пищеварительном тракте, а на клеточном уровне - в лизосомах. Вся энергия, выделяющаяся на подготовительном этапе, рассеивается в виде тепла.
Реакции подготовительного этапа:
белки + Н 20--" аминокислоты + С; углеводы + Н 20 --"глюкоза + ф; жиры + Н 20 --> глицерин + высшие жирные + кислоты
II этап - гликолиз, бескислородное окисление. Глюкоза является ключевым веществом обмена в организме. Все остальные вещества на разных стадиях втягиваются в процессы ее превращения. Дальнейшее расщепление органических веществ рассматривается на примере обмена глюкозы.
Процесс гликолиза протекает в цитоплазме. Глюкоза расщепляется до 2 молекул пировиноградной кислоты (ПВК), которые в зависимости от типа клеток и организмов могут превращаться в молочную кислоту, спирт или другие органические вещества. При этом выделяющаяся энергия частично запасается в 2 молекулах АТФ, а частично расходуется в виде тепла. Бескислородные процессы называются брожением.
Реакции гликолиза:
С 6Н 1206-+>2С 3Н 403+4Н-глюкоза
ПВК 2АТФ
2С 3Н 603 (молочная кислота) молочнокислое брожение
2С 2Н 5ОН + 2С 02 (этиловый спирт) спиртовое брожение
В результате ступенчатого расщепления глюкозы образуются 2 молекулы ПВК - С 3Н 403. При этом освобождаются еще 4 атома Н, которые соединяются с переносчиком НАД+, и образуются 2НАД * Н + Н+. Дальнейшая судьба ПВК зависит от наличия кислорода. В анаэробных условиях ПВК превращается в молочную кислоту или этанол с участием тех же двух молекул НАД * Н + Н+, которые возвращают водород. Если же процесс идет в аэробных условиях, то ПВК и 2НАД * Н + Н+ вступают в реакции биологического окисления.
III этап - кислородный. Биологическое окисление протекает в митохондриях. Пировиноградная кислота поступает в митохондрии, где преобразуется в уксусную кислоту, соединяется с ферментом-переносчиком и входит в серию циклических реакций - цикл Кребса. В результате этих реакций при участии кислорода образуются углекислый газ и вода, а на кристах митохондрий за счет выделяющейся энергии синтезируется 36 молекул АТФ.
Реакции кислородного этапа:
2С 3Н 403 + 602 + 4Н - 6С 02 + 6Н 20.
Таким образом, при расщеплении глюкозы на двух этапах образуется суммарно 38 молекул АТФ, причем основная часть - при кислородном окислении.
Процесс биологического окисления органических веществ называется дыханием.
4. Пластический обмен. Фотосинтез
Фотосинтез - процесс первичного синтеза органических веществ из неорганических (углекислого газа и воды) под действием солнечного света. Протекает у растений в хлоропластах. Выделяют две фазы фотосинтеза.
1. Световая фаза. Фотолиз воды. Синтез АТФ. Протекает на мембранах тилакоидов только при участии солнечного света. За счет энергии солнца протекают три группы реакций:
1) возбуждение хлорофилла, отрыв электронов и синтез АТФ за счет энергии возбужденных электронов;
2) фотолиз воды - расщепление молекулы воды;
3) связывание ионов водорода с переносчиком НАДФ.
Кванты света, попав на хлорофилл, приводят молекулу в возбужденное состояние. При этом электроны переходят в возбужденное состояние и проходят по электронной цепи на мембране до места синтеза АТФ. Одновременно под действием света идет расщепление молекулы воды и образование ионов водорода. На мембране тилакоидов происходит соединение ионов водорода с переносчиком НАДФ за счет электронов хлорофилла, а выделившаяся энергия идет на синтез АТФ. Образовавшиеся при фотолизе воды ионы кислорода отдают электроны на хлорофилл и превращаются в свободный кислород, который выделяется в атмосферу.
2. Темновая фаза. Фиксация углерода. Синтез глюкозы. Для протекания реакций второй стадии наличие света необязательно. Источником энергии являются синтезированные на первой стадии молекулы АТФ.
В строме хлоропластов, куда поступают НАДФ * Н 4- Н+, АТФ и углекислый газ из атмосферы, протекают циклические реакции, в результате которых идет фиксация углекислого газа, его восстановление водородом за счет НАДФ х х Н + Н+ и синтез глюкозы. Эти реакции идут за счет энергии АТФ, запасенной в световой фазе.
Схематично уравнение темновой фазы можно представить следующим образом:
С 6Н 1206 + НАДФ+С 02 + НАДФ * Н + Н+2АДФ
Суммарное уравнение фотосинтеза:
6С 02 + 6Н 20 -222+ С 6Н 1206 + 602Т.
5. Пластический обмен. Биосинтез белка
Наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов.
Генетический код. Аминокислотная последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и называется генетическим кодом. Участок молекулы ДНК, ответственный за синтез одного белка, называется геном.
Характеристика генетического кода.
1. Код триплетен: каждой аминокислоте соответствует сочетание из 3 нуклеотидов. Всего таких сочетаний - 64 кода. Из них 61 код смысловой, т. е. соответствует 20 аминокислотам, а 3 кода - бессмысленные, стоп-коды, которые не соответствуют аминокислотам, а заполняют промежутки между генами. эукариот фотосинтез цитоплазма
2. Код однозначен - каждый триплет соответствует только одной аминокислоте.
