Основы клеточной инженерии растений

Методы и условия культивирования изолированных тканей и клеток организмов. Дифференцировка каллусных тканей. Технологии, облегчающие селекционный процесс и гибридизация соматических клеток. Методика клонального микроразмножения и оздоровление растений.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 14.03.2014
Размер файла 41,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основы клеточной инженерии

Курс лекций

План

Лекция 1. Основы клеточной инженерии растений

1.1 Краткая история культуры клеток и тканей

1.2 Методы и условия культивирования изолированных тканей и клеток организмов

1.3 Дифференцировка каллусных тканей

Лекция 2. Использование метода культуры клеток и тканей в создании современных технологий

2.1 Области применения метода культуры клеток и тканей

2.2 Технологии, облегчающие селекционный процесс

2.3 Гибридизация соматических клеток

Лекция 3. Клональное микроразмножение и оздоровление растений

3.1 Технология микроклонального размножения

3.2 Оздоровление посадочного материала

3.3 Криосохранение

Лекция 1. Основы клеточной инженерии растений

1.1 Краткая история культуры клеток и тканей

Клеточная инженерия -- одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта -- изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности -- уникальном свойстве растительных клеток воспроизводить целый организм. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.

Бурное развитие клеточной инженерии приходится на 50-е годы прошлого века, хотя первые попытки выращивания изолированных кусочков ткани были сделаны гораздо раньше. В конце XIX -- начале XX в. немецкие ученые X. Фехтинг (1892), С. Рехингер (1893), Дж. Хаберландт (1902) сделали первую неудачную попытку стимуляции роста растительных тканей и органов, помещенных на фильтровальную бумагу, пропитанную сахарозой. Несмотря на отсутствие положительного результата, их работы представляют большой интерес. В них были высказаны идеи, которые намного опередили развитие науки того времени и которые нашли свое подтверждение несколько десятилетий спустя. Так, Фехтинг предположил, что полярность присуща не только организму или органу растения, но и самой клетке. Рехингер определил минимальный размер сегмента, образующего каллус. Согласно его исследованиям, в кусочках ткани тоньше 1,5 -- 2,0 мм клетки не делились. Хаберландт впервые четко сформулировал идеи о возможности культивирования in vitro изолированных клеток растений и о тотипотентности клеток, т. е. способности любой соматической клетки полностью реализовывать свой потенциал развития. Иначе говоря, о способности каждой растительной клетки давать начало целому организму.

Первые успехи были получены в 1922 г. американским ученым В.Роббинсом и немецким ученым В. Котте. Независимо друг от друга они показали возможность выращивания меристем кончиков корней томатов и кукурузы на синтетической питательной среде. Считается, что их работы легли в основу метода культуры изолированных корней растения.

Настоящее развитие метода культуры тканей и клеток высших растений началось в 1932 г. с работ французского ученого Р. Готре и американского исследователя Ф.Уайта. Они показали, что при периодической пересадке на свежую питательную среду кончики корней могут расти неограниченно долго. Кроме того, ими были разработаны методы культивирования новых объектов: тканей древесных растений камбиального происхождения, каллусных тканей запасающей паренхимы (Р. Готре), а также тканей растительных опухолей (Ф.Уайт). С этого момента начинаются массовые исследования по разработке новых питательных сред, включающих даже такие неконтролируемые компоненты, как березовый сок или эндосперм кокоса, и по введению в культуру новых объектов. К 1959 г. насчитывалось уже 142 вида высших растений, выращиваемых в стерильной культуре. селекция гибридизация клональный

В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов -- цитокининов -- оказалось, что при совместном их действии с другим классом фитогормонов -- ауксинами -- появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.

В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккингом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод клонального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани-«няньки». Этот метод был разработан в России в 1969 г. в Институте физиологии растений им. К. А. Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.

1.2 Методы и условия культивирования изолированных тканей и клеток организмов

Выращивание изолированных клеток и тканей на искусственных питательных средах в стерильных условиях (in vitro) получило название метода культуры изолированных тканей.

В связи с тем что в жизни человека наибольшее значение имеют семенные растения, методы и условия для их культивирования разработаны лучше, чем для голосеменных растений или водорослей, выращивание которых в стерильных условиях вызывает определенные затруднения. Однако независимо от принадлежности растений к той или иной таксономической группе существуют общие требования к выращиванию объектов в культуре in vitro.

Асептика. Прежде всего культивирование фрагментов ткани или органа растения -- эксплантов, а тем более отдельных клеток требует соблюдения полной асептики. Микроорганизмы, которые могут попасть в питательную среду, выделяют токсины, ингибирующие рост клеток и приводящие культуру к гибели, поэтому при всех манипуляциях с клетками и тканями при культивировании in vitro соблюдают определенные правила асептики.

Питательные среды. Изолированные клетки и ткани культивируют на многокомпонентных питательных средах. Они могут существенно различаться по своему составу, однако, в состав всех сред обязательно входят необходимые растениям макро- и микроэлементы, углеводы, витамины, фитогормоны и их синтетические аналоги. Углеводы (обычно это сахароза или глюкоза) входят в состав любой питательной смеси в концентрации 2--3%. Они необходимы в качестве питательного компонента, так как большинство каллусных тканей лишено хлорофилла и не способно к автотрофному питанию. Поэтому их выращивают в условиях рассеянного освещения или в темноте. Обязательными компонентами питательных сред должны быть ауксины, вызывающие дедифференцировку клеток экспланта, и цитокинины, индуцирующие клеточные деления. При изменении соотношения между этими фитогормонами или при добавлении других фитогормонов могут быть вызваны разные типы морфогенеза.

Физические факторы. На рост и развитие растительных тканей in vitro большое влияние оказывают физические факторы -- свет, температура, аэрация, влажность. Большинство каллусных тканей могут расти в условиях слабого освещения или в темноте, так как они не способны фотосинтезировать. Вместе с тем свет может выступать как фактор, обеспечивающий морфогенез и активирующий процессы вторичного синтеза. Для большинства каллусных культур оптимальна температура 26 °С. Для выращивания суспензионных культур большое значение имеет аэрация. Особенно важно снабжение воздухом культивируемых клеток в больших объемах ферментеров. Оптимальная влажность в помещении, где растут культуры, должна составлять 60--70%.

