Понятие клетки
Исследование строение клетки и её основных элементов. Характеристика патологии клеточного ядра. Изучение хромосомных аберраций и болезней. Рассмотрение формы ядер и их количества. Классификация патологии митоза. Анализ основных причин разрыва ядра.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 01.04.2014 |
Размер файла | 409,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Введение
Клетка - элементарная живая система, обладающая способностью к обмену с окружающей средой.
Строение клеток организма человека обеспечивает выполнение ими специализированной функции и «сохранение себя», т.е. поддержание клеточного пула. Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки (рис. 1).
Рис. 1 Строение клетки (схема): Я - ядро, ЯП - ядерные поры, Яд - ядрышко, ПНП - перинуклеарное пространство, Цп - цитоплазма (гиалоплазма), Цм - оболочка клетки (цитомембрана), ЭР - эндоплазматический ретикулум (эндоплазматическая сеть), Рб - рибосомы, М - митохондрии, АГ - пластинчатый комплекс (комплекс Гольджи), Лз - лизосомы, Ц - центросома, СВ - секреторные вакуоли, ПП - пиноцитозные пузырьки, Фз - стадии фагоцитоза
Патология клетки - понятие неоднозначное. Во-первых, это патология специализированных ультраструктур клетки, она представлена не только достаточно стереотипными изменениями той или иной ультраструктуры в ответ на различные воздействия, но и настолько специфичными изменениями ультраструктур, что можно говорить о хромосомных болезнях и «болезнях» рецепторов, лизосомных, митохондриальных, пероксисомных и других «болезнях» клетки. Во-вторых, патология клетки - это изменения ее компонентов и ультраструктур в причинно-следственных связях. При этом речь идет о выявлении общих закономерностей повреждения клетки и ее реакции на повреждение. Сюда могут быть отнесены: рецепция патогенной информации клеткой и реакция на повреждение, нарушения проницаемости клеточных мембран и циркуляции внутриклеточной жидкости; нарушения метаболизма клетки, смерть клетки (некроз), клеточная дисплазия и метаплазия, гипертрофия и атрофия, патология движения клетки, ее ядра и генетического аппарата и др.
клетка ядро хромосомный
1. Патология клеточного ядра
Морфологически она проявляется в изменении структуры, размеров, формы и количества ядер и ядрышек, в появлении разнообразных ядерных включений и изменений ядерной оболочки. Особую форму ядерной патологии представляет патология митоза; с патологией хромосом ядра связано развитие хромосомных синдромов и хромосомных болезней.
2. Структура и размеры ядер
Структура и размеры ядра (речь идет об интерфазном, интермитозном, ядре) зависят в первую очередь от плоидности, в частности от содержания в ядре ДНК, и от функционального состояния ядра. Тетраплоидные ядра имеют диаметр больше, чем диплоидные, октоплоидные - больше, чем тетраплоидные.
Большая часть клеток содержит диплоидные ядра. В пролиферирующих клетках в период синтеза ДНК (S-фаза) содержание ДНК в ядре удваивается, в постмитотический период, напротив, снижается. Если после синтеза ДНК в диплоидной клетке не происходит нормального митоза, то появляются тетраплоидные ядра. Возникаетполиплоидия - кратное увеличение числа наборов хромосом в ядрах клеток, или состояние плоидности от тетраплоидии и выше. Полиплоидные клетки выявляют различными способами: по размеру ядра, по увеличенному количеству ДНК в интерфазном ядре или по увеличению числа хромосом в митотической клетке. Они встречаются в нормально функционирующих тканях человека. Увеличение числа полиплоидных ядер во многих органах отмечается в старости. Особенно ярко полиплоидия представлена при репаративной регенерации (печень), компенсаторной (регенерационной) гипертрофии (миокард), при опухолевом росте.
Другой вид изменений структуры и размеров ядра клетки встречается при анеуплоидии, под которой понимают изменения в виде неполного набора хромосом. Анеуплоидия связана с хромосомными мутациями. Ее проявления (гипертетраплоидные, псевдоплоидные, «приблизительно» диплоидные или триплоидные ядра) часто обнаруживаются в злокачественных опухолях.
