Развитие экологии как науки
Историческая справка о развитии экологических представлений. Выделение и изучение надорганизменных биологических систем. Понятие лимитирующих экологических факторов. Законы экологии: закон минимума Ю. Либиха, законы толерантности В. Шелфорда и Ю. Одума.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 01.03.2014 |
Размер файла | 19,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В ходе развития экологической науки понятие экологии претерпело существенные изменения. Сам термин был введен немецким зоологом-эволюционистом Эрнстом Геккелем (1866) в книге "Всеобщая морфология организмов". Э. Геккель дал свое определение экологии, как науки: "Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все условия существования. Они частично органической, частично неорганической природы; но как те, так и другие имеют весьма большое значение для форм организмов, так как они принуждают их приспосабливаться к себе.
Закон минимума Ю. Либиха - в экологии - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.
Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму. Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.
Закон толерантности В. Шелфорда - в экологии - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Закон толерантности расширяет закон минимума Либиха.
экология надорганизменный лимитирующий закон
1. Краткая историческая справка о развитии экологических представлений
В ходе развития экологической науки понятие экологии претерпело существенные изменения. Сам термин был введен немецким зоологом-эволюционистом Эрнстом Геккелем (1866) в книге "Всеобщая морфология организмов". Э. Геккель дал свое определение экологии, как науки: "Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все условия существования. Они частично органической, частично неорганической природы; но как те, так и другие имеют весьма большое значение для форм организмов, так как они принуждают их приспосабливаться к себе. К неорганическим условиям существования, к которым приспосабливаются все организмы, относятся: физические и химические свойства их местообитаний, климат (свет, тепло, влажность), неорганическая пища, состав воды и почвы и т.д. В качестве органических условий существования мы рассматриваем общие отношения организма ко всем остальным организмам, с которыми он вступает в контакт и из которых большинство содействует его пользе или вредит. Каждый организм имеет среди остальных своих друзей и врагов, таких, которые способствуют его существованию, и тех, что ему вредят. Организмы, которые служат пищей остальным или паразитируют в них, во всяком случае, относятся к данной категории органических условий существования. Эта большая цитата отчетливо показывает, что, формулируя понятие экологии как новой науки, Э. Геккель строил ее не на пустом месте, а на основании большого фактического материала, накопленного в биологии за время ее длительного развития. Действительно, весь предшествующий период становления биологических знаний шло накопление не только описаний отдельных видов, но и материалов по их образу жизни, а подчас и отдельных обобщений. Так, еще в 1798 г. Т. Мальтус описал уравнение экспоненциального роста популяции, на основе которого строил свои демографические концепции. Уравнение логистического роста предложено П.Ф. Ферхюлстом в 1838 г., Ж.Б. Ламарк в "Гидрогеологии" фактически предвосхитил представление о биосфере. Французский врач В. Эдварде (1824) опубликовал книгу "Влияние физических факторов на жизнь", которая положила начало экологической и сравнительной физиологии, а Ю. Либих (1840) сформулировал знаменитый "Закон минимума", не потерявший своего значения и в современной экологии.
В России профессор Московского университета Карл Францевич Рулье на протяжении 1841-1858 гг. дал практически полный перечень принципиальных проблем экологии, не найдя, однако, выразительного термина для обозначения этой науки. Он первый четко определил принцип взаимоотношений организма и среды: "Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое живое существо получает возможность к жизни частью из себя, а частью из внешности". Развивая этот принцип, К.Ф. Рулье делит взаимоотношения со средой на две категории: "явления жизни особенной" и "явления жизни общей", что соответствует современным представлениям об экологических процессах на уровне организма и на уровне популяций и биоценозов. В опубликованных лекциях и отдельных статьях он поставил проблемы изменчивости, адаптации, миграций, ввел понятие "стация", рассмотрел влияние человека на природу и т.д. При этом механизм взаимоотношений организмов со средой К.Ф. Рулье обсуждал с позиций, настолько близких к классическим принципам Ч. Дарвина, что его по праву можно считать предшественником Дарвина. К сожалению, К.Ф. Рулье умер в 1858 г., за год до выхода в свет "Происхождения видов". Труды его практически неизвестны за рубежом, но в России они имели огромное значение, послужив основой формирования мощной когорты экологов-эволюционистов, некоторые из которых были его прямыми учениками (Н.А. Северцов, А.П. Богданов, С.А Усов).