Таким образом, культивирование клеток и тканей зависит от многих факторов внешней среды, и действие их не всегда хорошо известно. Поэтому при введении в культуру нового вида растений необходимо прежде всего тщательно изучить влияние физических факторов на рост и физиологические характеристики этой культуры.

1.3 Дифференцировка каллусных тканей

Одна из наиболее интересных, но сложных проблем в биологии -- развитие многоклеточных организмов. Изучение данного вопроса возможно несколькими путями. Так, большое распространение получило моделирование процессов онтогенеза на более простых системах. При этом используют изолированные ткани, клетки, протопласты, культивируемые в стерильных условиях. Преимущество этого процесса состоит в том, что нет необходимости постоянно учитывать результаты взаимодействия органов в целостной системе растительного организма. Кроме того, экспериментатор сам имеет возможность выбирать, изменять и повторять условия опыта в соответствии с поставленной задачей. После завершения дедифференцировки дальнейшее развитие каллусной клетки может идти в нескольких направлениях. Во-первых, это вторичная дифференцировка разной степени сложности. Во-вторых, в клетке может сформироваться состояние стойкой дедифференцировки («привыкание»), а следовательно, способность расти на безгормональной среде. В-третьих, каллусная клетка проходит свой цикл развития, завершающийся ее старением и отмиранием.

В культуре каллусных тканей морфогенезом называют возникновение организованных структур из неорганизованной массы клеток. Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибластов -- клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей: млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез -- образование органов и соматический эмбриогенез -- образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности: любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была выделена. Потенциальные возможности всех клеток этого растения одинаковы; каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400--1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидермальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования каллусной ткани, в условиях, индуцирующих морфогенез. Время в течение которого в каллусных клетках возникает это свойство' изменяется в широких пределах. Кроме того, существенную роль в дифференциации играют генотип растения-донора, условия и физические факторы культивирования.

Все каллусные клетки, готовые ко вторичной дифференцировке, т. е. детерминированные, характеризуются общими чертами. Эти клетки -- «клетки-инициали»-- образуют утолщенную клеточную стенку, обособляясь от остальных каллусных клеток. Для них характерно более крупное ядро, большее количество запасных веществ, меньшие размеры вакуолей. В «клетках-инициалях» начинается синтез определенных белков, интенсифицируется пентозофосфатный путь расщепления гексоз. Очень важно, что между этими клетками, формирующими меристематические очаги, восстанавливаются плазмодесмы, которые практически отсутствуют в массе каллусных клеток.

Интересное предположение было высказано Л. Саксом и С.Той-воненом (1963). Оно сводится к тому, что существует минимальная масса каллусных клеток, которая определяет способность уже детерминированных клеток к дальнейшему морфогенезу. Это подтвердилось в опытах с культурой семядолей ели: детерминация адвентивных побегов происходила в клеточных комплексах из 5 -- 6 клеток (Б.С.Флинн и др., 1988). В исследованиях С.Номура и А.Комамине (1989) было показано, что развитие соматических зародышей детерминируется в 6-- 10 - клеточном агрегате.

Вопросы для самоконтроля

1. История изучения культуры клеток и тканей

2. Методы культивирования изолированных тканей и клеток организмов

3. Правила асептики при культивировании in vitro

4. Требования к питательным средам при культивировании изолированных тканей и клеток

5. Влияние физических факторов на рост и развитие растительных тканей in vitro

6. Дифференцировка каллусных тканей

7. Направления развития каллусных клеток

Лекция 2. Использование метода культуры клеток и тканей в создании современных технологий

2.1 Области применения метода культуры клеток и тканей

Метод культуры тканей широко используется в сельском хозяйстве и промышленном производстве (рис. 30). Примером может служить массовое клональное микроразмножение плодовоовощных и декоративных растений, а также их оздоровление от вирусных и других инфекций. С помощью культуры in vitro можно расширить возможности селекционной работы: получать клоны клеток, а затем и растения с запрограммированными свойствами. Благодаря способности клеток синтезировать в культуре вторичные метаболиты возникла отрасль промышленности, осуществляющая биологический синтез веществ, необходимых человеку.

В настоящее время известно примерно 2 104 синтезируемых растениями веществ, которые используются человеком, и их количество постоянно увеличивается. Растения всегда служили источником пищи, эфирных масел, красителей и, конечно же, лекарственных соединений. Так, мак снотворный (Рараvеr sоттnifеrит) является источником болеутоляющего вещества -- кодеина; из наперстянки (Digitalis lапаtа) получают дигоксин, тонизирующий сердечную деятельность; из хинного дерева (Сinсhопа ledgеriапа) -- антималярийное средство «хинидин». Особое место занимают наркотики и стимулирующие вещества. В небольших, строго контролируемых количествах их используют в медицине.

Однако при систематическом употреблении низких концентраций наркотиков возникают наркозависимость и стремление к увеличению употребляемой дозы. Применение высоких концентраций наркотика убивает человека. Наиболее известны опиум и героин из Рараvеr sоттnifеrит, кокаин из Erythroxylon, никотин из различных сортов табака. Наиболее известный стимулятор -- кофеин, содержащийся в растениях чая и кофе. Стимуляторы не токсичны в концентрациях, рекомендуемых к применению. Однако высокие их концентрации негативно влияют на сердечно-сосудистую и нервную систему человека.

Большой интерес вызвало открытие пиретринов, выделенных из цветков Сhrуsапthemum cinerariaefolium. Эти вещества -- мощные инсектициды. Особая их ценность заключается в том, что пиретрины не вызывают привыкания у насекомых, а также не проявляют кумулятивного токсического эффекта.