Размеры ядер и ядерных структур независимо от плоидии определяются в значительной мерефункциональным состоянием клетки. В связи с этим следует помнить, что процессы, постоянно совершающиеся в интерфазном ядре, разнонаправленны: во-первых, это репликация генетического материала в S-периоде («полуконсервативный» синтез ДНК); во-вторых, образование РНК в процессе транскрипции,транспортировка РНК из ядра в цитоплазму через ядерные поры для осуществления специфической функции клетки и для репликации ДНК.
Функциональное состояние ядра находит отражение в характере и распределении его хроматина. В наружных отделах диплоидных ядер нормальных тканей находят конденсированный (компактный) хроматин -гетерохроматин, в остальных ее отделах - неконденсированный (рыхлый) хроматин - эухроматин. Гетеро- и эухроматин отражают различные состояния активности ядра; первый из них считается «малоактивным» или «неактивным», второй - «достаточно активным». Поскольку ядро может переходить из состояния относительно функционального покоя в состояние высокой функциональной активности и обратно, морфологическая картина распределения хроматина, представленная гетеро- и эухроматином, не может считаться статичной. Возможна «гетерохроматинизация» или «эухроматинизация» ядер (рис. 2), механизмы которой изучены недостаточно. Неоднозначна и трактовка характера и распределения хроматина в ядре.
Например, маргинация хроматина, т.е. расположение его под ядерной оболочкой, трактуется и как признак активности ядра, и как проявление его повреждения. Однако конденсация эухроматиновых структур(гиперхроматоз стенки ядра), отражающая инактивацию активных участков транскрипции, рассматривается как патологическое явление, как предвестник гибели клетки. К патологическим изменениям ядра относят также егодисфункциональное (токсическое) набухание, встречающееся при различных повреждениях клетки. При этом происходит изменение коллоидно-осмотического состояния ядра и цитоплазмы вследствие торможения транспорта веществ через оболочку клетки.
Рис. 2. Гетеро- и эухроматизация ядер: а - гетерохроматин ядра опухолей клетки. х25 000; б - эухроматизация хроматина ядра эндотелиоцита. Многочисленные инвагинаты ядерной оболочки; в цитоплазме - тубулярные включения и скопления промежуточных филаментов. х30
3. Форма ядер и их количество
Изменения формы ядра - существенный диагностический признак: деформация ядер цитоплазматическими включениями при дистрофических процессах, полиморфизм ядер при воспалении (гранулематоз) и опухолевом росте (клеточный атипизм).
Форма ядра может меняться также в связи с образованием множественных выпячиваний ядра в цитоплазму (рис. 3), которое обусловлено увеличением ядерной поверхности и свидетельствует о синтетической активности ядра в отношении нуклеиновых кислот и белка.
Изменения количества ядер в клетке могут быть представлены многоядерностью, появлением «спутника ядра» и безъядерностью. Многоядерность возможна при слияний клеток. Таковы, например, гигантские многоядерные клетки инородных тел и Пирогова-Лангханса, образующиеся при слиянии эпителиоидных клеток (см. рис. 72). Но возможно образование многоядерных клеток и при нарушениях митоза - деление ядра без последующего деления цитоплазмы, что наблюдается после облучения или введения цитостатиков, а также при злокачественном росте.
«Спутниками ядра», кариомерами (маленькими ядрами) называют мелкие подобные ядру образования с соответствующей структурой и собственной оболочкой, которые расположены в цитоплазме около неизмененного ядра. Причиной их образования считают хромосомные мутации. Таковы кариомеры в клетках злокачественной опухоли при наличии большого числа фигур патологических митозов.