И все же начало развития экологии как самостоятельной науки следует отсчитывать от трудов Э. Геккеля, давшего четкое определение ее содержания. Надо лишь отметить, что, говоря об "организмах", Э. Геккель, как это было тогда принято, не имел в виду отдельных особей, а рассматривал организмы как представителей конкретных видов. По существу, основное направление, сформулированное Э. Геккелем, соответствует современному пониманию аутэкологии, т.е. экологии отдельных видов. В течение долгого времени основное развитие экологии шло в русле аутэкологического подхода. На развитие этого направления большое влияние оказала теория Ч. Дарвина, показавшая необходимость изучения естественной совокупности видов растительного и животного мира, непрерывно перестраивающихся в процессе приспособления к условиям среды, что является основой процесса эволюции.
В середине XX века на фоне продолжающихся работ по изучению образа жизни выделяется серия исследований, посвященных физиологическим механизмам адаптации. В России это направление в основном сформировалось в 30-е годы трудами Н.И. Калабухова и А.Д. Слонима. Первый из них, зоолог, пришедший к необходимости применения физиологических методов для изучения адаптации; второй - физиолог, понявший необходимость исследования адаптивного значения отдельных физиологических процессов. Такие пути формирования физиологического направления в экологии характерны для мировой науки того времени. Эколого-физиологическое направление в экологии животных и растений, накопив огромный фактический материал, послужило основой появления большой серии монографий, "всплеск", которой приходится на 60.70-е годы.
Одновременно с этим в первой половине XX в. начались широкие работы по изучению надорганизменных биологических систем. Их основой послужило формирование концепции биоценозов как многовидовых сообществ живых организмов, функционально связанных друг с другом. Эта концепция в основном создана трудами К. Мебиуса (1877), С. Форбса (1887) и др. Начиная с 1935 г. с введением А. Тенсли понятия экосистема экологические исследования надорганизменного уровня стали развиваться особенно широко; примерно с этого времени стало практиковаться возникшее в самом начале XX в. деление экологии на аутэкологию (экологию отдельных видов) и синэкологию (экологические процессы на уровне многовидовых сообществ, биоценозов). Последнее направление широко использовало количественные методы определения функций экосистем и математическое моделирование биологических процессов, направление, позднее получившее название теоретической экологии. Еще раньше (1925-1926) А. Лотка и В. Вольтерра создали математические модели роста популяций, конкурентных отношений и взаимодействия хищников и их жертв. В России (30-е годы) под руководством Г.Г. Винберга велись обширные количественные исследования продуктивности водных экосистем. Экосистемные исследования остаются одним из основных направлений в экологии и в наше время. Уже в монографии Ч. Элтона (1927) впервые отчетливо выделено направление популяционной экологии. Практически, все исследования экосистемного уровня строились на том, что межвидовые взаимоотношения в биоценозах осуществляются между популяциями конкретных видов. Таким образом, в составе экологии сформировалось популяционное направление, которое иногда называют демэкологией.
В середине нашего столетия стало ясно, что популяция не просто "население", т.е. сумма особей на какой-то территории, а самостоятельная биологическая (экологическая) система надорганизменного уровня, обладающая определенными функциями и механизмами авторегуляции, которые поддерживают ее самостоятельность и функциональную устойчивость. Это направление наряду с интенсивным исследованием многовидовых систем занимает важное место в современной экологии.