Способность растений синтезировать различные соединения привела к предположению, что тем же свойством будут обладать клетки и ткани этих растений, выращиваемые в стерильных условиях. Для некоторых культур это оказалось справедливым, Но в отдельных случаях клетки либо не проявляли способности к синтезу необходимых веществ, либо синтезировали их в минимальных количествах. Понадобились долгие эксперименты по подбору питательных сред, условий культивирования, исследованию новых штаммов, полученных благодаря генетической гетерогенности каллусных клеток или применению мутагенных факторов чтобы добиться серьезных успехов в этой области.

В настоящее время промышленный синтез вторичных метаболитов -- очень перспективное направление. Синтез вторичных метаболитов происходит главным образом в суспензионной культуре клеток, в регулируемых условиях, поэтому он не зависит от климатических факторов, от повреждения насекомыми. Культуры выращивают на малых площадях в отличие от больших массивов плантаций с необходимыми растениями. Культуры клеток растений могут синтезировать практически все классы соединений вторичного обмена, причем довольно часто в количествах, в несколько раз превышающих их синтез в целых растениях. Например, выход аймалицина и серпентина в культуре клеток Саtharanthus roseus составляет 1,3% сухой массы, а в целом растении -- 0,26 %. В культуре клеток Dioscorea deltoidea диосгенин синтезируется в количестве 26 мг на 1 г сухой массы, а в клубнях растений его содержание составляет 20 мг на 1 г сухой массы. Кроме того, в культурах клеток может начаться синтез веществ, не характерных для исходного растения, либо расширяется набор синтезируемых соединений. В ряде случаев в клеточной культуре образуются вещества, которые синтезировались интактным растением на ювенильной фазе развития, либо вещества, содержавшиеся в клетках филогенетически более ранних групп растений. Так, в культуре клеток Рараvеr bracteatum содержится сангвирин, характерный для ювенильных растений, и отсутствует тебаин, синтезируемый взрослыми растениями.

Важная особенность культивируемой популяции клеток -- ее стабильность в отношении синтеза и накопления продуктов вторичного синтеза. Так, российскими учеными были получены разные штаммы клеток Dioscorеа deltoidea, в том числе штамм-сверхпродуцент ИФР ДМ-0,5. Все эти штаммы сохраняли стабильность в отношении синтеза фуростаноловых гликозидов около 26 лет. Интересная особенность большинства клеток в культуре состоит в том, что обычно эти клетки не транспортируют синтезируемые метаболиты в питательную среду или другие клетки, хотя некоторые культуры составляют исключение, в частности культура клеток мака, которые депонируют алкалоиды в млечники. Синтез вторичных метаболитов в культивируемых клетках связан с внутриклеточными органеллами, в основном с пластидами и эндоплазматическим ретикулумом. В клетках, не способных к транспорту метаболитов, продукты вторичного синтеза обычно накапливаются в вакуолях и свободном пространстве клеток.

На синтез вторичных метаболитов влияет целый ряд факторов. Прежде всего, выход продукта зависит от генотипа растения-донора. Показано, что культуры клеток, полученных от высокопродуктивных растений, продуцировали большее число метаболитов. Другой важный фактор -- состав питательной среды и концентрация ее компонентов, которые должны обеспечивать, с одной стороны, увеличение количества клеток-продуцентов, с другой -- усиливать сам процесс синтеза. На рост, т.е. на увеличение биомассы, существенно влияет природа и количество углеводов, соединений азота и фосфора, на синтез метаболитов -- природа и концентрация фитогормонов. Так, при замене одного ауксина на другой, например нафтилуксусной кислоты на 2,4-D (2,4-дихлорфеноксиуксусную кислоту), трехкратно увеличился синтез антрахинона суспензионной культурой Morinda citrifolia.

Существует современная технология получения вторичных метаболитов с помощью иммобилизованных клеток культуры, т. е. помещение их в определенный носитель или адсорбция в нем. Носитель с клетками помещают в питательную среду. Клетки остаются живыми. Они прекращают рост, но продолжают синтез метаболитов, выделяя их в среду.

Еще один из примеров использования вторичных метаболитов растений -- получение карденолидов, гликозиды которых используют в медицине для лечения болезней сердца. Растения наперстянки (Digitalis lanata) в большом количестве синтезируют дигитоксин вместо необходимого дигоксина. Для соответствующей биотрансформации с успехом используют недифференцированную суспензионную культуру наперстянки. Иммобилизованные клетки этой культуры способны долгое время с постоянной скоростью трансформировать в-метилдигитоксин в в-метилдигоксин.

Таким образом, использование суспензионных культур для синтеза вторичных метаболитов в промышленных масштабах имеет большие перспективы, и не только с точки зрения экономической выгоды получения более дешевой продукции в запланированных количествах. Важно, что использование культуры клеток спасет от уничтожения тысячи дикорастущих растений, ставших уже редкими, которые синтезируют необходимые человеку вещества. Увеличение выхода продукта может быть достигнуто благодаря дальнейшей исследовательской работе по селекции специализированных популяций клеток и оптимизации условий культивирования. Большой интерес представляет также дальнейшее развитие методов биотрансформации метаболитов и иммобилизации культивируемых клеток.

Достаточно успешно развиваются с помощью технологий клеточной инженерии, культуры клеток и тканей ускорение и облегчение селекционного процесса, создание растений с новыми качествами, а также клональное микроразмножение растений, тесно связанное с проблемой их оздоровления от вирусных инфекций и криосохра-нение генофонда -- технология, в настоящий момент приобретшая экологическую направленность.

2.2 Технологии, облегчающие селекционный процесс

Одна из наиболее важных технологий этой группы -- оплодотворение in vitro, помогающее предотвратить прогамную несовместимость, которая может быть вызвана следующими причинами:

1) генетически детерминированное (определенное) несоответствие секрета рыльца материнского растения и пыльцы отцовского, которое тормозит рост пыльцевых трубок на рыльце пестика;

2) несоответствие длины столбика пестика и пыльцевой трубки, в результате чего пыльцевая трубка не достигает семяпочки (гетеростилия);

3) тканевая несовместимость партнеров, приводящая к остановке роста пыльцевой трубки в любой момент ее прорастания от рыльца пестика до микропиле семяпочки (гаметофитный тип несовместимости).

