Регуляция работы сердца. Классификация гормонов. Дыхательная система детей

Рефлекторная, нервная и гуморальная регуляция работы сердца. Железы внутренней секреции. Биологические свойства и функции гормонов. Теплообразование в покое и при мышечной деятельности. Возрастные особенности развития системы дыхания у детей и подростков.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 06.04.2014
Размер файла 22,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СПОРТА И ТУРИЗМА РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

Кафедра физиологии и биохимии

КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИОЛОГИИ

Минск 2012 г.

Оглавление

1. Рефлекторная, нервная и гуморальная регуляция работы сердца в покое и при мышечной деятельности

2. Характеристика желез внутренней секреции. Биологические свойства гормонов, функции и виды их взаимодействия

3. Теплообразование в покое и при мышечной деятельности. Температурное «ядро» и «оболочка» тела, факторы определяющие колебания их температуры

4. Возрастные особенности развития системы дыхания у детей и подростков

Литература

сердце гормон теплообразование дыхание

1. Рефлекторная, нервная и гуморальная регуляция работы сердца в покое и при мышечной деятельности

Регуляция работы сердца осуществляется как нервными, так и гуморальными путями. Нервную регуляцию работы сердца осуществляет вегетативная нервная система. Она может изменять частоту сокращений сердца - хронотропное действие, влиять на скорость атривентрикулярного проведения - дромотропное действие, на возбудимость сердечной мышцы - батмотропное влияние и изменять силу сокращений - инотропное воздействие. Замедление частоты сокращений сердца называется брадикардией, а учащение - тахикардией.

Парасимпатическая иннервация представлена блуждающими нервами, а симпатическая - волокнами симпатической нервной системы. [1]

Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I--V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.[2]

Парасимпатические волокна блуждающих нервов берут начало в продолговатом мозге и дают ветви к сердцу. Блуждающие нервы тормозят работу сердца. Они оказывают отрицательное хроно-, ино-, дромо- и батмотропное влияние.

Правый блуждающий нерв иннервирует преимущественно правое предсердие и особенно интенсивно синоатриальный узел. К атриовентрикулярному узлу подходят, главным образом, волокна от левого блуждающего нерва. Вследствие этого правый блуждающий нерв влияет преимущественно на частоту сокращений, а левый - на атривентрикулярное проведение. Парасимпатическая иннервация желудочков выражена слабо и оказывает свое влияние косвенно - за счет торможения симпатических эффектов.

Симпатическая иннервация действует противоположно парасимпатической. Она вызывает усиление и учащение сокращений сердца. Симпатическая иннервация в отличие от блуждающих нервов практически равномерно распределена по всем отделам сердца. Преганглионарные симпатические сердечные волокна берут начало в боковых рогах верхних грудных сегментов спинного мозга. Преганглионарные волокна переключаются на постганглионарные нейроны в шейных и в верхних грудных ганглиях симпатического ствола, в частности в звездчатом ганглии. Отростки постганглионарных нейронов подходят к сердцу в составе нескольких сердечных нервов.

У человека деятельность желудочков контролируется преимущественно симпатическими нервами. Что касается предсердий и особенно синоатриального узла, то они находятся под постоянными антагонистическими воздействиями со стороны блуждающих и симпатических нервов. Так, при выключении парасимпатических влияний частота сокращений сердца возрастает. При подавлении же симпатической активности частота сердечных сокращений падает. Эти постоянные влияния блуждающих и симпатических нервов связаны с их тонусом.

Парасимпатические и симпатические нервы действуют на сердце согласованно. Во время сна усиливается влияние блуждающих нервов, и деятельность сердца замедляется. Влияние симпатических нервов в это время ослабевает.

Факторами гуморальной регуляции являются:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

Гормон надпочечников адреналин увеличивает силу и частоту сердечных сокращений и вызывает эффект, аналогичный действию симпатической нервной системы. При чрезмерных физических нагрузках, а также при психических нагрузках в кровь поступают большие количества адреналина.