Рис. 3 Атипизм ядер клетки опухоли. Множественные выпячивания ядерной оболочки
Безъядерность в отношении функциональной оценки клетки неоднозначна. Известны безъядерные клеточные структуры, которые являются вполне жизнеспособными (эритроциты, тромбоциты). При патологических состояниях можно наблюдать жизнеспособность частей цитоплазмы, отделенных от клетки. Но безъядерность может свидетельствовать и о гибели ядра, которая проявляется кариопикнозом, кариорексисом (рис. 4) икариолизисом (см. Некроз).
Рис. 4 Распад пикнотического ядра (кариорексис)
4. Структура и размеры ядрышек
Изменения ядрышек имеют существенное значение в морфофункциональной оценке состояния клетки, так как с ядрышками связаны процессы транскрипции и трансформации рибосомальной РНК (р-РНК). Размеры и структура ядрышек в большинстве случаев коррелируют с объемом клеточного белкового синтеза, выявляемого биохимическими методами. Размеры ядрышек зависят также от функции и типа клеток.
Увеличение размеров и количества ядрышек (рис. 5) свидетельствует о повышении их функциональной активности. Вновь образованная в ядрышке рибосомальная РНК транспортируется в цитоплазму и, вероятно, через поры внутренней ядерной мембраны. Интенсивный синтез белка в таких случаях подтверждается увеличением количества рибосом эндоплазматической сети.
Гипергранулированные ядрышки с преобладанием гранул над фибриллярной субстанцией могут отражать различное функциональное состояние как ядрышек, так и клетки. Наличие таких ядрышек с хорошо выраженной лакунарной системой и резкой базофилией цитоплазмы свидетельствует как о повышенном синтезе р-РНК, так и о трансмиссии.
Рис. 5 Увеличение количества и размеров ядрышек
Такие «гиперфункциональные ядрышки» встречаются в молодых плазматических клетках, активных фибробластах, гепатоцитах, во многих опухолевых клетках. Те же гипергранулированные ядрышки со слабовыраженной базофилией цитоплазмы могут отражать нарушение трансмиссии (транспортировки гранул) при продолжающемся синтезе р-РНК. Они обнаруживаются в опухолевых клетках, отличающихся большим ядром и незначительной цитоплазматической базофилией.
Разрыхление (диссоциация) ядрышек, отражающее их гипогрануляцию, может быть следствием «извержения» р-РНК в цитоплазму или торможения ядрышковои транскрипции. Дезорганизация (сегрегация) ядрышекотражает, как правило, полное и быстрое прекращение ядрышковой транскрипции: ядро уменьшается в размерах, наблюдается выраженная конденсация ядрышкового хроматина, происходит разделение гранул и протеиновых нитей. Эти изменения встречаются при энергетическом дефиците клетки.
5. Ядерные включения
Ядерные включения делят на три группы: ядерные цитоплазматические, истинные ядерные и ядерные вирусобусловленные.
Ядерными цитоплазматическими включениями называют отграниченные оболочкой части цитоплазмы в ядре. Они могут содержать все составные части клетки (органеллы, пигмент, гликоген, капли жира и т.д.). Их появление в большинстве случаев связано с нарушением митотического деления.
Истинными ядерными включениями считают те, которые расположены внутри ядра (кариоплазмы) и соответствуют веществам, встречающимся в цитоплазме - белок, гликоген (рис. 6, а), липиды и т.д. В большинстве случаев эти вещества проникают из цитоплазмы в ядро через неповрежденные или поврежденные поры ядерной оболочки или через разрушенную ядерную оболочку. Возможно также проникновение этих веществ в ядро при митозе. Таковы, например, включения гликогена в ядрах печени при сахарном диабете («ядерный гликоген», «дырчатые, пустые, ядра»).
Рис. 6 Ядерные включения: а - включения гликогена в ядре гепатоцита. х22 500; б - включения вируса в ядре опухолевой клетки
Вирусобусловленные ядерные включения (так называемые тельца ядерных включений) неоднозначны. Во-первых, это ядерные включения в кариоплазме кристаллической решетки вируса (рис. 6, б), во-вторых, включения белковых частиц, возникающих при внутриядерном размножении вируса; в-третьих, ядерные включения как проявление реакции на поражение вирусом цитоплазмы («реактивные включения»).