Некоторые исследователи полагают, что исследования на популяционном уровне представляют центральную проблему экологии. Раскрытие роли многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле привело к тому, что в последнее время экологию чаще определяют как науку о надорганизменных биологических системах или же только о многовидовых сообществах - экосистемах. По-видимому, такой подход обедняет содержание экологии, особенно если учесть тесную функциональную связь организменного, популяционного и биоценотического уровней в глобальных экологических процессах.
2. Достоверность закона «Минимума Либиха»
Закон минимума Ю. Либиха - в экологии - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.
Согласно закону минимума жизненные возможности организмов лимитируют, т.е. экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.
Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.
Реакция организма на воздействие фактора обусловлена дозировкой этого фактора. Очень часто фактор среды, особенно абиотический, переносится организмом лишь в определенных пределах. Наиболее эффективно действие фактора при некоторой оптимальной для данного организма величине. Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точками минимума и максимума) данного фактора, при котором возможно существование организма. Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью или толерантностью живых существ по отношению к конкретному фактору среды. Распределение плотности популяции подчиняется нормальному распределению. Плотность популяции тем выше, чем ближе значение фактора к среднему значению, которое называется экологическим оптимумом вида по данному параметру. Такой закон распределения плотности популяции, а, следовательно, и жизненной активности получил название общего закона биологической стойкости.
Диапазон благоприятного воздействия фактора на организмы данного вида называется зоной оптимума (или зоной комфорта). Точки оптимума, минимума и максимума составляют три кардинальные точки, определяющие возможность реакции организма на данный фактор. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организм. Этот диапазон величины фактора называется зоной пессимума (или зоной угнетения). Рассмотренные закономерности воздействия фактора на организм известно, как правило, оптимума.
Установлены и другие закономерности, характеризующие взаимодействия организма и среды. Одна из них была установлена немецким химиком Ю. Либихом в 1840 году и получила название закона минимума Либиха, согласно которому рост растений ограничивается нехваткой единственного биогенного элемента, концентрация которого лежит в минимуме. Если другие элементы будут содержаться в достаточном количестве, а концентрация этого единственного элемента опустится ниже нормы, растение погибнет. Такие элементы получили название лимитирующих факторов. Итак, существование и выносливость организма определяются самым слабым звеном в комплексе его экологических потребностей. Или относительное действие фактора на организм тем больше, чем больше этот фактор приближается к минимуму по сравнению с прочими. Величина урожая определяется наличием в почве того из элементов питания, потребность в котором удовлетворена меньше всего, т.е. данный элемент находится в минимальном количестве. По мере повышения его содержания урожай будет возрастать, пока в минимуме не окажется другой элемент.
Позднее закон минимума стал трактоваться более широко, и в настоящее время говорят о лимитирующих экологических факторах. Экологический фактор играет роль лимитирующего в том случае, когда он отсутствует или находится ниже критического уровня, или превосходит максимально выносимый предел. Иными словами, этот фактор обусловливает возможности организма в попытке вторгнуться в ту или иную среду. Одни и те же факторы могут быть или лимитирующими или нет. Пример со светом: для большинства растений это необходимый фактор как поставщик энергии для фотосинтеза, тогда как для грибов или глубоководных и почвенных животных этот фактор не обязателен. Фосфаты в морской воде - лимитирующий фактор развития планктона. Кислород в почве не лимитирующий фактор, а в воде - лимитирующий.
Следствие из закона Либиха: недостаток или чрезмерное обилие какого-либо лимитирующего фактора, может компенсироваться другим фактором, изменяющим отношение организма к лимитирующему фактору.
Однако ограничивающее значение имеют не только те факторы, которые находятся в минимуме. Впервые представление о лимитирующем влиянии максимального значения фактора наравне с минимумом было высказано в 1913 году американским зоологом В. Шелфордом. Согласно сформулированному закону толерантности В. Шелфорда существование вида определяется как недостатком, так и избытком любого из факторов, имеющих уровень, близкий к пределу переносимости данным организмом. В связи с этим все факторы, уровень которых приближается к пределу выносливости организма, называются лимитирующими.