Тироксин (гормон щитовидной железы) усиливает работу сердца.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются.[1]

Работа сердца связана и с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца.[3]

2. Характеристика желез внутренней секреции. Биологические свойства гормонов, функции и виды их взаимодействия

Железами внутренней секреции, или эндокринными железами, являются специализированные органы, которые выделяют образующиеся в них продукты секреции непосредственно в кровь или тканевую жидкость. В настоящее время к эндокринным железам относят гипофиз, щитовидную железу, околощитовидные железы, корковое и мозговое вещество надпочечников, островковый аппарат поджелудочной железы, половые железы, тимус, и эпифиз. Эндокринной активностью обладает также плацента. Кроме того, эндокринные клетки могут присутствовать в некоторых других органах и тканях, в частности в пищеварительном тракте, почках, сердечной мышце, вегетативных ганглиях. Эти клетки образуют так называемую диффузную эндокринную систему. [4]

Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз - сложный орган, он состоит из аденогипофиза (передней и средней долей) и нейрогипофиза (задней доли). Гормоны передней доли гипофиза делятся на две группы: 1.гормон роста (соматотропин) и пролактин; 2.тропные гормоны (тиреотропин, кортикотропин, гонадотропин). В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин, в нейронах супраоптического ядра - вазопрессин. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование - статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза.

Существует обратная связь и между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает. [6]

Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения:

1) мелатонин (принимает участие в регуляции пигментного обмена, тормозит развитие половых функций у молодых и действие гонадотропных гормонов у взрослых). Это обусловлено прямым действием мелатонина на гипоталамус, где идет блокада освобождения люлиберина, и на переднюю долю гипофиза, где он уменьшает действие люлиберина на освобождение лютропина;

2) гломерулотропин (стимулирует секрецию альдостерона корковым слоем надпочечников).

Тимус (вилочковая железа) - парный дольчатый орган, расположенный в верхнем отделе переднего средостения. Тимус образует несколько гормонов: тимозин, гомеостатический тимусный гормон, тимопоэтин I, II, тимусный гуморальный фактор. Они играют важную роль в развитии иммунологических защитных реакций организма, стимулируя образование антител. Тимус контролирует развитие и распределение лимфоцитов. Секреция гормонов тимуса регулируется передней долей гипофиза.

Паращитовидные железы - парный орган, они расположены на поверхности щитовидной железы. Гормон паращитовидной железы - паратгормон (паратирин).

Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий белок - тиреоглобулин.

Гормоны щитовидной железы делятся на две группы:

1) йодированные - тироксин, трийодтиронин;

2) тиреокальцитонин (кальцитонин).

Поджелудочная железа - железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки - глюкагон, дельта-клетки - соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.

Надпочечники - парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Гормоны коркового слоя длятся на три группы:

1) глюкокортикоиды (гидрокортизон, кортизон, кортикостерон);

2) минералокортикоиды (альдестерон, дезоксикортикостерон);

3) половые гормоны (андрогены, эстрогены, прогестерон).

Глюкокортикоиды синтезируются в пучковой зоне коры надпочечников. По химическому строению гормоны являются стероидами, образуются из холестерина, для синтеза необходима аскорбиновая кислота. В ядрах переднего отдела гипоталамуса синтезируется нейросекрет кортиколиберин, который стимулирует образование кортикотропина в передней доле гипофиза, а он, в свою очередь, стимулирует образование глюкокортикоида. Функциональное отношение «гипоталамус - передняя доля гипофиза - кора надпочечников» находится в единой гипоталамо-гипофизарно-надпочечниковой системе, которая играет ведущую роль в адаптационных реакциях организма.

Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерон и дезоксикортикостерон.

Половые гормоны (андрогены, эстрогены, прогестерон) образуются в сетчатой зоне коры надпочечников.

Мозговой слой надпочечников вырабатывает гормоны, относящиеся к катехоламинам. Основной гормон - адреналин, вторым по значимости является предшественник адреналина - норадреналин. Хромаффиновые клетки мозгового слоя надпочечников находятся и в других частях организма (на аорте, у места разделения сонных артерий и т. д.), они образуют адреналовую систему организма. Мозговой слой надпочечников - видоизмененный симпатический ганглий.

Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредственно поступают в кровь.