6. Ядерная оболочка
Ядерная оболочка выполняет ряд функций, нарушения которых могут служить основой для развития патологии клетки. О роли ядерной оболочки в поддержании формы и размера ядра свидетельствует образование внутриядерных трубчатых систем, отходящих от внутренней ядерной мембраны, включений в перинуклеарной зоне - гипертрофия миокарда, легочный фиброз, системный васкулит, саркоидоз, опухоли печени, дерматомиозит (рис. 7). О ядерной оболочке как месте прикрепления ДНК для облегчения репликации и транскрипциисвидетельствует тот факт, что в ядерной оболочке имеются структуры, модулированные хроматином и в свою очередь ответственные за ориентацию и структуру хроматина. Показано, что функциональная активность ДНК связана с ее распределением при делении клетки и со степенью конденсации в интерфазе, причем повреждение оболочки может вызывать изменения таких участков распределения и быть причиной патологических изменений клетки.
Рис. 7 Микротубулярные включения в перинуклеарной зоне эндотелиоцита при дерматомиозите
В пользу функции ядерной оболочки как физического барьера и модулятора нуклеоцитоплазматического обмена говорит установленная корреляция между изменениями структуры ядерной оболочки, модулем ее пор и выходом РНК в цитоплазму. Контроль ядерной оболочкой транспорта РНК в цитоплазму может оказывать существенное влияние на гомеостаз клетки при патологических состояниях. Участие ядерной оболочки всинтезе мембран не имеет достоверных доказательств, хотя и считают, что эта роль возможна, так как мембраны ядерной оболочки непосредственно переходят в эндоплазматическую сеть цитоплазмы. О возможном влиянии ферментов ядерной оболочки на функцию ядра свидетельствует наличие в ядерной оболочке различных ферментов детоксикации, а также веществ, обеспечивающих «гормональное управление» (аденилатциклаза, рецепторы инсулина и др.).
6. Патология митоза
В жизненном цикле клетки митоз занимает особое место. С его помощью осуществляется репродукция клеток, а значит, и передача их наследственных свойств. Подготовка клеток к митозу складывается из ряда последовательных процессов: репродукции ДНК, удвоения массы клетки, синтеза белковых компонентов хромосом и митотического аппарата, удвоения клеточного центра, накопления энергии для цитотомии. В процессе митотического деления, как известно, различают 4 основные фазы: профазу, метафазу, анафазу и телофазу.
При патологии митоза может страдать любая из этих фаз. Руководствуясь этим, создана классификация патологии митоза (Алов И.А., 1972), согласно которой выделяются следующие типы патологии митоза.
I. Повреждение хромосом: 1) задержка клеток в профазе; 2) нарушение спирализации и деспирализации хромосом; 3) фрагментация хромосом; 4) образование мостов между хромосомами в анафазе; 5) раннее разъединение сестринских хроматид; 6) повреждение кинетохора.
II. Повреждение митотического аппарата: 1) задержка развития митоза в метафазе; 2) рассредоточение хромосом в метафазе; 3) трехгрупповая метафаза; 4) полая метафаза; 5) многополюсные митозы; 6) асимметричные митозы; 7) моноцентрические митозы; 8) К-митозы.
III. Нарушение цитотомии: 1) преждевременная цитотомия; 2) задержка цитотомии; 3) отсутствие цитотомии.
Патологию митоза могут вызвать различные воздействия на клетку: ультрафиолетовое и ионизирующее излучение, высокая температура, химические вещества, в том числе канцерогены и митотические яды и др. Велико количество патологических митозов при малигнизации тканей (рис. 8).