3. Что такое толерантность. Закон толерантности В. Шелфорда
Закон толерантности - (закон экологического оптимума В. Шелфорда) лимитирующий фактор процветания организма может быть как минимумом, так и максимумом экологического фактора, диапазон между которыми определяет пределы толерантности организма к данному фактору. Организм может иметь широкие границы устойчивости в отношении одного фактора и узкие в отношении другого.
Предел толерантности - диапазон экологического фактора между минимальным и максимальным значениями, в пределах которого возможна выживаемость организма.
Организм с широкими границами по большинству экологических факторов обычно широко распространен (например, воробей). Если условия по одному фактору не оптимальны, то может снизиться предел устойчивости к другому экологическому фактору (например, при низком содержании азота в почве снижается засухоустойчивость злаков).
Закон толерантности расширяет закон минимума Либиха.
Формулировка:
«Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору».
Любой фактор, находящийся в избытке или недостатке, ограничивает рост и развитие организмов и популяций.
Закон толерантности был дополнен в 1975г Ю. Одумом.
Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого.
Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены
Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может сузиться и в отношении других экологических факторов (например, если содержание азота в почве мало, то требуется больше воды для злаков)
Диапазоны толерантности к отдельным факторам и их комбинациям различны.
Период размножения является критическим для всех организмов, поэтому именно в этот период увеличивается число лимитирующих факторов.
Заключение
Вероятно, более правильно рассматривать экологию как науку о закономерностях формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношениях с условиями среды. При таком подходе экология включает в себя все три уровня организации биологических систем: организменный, популяционный и экосистемный; в последних сводках такой подход звучит все более четко.
Существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Т.е., избыток какого-либо вещества, может быть так же вреден, как и недостаток. Закон толерантности расширяет закон минимума Либиха.
ЗАКОНЫ Ю. ОДУМА:
1- организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий в отношении другого;
2- организмы с широким диапазоном толерантности в отношении всех экологических факторов наиболее распространены;
3- если условия по какому-либо экологическому фактору неоптимальные, то диапазон толерантности может сузиться и в отношении других факторов;
4- многие факторы среды могут стать лимитирующими в критические периоды жизни организмов.
Список использованной литературы
1. Никаноров А.И., Хоружая Т.А. Глобальная экология: Учебное пособие. - М.: ПРИОР, 2005. 495 с.
2. Денисов, В. В., В.В. Денисов, и др. - М.: Экология - Вузовская книга, 2007. 306 с.
3. Степановских, А. С., А. С. Степановских. - М.: Общая экология - ЮНИТИ, 2002. 205 с.
4. www.oeco.ru
5. http://ru.wikipedia.org
Размещено на Allbest.ru
...Подобные документы
Понятие синергетики и бифуркации, общая характеристика теории катастроф. Актуальность и область применения универсальных законов бедствий. Законы распределения вероятностей и степенные законы. Механизмы возникновения и развития катастрофических событий.
аттестационная работа [788,8 K], добавлен 13.01.2011Появление стехиометрии, ее развитие в конце XVIII – начале XIX вв. Законы сохранения вещества, постоянства состава веществ, простых кратных и объемных отношений, закон Авогадро. Значение стехиометрических законов в обосновании концепции атомизма.
реферат [22,7 K], добавлен 15.12.2013Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.
реферат [22,1 K], добавлен 29.03.2003Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.
реферат [24,0 K], добавлен 05.01.2008Размеры, непрерывность и прерывистость ареалов. Современная флора голарктического царства. Антарктические полярные пустыни. Богатство, разнообразие и эндемизм флоры и фауны в Малайской области. Законы воздействия экологических факторов на живые организмы.