Преодоление прогамной несовместимости возможно благодаря выращиванию в стерильных условиях изолированной завязи с нанесенной на нее пыльцой или изолированных кусочков плаценты с семяпочками, рядом с которыми или непосредственно на ткани которых культивируется пыльца.

Значительным препятствием для селекции служит также пост-гамная несовместимость, вызванная разновременным развитием зародыша и эндосперма при отдаленной гибридизации. В результате образуются невсхожие щуплые семена. Получить растение из таких семян можно только при использовании метода эмбриокультуры, т. е. выращивания изолированного зародыша на искусственной питательной среде. Метод эмбриокультуры широко применяют при межвидовой гибридизации овощных растений, для микроразмножения ценных гибридов, для клеточной селекции.

Существует несколько методов клеточной селекции:

1. Прямая (позитивная) селекция, при которой выживает только заданный тип мутантных клеток.

2. Непрямая (негативная) селекция, которая ведет к гибели делящихся клеток дикого типа и выживанию метаболически неактивных клеток. Этот прием требует дополнительной идентификации мутационных изменений у выживших клеток.

3. Тотальная селекция, при которой индивидуально тестируются все клеточные клоны.

4. Визуальная селекция и неселективный отбор, когда необходимая вариантная линия выбирается среди прочих визуально или с помощью биохимических методов.

2.3 Гибридизация соматических клеток

Множество теоретических и практических задач позволяет решать использование изолированных протопластов. С их помощью можно вести селекцию на клеточном уровне, работать в малом объеме с большим числом клеток, осуществлять прямой перенос генов, изучать мембраны, выделять пластиды. Изолированный протопласт - это содержимое растительной клетки, окруженное плазмолеммой. Целлюлозная стенка у данного образования отсутствует.

В 1971 г. Такебе и его сотрудники, обрабатывая клетки листа табака для растворения клеточных стенок сочетанием целлюлазы и пектиназы, добились успеха в получении протопластов. Протопласты культивировали в среде, в которой они могли делиться и формировать каллюс, способный к регенерации с образованием целого растения. Эти первые эксперименты, проведенные на протопластах табака, показали, что более 90 % всех протоклоннов, т.е. клонов, полученных из протопластов, удивительно сходны с родительскими линиями как по фенотипу, так и по генотипу.

Таким образом, протопласты табака позволили преодолеть обычную изменчивость, характерную для других способов получения клонов. Обнаруженная стабильность была подтверждена и на некоторых других видах растений.

В 1974 г. Дж. Мельхерсом был введен в практику термин «соматическая гибридизация», означающий процесс слияния протопластов соматических клеток. При соматической гибридизации развиваются гибриды, объединяющие геном обеих клеток. Соматическая гибридизация имеет важные особенности. Во-первых, этому процессу доступны практически любые скрещивания, во-вторых, слияние протопластов способствует объединению цитоплазматических генов родительских клеток, чего не бывает при скрещивании половых клеток.

Самопроизвольное слияние протопластов происходит достаточно редко. Механизм этого процесса до конца не выяснен. Однако известно, что протопласты имеют отрицательный поверхностный заряд, который вызывает их взаимное отталкивание. Впервые искусственное слияние протопластов с помощью индуктора слияния (фьюзогена) было осуществлено в 1970 г. Коккингом и его сотрудниками. Схема слияния протопластов представлена на рисунке 31.

Первый неполовой гибрид высших растений был получен в 1972 г. при слиянии изолированных протопластов двух видов табака: Nicotiana glauca и Nicotiana langsdorfii. В 1978 г. было произведено успешное слияние протопластов картофеля и томатов. Полученные в результате растения «поматы» представляют не только научный, но и практический интерес, поскольку они образуют клубни и плоды.

В отличие от томатов картофель принадлежит к видам, которые с большим трудом поддаются генетическому улучшению. Факторы устойчивости к болезням, скомбинированные в одном сорте томатов, при применении метода слияния протопластов могут быть перенесены в сорт картофеля в ходе одной операции. Аналогичная работа, проведенная с использованием обычных селекционных приемов, заняла бы около 20 лет.

В настоящее время получено много межвидовых, межсемейственных и межтрибных гибридов, значительную часть которых нельзя считать нормальными растениями. Возникающие аномалии -- результат хромосомной несбалансированности. Описаны случаи возникновения гибридов между протопластами эритроцитов крысы и дрожжевых клеток, моркови и человека и др. Любые исследования, любые манипуляции в области создания новых генотипов должны быть тщательно и всесторонне продуманы, а ученые должны помнить об ответственности и научной этике.

В 1964 г. Индийские исследователи Гуха и Махесвари культивировали в искусственной среде пыльники растений, пыльцевые зерна которых образовали эмбрионы, а затем и гаплоидные растения. Сангван и Сангван-Норилл в 1976 г. добились успеха в культивировании пыльцевых зерен, выделенных из пыльников растений семейства Solanacea. Пыльцевые зерна развивались несколько дней в своих пыльниках, после этого их выделяли для культивирования. Таким способом удалось получить жизнеспособные растения. Культуральная среда в опытах такого рода содержит до 10000 пыльцевых зерен на 1 мл, но даже при самом тщательном соблюдении необходимых условий лишь очень немногие из них дают начало развитию андрогенных растений (в опытах около 9%).

Культура пыльцевых зерен стала основным источником гаплоидных растений у декоративных, овощных, зерновых и кормовых видов. Пыльцевые зерна могут оказаться более удобными, чем протопласты, для экспериментов по генетической трансформации, предназначенных для получения растений с заданными свойствами.