Рис. 8 Патология митоза. Полутонкий срез ткани опухоли
7. Хромосомные аберрации и хромосомные болезни
Хромосомные аберрации. Под хромосомными аберрациями понимают изменения структуры хромосом, вызванные их разрывами, с последующим перераспределением, утратой или удвоением генетического материала. Они отражают различные виды аномалий хромосом. У человека среди наиболее часто встречающихся хромосомных аберраций, проявляющихся развитием глубокой патологии, выделяют аномалии, касающиеся числа и структуры хромосом. Нарушения числа хромосом могут быть выражены отсутствием одной из пары гомологичных хромосом (моносомия) или появлением добавочной, третьей, хромосомы (трисомия).Общее количество хромосом в кариотипе в этих случаях отличается от модального числа и равняется 45 или 47. Полиплоидия и анеуплоидия имеют меньшее значение для развития хромосомных синдромов. К нарушениям структуры хромосом при общем нормальном их числе в кариотипе относят различные типы их «поломки»: транслокацию (обмен сегментами между двумя негомологичными хромосомами), делецию (выпадение части хромосомы), фрагментацию, кольцевые хромосомы и т.д.
Хромосомные аберрации, нарушая баланс наследственных факторов, являются причиной многообразных отклонений в строении и жизнедеятельности организма, проявляющихся в так называемых хромосомных болезнях.
Хромосомные болезни. Их делят на связанные с аномалиями соматических хромосом (аутосом) и с аномалиями половых хромосом (телец Барра). При этом учитывают характер хромосомной аномалии - нарушение числа отдельных хромосом, числа хромосомного набора или структуры
хромосом. Эти критерии позволяют выделять полные или мозаичные клинические формы хромосомных болезней.
Хромосомные болезни, обусловленные нарушениями числа отдельных хромосом (трисомиями и моносомиями), могут касаться как аутосом, так и половых хромосом.
Моносомии аутосом (любые хромосомы, кроме Х- и Y-хромосом) несовместимы с жизнью. Трисомии аутосом достаточно распространены в патологии человека. Наиболее часто они представлены синдромами Патау (13-я пара хромосом) и Эдвардса (18-я пара), а также болезнью Дауна (21-я пара). Хромосомные синдромы при трисомиях других пар аутосом встречаются значительно реже. Моносомия половой Х-хромосомы (генотип ХО) лежит в основе синдрома Шерешевского-Тернера, трисомия половых хромосом (генотип XXY) - в основе синдрома Клейнфелтера. Нарушения числа хромосом в виде тетраили триплоидии могут быть представлены как полными, так и мозаичными формами хромосомных болезней.
Нарушения структуры хромосом дают самую большую группу хромосомных синдромов (более 700 типов), которые, однако, могут быть связаны не только с хромосомными аномалиями, но и с другими этиологическими факторами.
Для всех форм хромосомных болезней характерна множественность проявлений в виде врожденных пороков развития, причем их формирование начинается на стадии гистогенеза и продолжается в органогенезе, что объясняет сходство клинических проявлений при различных формах хромосомных болезней.
Заключение
«Мозгом» клетки является клеточное ядро. В нем располагаются макромолекулы ДНК, в которых закодирована внутриклеточная информация. Все процессы, протекающие в клетке, регулируются и направляются ядром. Несмотря на то, что роль ядра в жизни клетки стала ясна уже давно, и изучению этой органеллы посвящено очень большое количество работ, механизмы функционирования ядра еще далеко не выяснены, в частности, особенности транспорта различных веществ через нуклеолемму, роль последней в передаче информации от ядра к остальной части клетки и т.д.
Ядро может подвергаться патологическим изменениям, связанным с изменением коллоидно-осмотических взаимоотношений внутри клетки. При набухании ядра может произойти его разрыв (кариорексис), а при повышении осмотического и онкотического давления в цитоплазме - его сморщивание (пикноз), что также может вызвать в клетке ряд глубоких патологических изменений.
При электронной микроскопии патологически измененной клетки (или клетки, находящейся в состоянии повышенной функциональной активности) нередко отмечается следующая особенность: в ней происходит уменьшение количества хроматина, причем он начинает располагаться по периферии ядра в виде узкой темной полосы вдоль нуклеолеммы. Это так называемая маргинация хроматина, свидетельствующая об интенсификации внутринуклеарных процессов. Ряд последовательных изменений происходит в ядре при апоптозе.