3. Код вырожден - каждая аминокислота имеет более чем один код. Например, у аминокислоты глицин - 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у аминокислот их 2--3.
4. Код универсален - все живые организмы имеют один и тот же генетический код аминокислот.
5. Код непрерывен - между кодами нет промежутков.
6. Код неперекрываем - конечный нуклеотид одного кода не может служить началом другого.
Условия биосинтеза. Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК - переносчик этой информации из ядра к месту синтеза; рибосомы - органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ - вещество, обеспечивающее энергией процесс кодирования и биосинтеза.
6. Этапы биосинтеза
Транскрипция - процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.
Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.
После синтеза и РНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.
Трансляция - процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где и РНК является посредником в передаче информации о первичной структуре белка.
Биосинтез белка состоит из ряда реакций.
1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплетный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК--аминокислота, который поступает на рибосомы.
2. Образование комплекса иРНК--рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.
3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК - аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.
Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15--20 с.
Список используемой литературы
1. Акатов А.К., Зуева В.С. Стафилококки. М.: Медицина, 2003. - 140с.
2. Руководство по инфекционным болезням. / Под ред. В.И. Покровского, К.М. Лобана. - М.: МГУ, 2006. 380с.
3. Фомина И.П. Рациональная антибиотикотерапия, М.: МГУ, 2002. - 220с.
4. Шендеров Б.А. Медицинская микробиология и функциональное питание. Т.1. Микрофлора человека и животных и ее функции. М.: Грант, 1998. - 288с.
Размещено на Allbest.ru
...Подобные документы
Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.
реферат [20,8 K], добавлен 06.07.2010Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.
реферат [31,6 K], добавлен 07.10.2009Обмен веществ и энергии как совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека. Знакомство с основными составляющими рационального питания: энергетический баланс, сбалансированность.
презентация [463,5 K], добавлен 13.02.2015Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.
реферат [27,2 K], добавлен 08.08.2009Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.
реферат [21,9 K], добавлен 28.05.2010Автотрофные и гетеротрофные клетки, уравнение, сущность фотосинтеза, его световая, темновая фаза. Хемосинтез как преобразование энергии реакций окисления неорганических веществ в химическую энергию синтезируемых органических соединений, биосинтез белков.
реферат [21,5 K], добавлен 07.10.2009Энергетический обмен как часть общего метаболизма клетки, совокупность реакций окисления органических веществ и синтеза богатых энергией молекул АТФ. Основные этапы энергетического обмена: подготовительный, гликолиз, кислородный (клеточное дыхание).
презентация [363,9 K], добавлен 03.12.2011Сущность понятия "биоэнергетика". Существенные признаки живого. Внешний и промежуточный обмен веществ и энергии. Метаболизм: понятие, функции. Три стадии катаболических превращений основных питательных веществ в клетке. Отличия катаболизма от анаболизма.
презентация [3,9 M], добавлен 05.01.2014Характеристика обмена веществ, сущность которого состоит в постоянном обмене веществами между организмом и внешней средой. Отличительные черты процесса ассимиляции (усвоение веществ клетками) и диссимиляции (распад веществ). Особенности терморегуляции.
реферат [32,3 K], добавлен 23.03.2010Метаболизм (обмен веществ и энергии) как совокупность химических реакций, протекающих в клетках и в целостном организме, заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм).
реферат [221,8 K], добавлен 27.01.2010Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.
курсовая работа [415,4 K], добавлен 01.02.2014Понятие обмена веществ, анаболизма и катаболизма. Виды обменных процессов в теле человека. Потребность организма в витаминах и пищевых волокнах. Обмен энергии в состоянии покоя и при условии мышечной работы. Регуляция обменных процессов веществ и энергии.
презентация [18,7 K], добавлен 05.03.2015Значение для организма белков, жиров и углеводов, воды и минеральных солей. Белковый, углеводный, жировой обмен организма человека. Нормы питания. Витамины, их роль в обмене веществ. Основные авитаминозы. Роль минеральных веществ в питании человека.
контрольная работа [1,6 M], добавлен 24.01.2009Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.
реферат [22,5 K], добавлен 09.09.2009Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека.
лекция [22,3 K], добавлен 28.04.2013Органы дыхания: строение и функции. Дыхательные движения и их регуляция. Пищевые продукты и питательные вещества. Пищеварение в полости рта, глотание. Кишечное пищеварение, всасывание. Виды обмена веществ, две стороны единого процесса обмена веществ.
реферат [14,0 K], добавлен 06.07.2010Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.
контрольная работа [58,3 K], добавлен 19.05.2010Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).
реферат [28,2 K], добавлен 11.07.2010Функции пищевых веществ. Возникновение чувства голода и насыщения. Возрастные и половые особенности основного обмена. Специфически-динамическое действие пищи. Метод непрямой калориметрии для исследования уровня обмена. Сущность процесса терморегуляции.
презентация [303,4 K], добавлен 29.08.2013История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.
контрольная работа [471,6 K], добавлен 28.04.2014