Растения, полученные в результате размножения вегетативным путем (клоны), обычно похожи на родительское растение, но не все клоны генетически одинаковы. Иногда возникают клоны, которые существенно отличаются от исходной формы. Их называют соматическими вариантами, сомаклонами или «спортами», и появляются они в результате генетических изменений в клетках меристемы, которые дают начало всему новому растению или его части. Сомаклональная изменчивость - прекрасный источник генетического разнообразия, которое может использоваться при создании генетически измененных организмов с новыми свойствами. Отмечены случаи появления сомаклональных вариантов, сочетающих признаки, которые невозможно или трудно соединить в одном генотипе традиционным селекционным путем. Так, из сомаклональных вариантов, возникших в каллусной культуре риса, были выделены растения, сочетавшие скороспелость и длиннозерность. На их основе за короткий срок был создан новый сорт риса. В ряде случаев размножение спортов привело к созданию новых сортов. Например, апельсины «Навель», персики-нектарины.

Таким образом, изменчивость протоклонов, наблюдающаяся в отсутствие мутагенов, весьма важна для селекции: благодаря ей селекционеры получают богатый исходный материал.

Вопросы для самоконтроля

1. Области применения метода культуры клеток и тканей

2. Синтез вторичных метаболитов в культивируемых клетках

3. Технологии, облегчающие селекционный процесс

4. Методы клеточной селекции

5. Гибридизация соматических клеток

Лекция 3. Клональное микроразмножение и оздоровление растений

3.1 Технология микроклонального размножения

Клональным микроразмножением называют неполовое размножение растений с помощью метода культуры тканей, позволяющее получать растения идентичные исходному. В основе получения таких растений лежит способность соматических клеток растений полностью реализовывать свой потенциал развития, т.е. свойство тотипотентности. Метод клонального микроразмножения получает все более широкое распространение во всем мире. В большинстве стран эта технология приобрела коммерческий характер.

В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лабораториях Института физиологии растений им. К.А.Тимирязева. В настоявшее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений.

Свое название эта технология размножения получила от термина «клон» (от греч. clon -- отпрыск), который предложил Веббер в 1903 г. Клональное микроразмножение имеет существенные преимущества перед традиционными способами размножения:

1. Высокий коэффициент размножения. Одно растение герберы за год при микроклональном размножении дает до 1 млн новых растений, тогда как при обычных способах размножения -- только 50--100 растений. Большинство культивируемых в настоящее время сортов лилий размножается только вегетативно. Луковички (возникают на материнских луковицах или на побеге в небольших количествах. Технология микроклонального размножения позволяет получить из одной чешуи луковицы за 6 месяцев до 105 новых растений (сорт Red Carpet).

2. Получение генетически однородного посадочного материала.

3. Возможность оздоровления растений, освобождения их от вирусов благодаря клонированию меристематических тканей.

4. Возможность размножения растений, которые в естественных условиях репродуцируются с большим трудом.

5. Воспроизведение посадочного материала круглый год, что значительно экономит площади, занимаемые маточными и размножаемыми растениями.

6. Сокращение продолжительности селекционного периода, ускорение перехода растений от ювенильной фазы развития к репродуктивной.

Обязательное условие клонального микроразмножения -- использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют апексы и пазушные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также с негативной селекцией измененных клеток.

Процесс клонального микроразмножения можно подразделить на 3 этапа:

1. Получение хорошо растущей стерильной культуры. На этом этапе необходимо правильно выбрать растение-донор, получить свободную от инфекции культуру, добиться ее выживания и быстрого роста на питательной среде.

2. Собственно размножение, осуществляемое несколькими способами:

· активизация пазушных меристем;

· индукция образования адвентивных почек тканями листа, стебля, чешуйками и донцем луковиц, корневищем и зачатками соцветий без первоначального образования каллусной ткани;

· микрочеренкование побега, сохраняющего апикальное доминирование;

· стимуляция образования микроклубней и микролуковичек;

· индукция соматического эмбриогенеза.

3. Подготовка к высадке в поле или к реализации. Это очень важный этап, во время которого в теплице укорененные растения, полученные in vitro, адаптируют к новым условиям внешней среды: проводят закаливание растений, повышают их устойчивость к патогенным микроорганизмам и различным неблагоприятным факторам внешней среды. Существует много различных способов адаптирования растений к пересадке in vivo. Это подбор почвенного субстрата, создание определенной влажности, обработка химическими веществами (глицерин, парафин) для предотвращения обезвоживания листьев. Некоторые древесные растения лучше приживаются, если их заразить in vitro микоризообразующими грибами. Упрощенный способ адаптации пробирочных растений винограда был разработан в Институте физиологии растений им. К. А. Тимирязева РАН. Адаптацию проводят прямо в пробирках, снимая с них пробки, когда растения винограда дорастают до верха пробирки. Через 1,5--2 недели, когда верхушки побега с двумя развитыми листьями появляются над пробиркой, растение готово к пересадке в почву. Для предотвращения механических повреждений корневой системы растение пересаживают в почву вместе с агаром, заглубляя его так, что над поверхностью почвы остаются только 2 развитых листа, которые выросли из пробирки и уже адаптировались к внешним условиям. Такая методика позволяет значительно упростить, ускорить и удешевить этап акклиматизации растений.

Клональное микроразмножение растений проводят разными способами. Первый и основной способ -- активизация пазушных меристем. Он состоит в снятии апикального доминирования и активизации развития меристем, существующих в растении. Этот способ основной и в обычном вегетативном размножении. И на интактном растении, и в случае клонирования снятие апикального доминирования достигается или удалением апикальной меристемы побега, или благодаря действию цитокинина. При клонировании цитокинины (6-бензиламинопурин, 6-фурфуриламинопурин, зеатин) добавляют в питательную среду, что приводит к развитию многочисленных пазушных побегов. Эти побеги отделяют от первичного экспланта и культивируют на свежей питательной среде. Активизацию пазушных меристем широко используют в промышленном размножении овощных сельскохозяйственных культур (картофель, томаты, огурцы, сахарная свекла, топинамбур и др.), цветов (гвоздика, роза, гербера), плодовых и ягодных культур (яблоня, вишня, малина, крыжовник и др.), древесных растений (туя, можжевельник и др.). Однако бесконечно размножать таким способом растения нельзя, поскольку длительное воздействие цитокининов, входящих в состав питательных сред, вызывает аномалии в морфологии стебля, потерю способности побегов к укоренению, иногда -- гибель растений. В опытах с размножением земляники было показано, что при микроклональном размножении необходимо чередовать 2--3 цикла получения побегов с их укоренением.