Что касается ЛЮБОЙ патологии ядра, Я бы хотела, акцентировать внимание на следующей закономерности: если гибнет ядро, то гибнет и клетка.
Список литературы
1. Патологическая анатомия-учебник. А.И.Струков,В.В.Серов-5-е изд.,2010г, глава 1,стр.9-14
2. Патологическая физиология и патологическая анатомия животных. Н.А.Налетов,И.В.Иванов.1991г.,стр.138-149
3. Патологическая анатомия с\х животных. В.П.Шишков, Н.А.Налетов.1980г.,глава 1,стр.
Размещено на Allbest.ru
...Подобные документы
Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.
презентация [2,5 M], добавлен 19.01.2011Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.
презентация [2,9 M], добавлен 26.11.2013Эволюционное значение клеточного ядра - компонента эукариотической клетки, содержащего генетическую информацию. Структура ядра: хроматин, ядрышко, кариоплазма и ядерная оболочка. Функции ядра: хранение, передача и реализация наследственной информации.
презентация [3,1 M], добавлен 21.02.2014Тайны и механизмы передачи наследственной информации, роль клетки как функциональной и морфологической единицы. Классификация форм наследственной патологии, характеристика наследственных болезней. Значимость наследственных факторов в патологии человека.
реферат [33,7 K], добавлен 05.07.2010Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014Клетка как элементарная целостная живая система, основа строения и жизнедеятельности всех животных и растений, общая характеристика химического состава. Знакомство с особенностями строения ядра. Рассмотрение основных функций эндоплазматической сети.
презентация [2,1 M], добавлен 10.12.2013Изучение клеточного уровня организации жизни. Сущность и строение эукариотической клетки - открытой системы, связанной с окружающей средой обменом веществ и энергии. Взаимосвязь строения и функций органоидов клеток: цитоплазмы, ядра, лизосом, митохондрий.
презентация [954,6 K], добавлен 26.02.2012Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.
презентация [6,8 M], добавлен 27.12.2011Единый план строения клеток организма. Строгая упорядоченность строения ядра и цитоплазмы. Клеточное ядро (вместилище всей генетической информации). Содержимое клеточного ядра (хроматин). Аппарат Гольджи, эндоплазматическая сеть, клеточные структуры.
реферат [21,6 K], добавлен 28.07.2009Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.
презентация [1,4 M], добавлен 28.11.2013Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.
презентация [1,1 M], добавлен 07.12.2014Строение и функции клеточного ядра. Его форма, состав, строение. Дезоксирибонуклеиновая кислота - носитель наследственной информации. Механизм репликации ДНК. Процесс восстановления природной структуры ДНК, поврежденной при ее нормальном биосинтезе.
реферат [6,6 M], добавлен 07.09.2015Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.
презентация [881,2 K], добавлен 12.09.2014Место цитологии среди других дисциплин. Исследование положений современной клеточной теории. Реакция клетки на повреждающее действие. Характеристика основных механизмов повреждения клетки. Анализ традиционных точек зрения на причины развития старения.
презентация [6,8 M], добавлен 28.02.2014Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.
презентация [7,2 M], добавлен 06.06.2012Основные органеллы клетки. Цитоплазма - полужидкая среда, в которой находятся ядро клетки и все органоиды, ее состав. Схема строения комплекса Гольджи. Органоиды движения включения (реснички и жгутики). Форма и размеры ядра, его главные функции.
презентация [764,3 K], добавлен 13.11.2014Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.
презентация [1,4 M], добавлен 19.10.2013Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.
презентация [7,6 M], добавлен 21.02.2013Последовательность образования антител. Дентдритные клетки и их классификация. Клетки Лангерганса, их происхождение и функции, методы выявления. Презентация антигена. Роль клеток в формировании клеточного и гуморального антивирусного иммунитета.
реферат [896,5 K], добавлен 09.02.2012Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.
реферат [20,3 K], добавлен 06.07.2010