курс лекций [41,9 K], добавлен 24.11.2009Эволюция представления о биосфере. Концепция Вернадского о биосфере. Переход от биосферы к ноосфере. Современная концепция экологии. Структура экологических систем. Взаимодействие экосистемы и окружающей её среды. Информация и управление в экосистемах.
реферат [53,0 K], добавлен 14.06.2010Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.
реферат [227,7 K], добавлен 17.11.2014Эмпирические методы познания. Идеи античной науки. Законы классической механики. Становление химии, историческая система знания. Масштаб мегамира, измерение и рост между его объектами. Признаки живой системы. Структурные уровни организации живой материи.
контрольная работа [62,2 K], добавлен 08.06.2013Иерархия естественно научных законов. Законы сохранения. Связь законов сохранения с симметрией системы. Фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.
реферат [30,5 K], добавлен 17.10.2005Изучение видового состава брюхоногих и двустворчатых моллюсков разнотипных искусственных и естественных водоемов. Зависимость состава малакофауны от размеров и возраста водоема. Анализ влияния различных экологических факторов на разнообразие моллюсков.
контрольная работа [140,0 K], добавлен 21.08.2010Динамические законы в макро и статические в микромире. Закон сохранения энергии и невозможность создания вечного двигателя первого рода. Второй закон термодинамики и невозможность создания вечного двигателя второго рода. Энергетика химических процессов.
контрольная работа [25,3 K], добавлен 20.06.2010Изучение правил и законов крупных групп. Понятие прогресса в вопросах биологической эволюции и пути его достижения. "Закон постепенного образования всего сущего". "Закон увеличения разнообразия организмов". И.И. Шмальгаузен - виды специализации. Арогенез.
презентация [1,4 M], добавлен 24.09.2015Законы, условия выполнения законов Менделя. Закон Т. Моргана. Аллельные и неаллельные гены, группы крови и их определение. Совместимость эритроцитов. Использование данных о группе крови. Хромосомная теория наследственности Т. Моргана.
презентация [207,3 K], добавлен 23.03.2011Основные компоненты естествознания как системы естественных наук. Александрийский период развития науки. Основные законы механики Ньютона. Этапы создания учения об электромагнетизме. Квантовая механика. Стехиометрические законы. Явление катализа.
контрольная работа [39,9 K], добавлен 16.01.2009Основные законы наследственности. Основные закономерности наследования признаков по Г. Менделю. Законы единообразия гибридов первого поколения, расщепления на фенотипические классы гибридов второго поколения и независимого комбинирования генов.
курсовая работа [227,9 K], добавлен 25.02.2015Основные законы биологического развития. Морфогенез, формообразование, возникновение новых форм и структур, как в онтогенезе, так и в филогенезе организмов. Клетки и клеточные комплексы. Концепция физиологических градиентов, морфогенетических полей.
курсовая работа [106,8 K], добавлен 16.09.2015Изучение предмета и методов генетики. История открытия и основные достоинства гибридологического метода. Генетическая символика. Моногибридизм. Законы Менделя. Правило чистоты гамет. Анализ расщепления. Понятие и условия дигибридизма и полигибридизма.
реферат [659,9 K], добавлен 19.03.2013Индивидуальное развитие организма от зиготы до естественной смерти. Процесс необратимого новообразования структурных элементов, сопровождающийся увеличением массы и размеров организма. Влияние экологических факторов на рост и формообразование растений.
курсовая работа [96,0 K], добавлен 05.06.2011Основные компоненты естествознания и их характеристика. Александровский период развития науки. Законы Ньютона. Основные этапы создания учения об электромагнетизме. Гипотезы и постулаты, лежащие в основе квантовой механики. Свойства живого организма.
контрольная работа [65,6 K], добавлен 30.06.2011Характеристика основных экологических факторов и их группы. Влияние экологического фактора. Понятие ограниченного действия одного из фактора внешней среды. Примеры взаимодействия факторов. Влияние фотопериода на состояние человеческого организма.
контрольная работа [17,0 K], добавлен 22.06.2015