Второй способ -- индукция развития адвентивных почек, т. е. почек, возникающих из растительных клеток и тканей, которые их обычно не образуют. Этот метод в значительной мере обусловлен тотипотентностью клеток. Почти любой орган или ткань растения, свободные от инфекции, могут быть использованы в качестве экспланта и в определенных условиях образуют адвентивные почки. Данный процесс вызывают внесением в питательную среду определенных концентраций цитокининов и ауксинов, причем цитокинина должно быть гораздо больше, чем ауксина. Это наиболее распространенный способ микроразмножения высших растений. Развивая адвентивные почки на апикальных и пазушных меристемах, размножают растения томата, лука, чеснока; на сегментах листовых пластинок -- салат, глоксинию, фиалки; на тканях донца луковиц -- лук, чеснок, гладиолусы, тюльпаны и другие луковичные растения.

Третий способ -- микрочеренкование побега, сохраняющего апикальное доминирование. Растения-регенеранты, полученные любым другим способом, можно черенковать в стерильных условиях, высаживать на свежую питательную среду, укоренять, и адаптировать к полевым условиям либо снова подвергать микрочеренкованию для того, чтобы увеличить количество посадочного материала.

Четвертый способ -- размножение в биореакторах микроклубнями. Это один из способов ускоренного размножения оздоровленного материала. О. Мелик-Саркисов сконструировал гидропонную установку, позволяющую получать около 7000 микроклубней с 1 м2 при массе одного клубня 5 г. Предусмотрена последующая механизированная посадка их в грунт. В отделе биологии клетки и биотехнологии Института физиологии растений им. К.А.Тимирязева РАН создана эффективная полупромышленная замкнутая система пневмоимпульсного биореактора для получения микроклубней картофеля, в которой предусмотрена возможность воздействия на направление и скорость процессов клубнеобразования. Технологии клонального микроразмножения в биореакторах разработаны не только для сельскохозяйственных, но и для декоративных растений (лилии, гладиолусы, гиацинты, филодендроны и т.д.). Однако созданные установки пока носят лабораторный, модельный характер.

Пятый способ размножения -- образование соматических зародышей -- основан на морфогенных изменениях -- соматическом эмбриогенезе. Впервые это явление было отмечено в середине 50-х годов XX в. в культуре клеток моркови. Формирование эмбриоидов в культуре осуществляется в два этапа. На первом соматические клетки дифференцируются в эмбриональные в присутствии в питательной среде ауксинов, обычно это 2,4-D. На следующей стадии развиваются эмбриоиды. Этот процесс идет только при значительном снижении концентрации ауксина или полном отсутствии его в питательной среде. Соматический эмбриогенез может происходить в тканях первичного экспланта, в каллусной и суспензионной культурах.

Поскольку соматические зародыши представляют собой полностью сформированные растения, данный метод позволяет сократить затраты, связанные с подбором условий укоренения и адаптации растений-регенерантов. Кроме того, преимущество получения соматических эмбриоидов состоит в том, что при использовании соответствующей техники капсулирования из них можно получать искусственные семена.

Соматический эмбриогенез в настоящее время применяют для размножения пшеницы, ячменя, моркови, редиса, винограда, некоторых древесных растений (дуб, ель, эвкалипт).

3.2 Оздоровление посадочного материала

Оздоровление посадочного материала начинается с момента стерилизации экспланта в асептических условиях бокса, с обработки ткани антибиотиками. Однако таким образом удается освободиться главным образом от бактерий, грибных инфекций, нематод. Вирусы, вироиды, микоплазмы остаются в тканях инфицированных растений. Именно из-за вирусных болезней погибает от 10 до 50 % урожая сельскохозяйственных культур, размножающихся вегетативно. Некоторые бобовые растения (соя) могут передавать вирусы даже при семенном размножении.

В 1949 г. было выяснено, что клетки меристематических тканей растений обычно не содержат вирусов. В 1952 г. Дж. Морель и Г. Мартин предложили, используя культивирование меристем, получать здоровые, избавленные от вирусной инфекции растения. Они обнаружили, что при выращивании верхушки побега, состоящей из конуса нарастания и 2--3 листовых зачатков, на ней образуются сферические образования -- протокормы. Протокормы можно делить, и каждую часть культивировать до образования корней и листовых примордиев, получая в большом количестве генетически однородные безвирусные растения. В настоящий момент культивирование меристем побега -- наиболее эффективный способ оздоровления растительного материала от вирусов, вироидов и микоплазм. Однако при этом способе требуется соблюдать определенные правила. Как уже говорилось, чем меньше размер меристематического экспланта, тем труднее вызвать в нем морфогенез. Чем больше размер экспланта, тем легче идет морфогенез, в результате которого получается целое растение, но тем больше вероятность присутствия вирусов в экспланте. У многих видов и сортов-растений зона, свободная от вирусных частиц, различна. Так, при клонировании апикальной меристемы картофеля размером 0,2 мм (конус нарастания с одним листовым зачатком) 70 % полученных растений были свободны от Y-вируса картофеля, но только 10 % -- от Х-вируса. В некоторых случаях не удается найти оптимальное соотношение между размером меристематического экспланта и морфогенезом в нем, и при этом избавиться от вирусной инфекции. Приходится дополнять метод культуры меристем термо- или(и) хемитерапией. Так, предварительная термотерапия исходных растений позволяет получать свободные от вирусов растения-регенеранты из меристемных эксплантов размером от 0,3 мм до 0,8 мм. Вместе с тем этот прием может вызвать отставание растений в росте, деформацию органов, увеличение латентных (скрытых) инфекций.

Хорошие результаты дает совместное применение метода культуры тканей и хемитерапии. При внесении в питательную среду препарата «Вирозол» (1-рибофуранозил-1,2,4-триазолкарбоксамид) количество безвирусных растений увеличивается до 80--100 %.

В настоящее время для диагностики вирусных растений используют иммуноферментную технику, моноклональные антитела, метод молекулярной гибридизации меченых фрагментов РНК- и ДНК-вироидов и вирусов с вирусами тестируемого объекта. Эти методы очень чувствительны, но трудоемки и дорогостоящи.

После оздоровления с помощью вышеперечисленных технологий нормальные растения-регенеранты размножают обычными методами клонального микроразмножения. Для некоторых растений, например цитрусовых, получить морфогенез из меристем малого размера не удается, поэтому требуется разработка оригинальных методов. Лимоны и апельсины оздоровляют и размножают, используя прививки меристем размером 0,14-- 0,18 мм на пробирочные подвои, полученные из семян. Достоинство такого подхода состоит и в том, что развивающиеся из меристем побеги не имеют ювенильных признаков, при этом цветение и плодоношение ускоряются.

3.3 Криосохранение

Сохранение разнообразия форм жизни -- важнейшая проблема, с которой столкнулось современное человечество. Еще Г.Ф.Гаузе доказал, что устойчивость сообщества тем выше, чем больше число составляющих его видов. Следовательно, сохранение биоразнообразия -- единственный механизм стабильности жизни на Земле.

Кроме того, для обеспечения питанием растущего населения нашей планеты необходимо выведение новых, более продуктивных сортов сельскохозяйственных растений, а для успешной селекции важен постоянный приток генов из новых источников. Традиционным источником генетического материала служат дикие виды растений. Однако в связи с расширением городов, сельскохозяйственных угодий, вырубкой лесов, ухудшением экологии эти виды постепенно вытесняются, а многие из них находятся на грани вымирания, поэтому их необходимо сохранить.

Существует несколько способов сохранения генофонда высших растений: заповедники, национальные парки, банки семян. В последнее время большое внимание уделяется созданию и развитию новых способов: пересадочных коллекций каллусных клеток, депонированию культур клеток и, наконец, криосохранению, т.е. хранению объектов при очень низкой температуре, обычно это температура жидкого азота (-196°С). Криосохранение имеет существенные преимущества по сравнению с остальными методами. При сохранении в глубоко замороженном состоянии полностью прекращается обмен веществ, отсутствуют значительные физико-химические молекулярные изменения не только в клетке, но и в окружающей водной среде. Сохраняется генотип, а следовательно, все свойства замороженного объекта. Единственный негативный фактор, которого не удается избежать, -- это фоновая ионизирующая радиация. Однако, по мнению М.Ашвуд-Смита, потребуется примерно 32000 лет для накопления 10% летальных хромосомных повреждений. Следовательно, криогенный метод дает возможность неограниченно долго хранить растительный материал без существенных изменений: сохраняются жизнеспособность клеток, их свойства, а также способность к морфогенезу и регенерации целых растений.

Сущность метода криосохранения сводится к замораживанию специально подготовленных растительных клеток при использовании криопротекторов -- веществ, ослабляющих повреждения клеток при замораживании и оттаивании. В настоящее время известны два метода криосохранения: программное (медленное) и сверхбыстрое замораживание. Программное замораживание изучалось уже давно, поэтому оно довольно широко применяется для сохранения животных и растительных клеток. Разработка сверхбыстрого замораживания началась сравнительно недавно, однако считается, что именно этот метод со временем станет наиболее перспективным.

Трудности криосохранения растений связаны со спецификой растительных клеток. Клетки растений имеют большие размеры (в культуре тканей они изменяются от 15 до 1000 мкм), прочную целлюлозную стенку и вакуоли. Причем именно степень вакуолизации играет основную роль в устойчивости клеток к действию низких температур. В зрелой клетке центральная вакуоль занимает до 90 % общего объема клетки, т.е. клетка представляет собой как бы резервуар с водой, которая необходима для ее нормальной жизнедеятельности. Поэтому основные факторы, способные привести клетку к гибели при замораживании, -- это образование льда и дегидратация. Обычно кристаллы льда сначала образуются во внешнем растворе вокруг клеток. Максимальная скорость их роста в зависимости от состава раствора находится в пределах температур от -20 до -60 °С. При температуре -140 °С рост кристаллов льда совершенно прекращается. Следовательно, и при замораживании, и при оттаивании клеткам очень важно с оптимальной скоростью «проскочить» температуру образования льда. Кристаллы внеклеточного льда могут механически разрушать клетки. Кроме того, они играют водоотнимающую роль, что приводит к значительной дегидратации клетки и возможной ее гибели от осмотического стресса. При очень быстром замораживании лед может образовываться и внутри клеток, что ведет к разрушению в ней многочисленных мембран.

Избежать кристаллизации льда помогла бы витрификация воды, т. е. затвердение ее в аморфном состоянии. Получить витрификацию чистой воды практически невозможно. Но в коллоидных растворах скорость образования центров кристаллизации и роста кристаллов льда снижается и повышается температура, при которой их рост прекращается. Все это облегчает витрификацию. Добавление криопротекторов также затрудняет кристаллизацию льда и способствует витрификации.

Наиболее известны такие криопротекторы, как диметилсульфоксид (ДМСО), различные сахара, глицерин, этиленгликоль и их производные. Действие криопротекторов состоит в снижении количества свободной воды, повышении вязкости раствора. Все криопротекторы делят на две группы: проникающие и непроникающие. Это разделение достаточно условно. Так, глицерин -- первое вещество, определенное как криопротектор, может проникать в клетку, если его добавлять при комнатной температуре, или выступать как непроникающее соединение, если его добавлять при температуре 0 °С. Принято считать, что непроникающие криопротекторы специфически влияют на мембрану, повышая ее проницаемость. Применение сильных, проникающих в клетку криопротекторов ограничено их токсичностью. Поэтому обычно используют смеси криопротекторов, так как в них токсичность одного из веществ снижается за счет присутствия другого.

Жизнеспособность клеток после замораживания зависит не только от предупреждения образования льда, но и от их состояния. Крупные вакуолизированные клетки погибают гораздо чаще, чем мелкие меристемоидные. Поэтому на этапе подготовки культуры к замораживанию ее культивируют в условиях, способствующих образованию мелких клеток и синхронизации их деления.

Кроме того, концентрирование клеток в культуре, т.е. увеличение ее плотности, способствует повышению выживаемости клеток после замораживания.

Таким образом, криосохранение достаточно надежно обеспечивает сохранение генофонда. Перспективность этого метода подтверждается возобновлением после хранения в жидком азоте суспензионных культур моркови, явора, кукурузы, риса, сахарного тростника; каллусных -- тополя, маршанции, сахарного тростника; андрогенных эмбриоидов -- беладонны, табака и др. Из восстановленных после замораживания культур моркови и табака удалось регенерировать целые растения. После быстрого замораживания сохранили жизнеспособность меристемы земляники, малины, гвоздики, томатов, картофеля и ряда других растений. Однако для криосохранения требуется сложная работа по подбору условий, обеспечивающих выживание клеток и, следовательно, возможность последующей регенерации из них целых растений. Необходимо учитывать генетические и морфофизиологические особенности клеток, способность к закаливанию, уровень проницаемости клеточных мембран, подбор криопротекторов, скорость снижения температуры при замораживании, условия оттаивания.

Вопросы для самоконтроля

1. Технология микроклонального размножения

2. Способы клонального микроразмножения растений

3. Оздоровление посадочного материала

4. Криосохранение

5. Методы криосохранения

Размещено на Allbest.ru

...

Подобные документы

  • Применение клеточных технологий в селекции растений. Использование методов in vitro в отдаленной гибридизации. Работы по культивированию каллуса с целью получения нового селекционного материала. Гибридизация соматических клеток и ее основные результаты.

    реферат [28,6 K], добавлен 10.08.2009

  • Методы культивирования соматических клеток человека и животных на искусственных питательных средах как предпосылка к развитию клеточной инженерии. Этапы соматической гибридизации. Перенос генетического материала. Происхождение трансгенных растений.

    реферат [15,8 K], добавлен 23.01.2010

  • Уровень клеточной организации, промежуточное отношение клеток и всего организма. Основные группы тканей. Мышечная, нервная, эпителиальная и соединительная ткань. Состав слизистых оболочек. Верхушечная, боковая и вставочные меристемы растительных тканей.

    презентация [4,7 M], добавлен 11.05.2012

  • Эпителиальная ткань, ее регенерационная способность. Соединительные ткани, участвующие в поддержании гомеостаза внутренней среды. Клетки кровы и лимфы. Поперечнополосатые и сердечные мышечные ткани. Функции нервных клеток и тканей животных организмов.

    реферат [634,0 K], добавлен 16.01.2015

  • Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация [1,3 M], добавлен 17.12.2013

  • Влияние рН на биологические процессы. Подходы к биохимическому исследованию. Изотонические солевые растворы. Стадии фракционирования клеток. Перфузия изолированных органов. Культуры тканей и клеток. Зависимость ионизации аминокислот и белков от рН.

    реферат [1,6 M], добавлен 26.07.2009

  • Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация [615,8 K], добавлен 26.01.2014

  • Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа [843,8 K], добавлен 12.07.2010

  • Ткань как группа клеток, сходных по строению, функциям и имеющих общее происхождение. Типы тканей растений, их функциональные особенности и структура. Поперечный разрез листа, его элементы: верхняя и нижняя кожица, основная и механическая ткань.

    презентация [1,7 M], добавлен 13.10.2014

  • Особенности роста и развития растений. Культура и морфогенетические особенности каллусных тканей. Клональное микроразмножение отдаленных гибридов. Применение культур растительной ткани. Вспомогательное использование методов in vitro в селекции растений.

    реферат [7,0 M], добавлен 22.09.2009

  • Образование тканей из зародышевых листков (гистогенез). Понятие как стволовых клеток как полипотентных клеток с большими возможностями. Механизмы и классификация физиологической регенерации: внутриклеточная и репаративная. Виды эпителиальных тканей.

    реферат [19,6 K], добавлен 18.01.2010

  • Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.

    презентация [14,0 M], добавлен 15.04.2011

  • Полиплоидия и отдаленная гибридизация растений, методы экспериментального получения полиплоидов. Общие принципы селекции животных, учет экстерьерных признаков. Типы скрещивания и методы разведения в животноводстве, гетерозис; селекция микроорганизмов.

    реферат [22,9 K], добавлен 13.10.2009

  • Общая характеристика растений как фотоавтотрофных организмов. Дифференциация тела растений, простые и сложные ткани. Первичные и вторичные меристемы. Ситовидные клетки и трубки как важнейшие части флоэмы. Виды паренхимы основных выделительных тканей.

    презентация [15,0 M], добавлен 28.01.2013

  • Митотическое деление клетки, особенности ее строения. Митоз как универсальный способ деления клеток растений и животных. Постоянство количества и индивидуальность хромосом. Продолжительность жизни, старение и смерть клеток. Формы размножения организмов.

    реферат [22,8 K], добавлен 07.10.2009

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.

    курсовая работа [90,0 K], добавлен 23.04.2015

  • Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.

    презентация [6,2 M], добавлен 24.06.2013

  • Задачи современной селекции, породы животных и сорта растений. Центры многообразия и происхождения культурных растений. Основные методы селекции растений: гибридизация и отбор. Самоопыление перекрестноопылителей (инбридинг), сущность явления гетерозиса.

    реферат [17,6 K], добавлен 13.10.2009

  • Генетическое разнообразие форм растений и животных. Отбор и гибридизация как основные методы селекции растений. Пересадка генов и частей ДНК одного вида в клетки другого организма. Отбор генетически модифицированных организмов, их применение в медицине.

    презентация [815,0 K], добавлен 30.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.