Мужские половые гормоны - андрогены образуются в интерстициальных клетках семенников. Различают два вида андрогенов - тестостерон и андростерон. Женские половые гормоны эстрогены образуются в фолликулах яичника. Синтез эстрогенов осуществляется оболочкой фолликула, прогестерона - желтым телом яичника, которое развивается на месте лопнувшего фолликула.

Плацента - уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп:

1) белковые - хорионический гонадотропин (ХГ), плацентарный лактогенный гормон (ПЛГ), релаксин;

2) стероидные - прогестерон, эстрогены. [6]

Общей функцией для всех желез внутренней секреции является выработка гормонов. Термин «гормон» происходит от греческого слова hormae, что означает «возбуждаю, побуждаю». К настоящему времени открыто несколько десятков гормонов.[4]

Гормоны вырабатываются секреторными клетками, которые могут образовывать скопления (железы) или быть разбросанными по органу. Хранятся гормоны во внутриклеточных органеллах и при воздействии специфического стимула они выбрасываются в межклеточное пространство из клетки. Особенностью гормонов является их влияние в очень низких концентрациях.

Гормоны контролируют все важнейшие процессы в организме, изменяя активность генов, процессы онтогенетического развития, дифференцировку тканей, формирование пола, размножение. Влияя на подкорковые образования ствола мозга - среднего, промежуточного мозга - через ретикулярную формацию, лимбическую систему, а благодаря им и на кору головного мозга, они изменяют тонус коры.

Существует также ряд веществ, которые занимают промежуточное место между "классическими" гормонами и активными веществами. Это могут быть вещества местного или тканевого действия. Гормоны, действующие таким образом, называются паракринными. В этом случае выделяемый гормон диффундирует через межклеточные пространства, и информация, которую он несет, считывается клетками, находящимися в непосредственной близости. Паракринное действие гормона является расширением классических представлений о гормонах как веществах, выделяемых в кровь и переносимых к органам. [1]

Гормоны следует классифицировать по трем основным признакам.

1. По химической природе выделяют три группы гормонов: 1) полипептиды и белки (к простым белкам относят инсулин, соматотропин, пролактин; к сложным - лютеинизирующий, фолликулостимулирующий); 2) аминокислоты и их производные (адреналин, норадреналин, тироксин); 3) стероиды (андрогены и эстрогены, кортикостероиды).

2. По эффекту (знаку действия) - возбуждающие и тормозящие.

3. По месту действия на органы - мишени или другие железы: 1) эффекторные; 2) тропные.

Гормоны транспортируются к органам и тканям в основном (около 80%) в неактивном состоянии в форме обратимых комплексов с белками плазмы и форменными элементами крови, а также в свободном (активном) состоянии (около 20%). Гормоны, не связанные с транспортными белками крови, имеют доступ к клеткам и тканям. Гормоны органоспецифичны и обладают весьма высокой биологической активностью. Период полужизни гормонов небольшой - обычно около одного часа, поэтому они должны постоянно синтезироваться и секретироваться. [5]

Выделяют три основных свойства гормонов:

1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);

2) строгую специфичность действия (ответные реакции на действие гормона строго специфичны и не могут быть вызваны другими биологически активными агентами);

3) высокую биологическая активность (гормоны вырабатываются железами в малых количествах, эффективны в очень небольших концентрациях, небольшая часть гормонов циркулирует в крови в свободном активном состоянии).

Действие гормона на функции организма осуществляется двумя основными механизмами: через нервную систему и гуморально, непосредственно на органы и ткани. [6]

Гормоны выполняют функцию передачи информации в форме химического вещества, действующего на строго определенные органы-мишени. [5]

По механизму воздействия клеток с гормонами гормоны делятся на два типа.

Первый тип (стероиды, тиреоидные гормоны) - гормоны относительно легко проникают внутрь клетки через плазматические мембраны и не требуют действия посредника (медиатора).

Второй тип - плохо проникают внутрь клетки, действуют с ее поверхности, требуют присутствия медиатора, их характерная особенность - быстровозникающие ответы.

В соответствии с двумя типами гормонов выделяют и два типа гормональной рецепции: внутриклеточный (рецепторный аппарат локализован внутри клетки), мембранный (контактный) - на ее наружной поверхности. Клеточные рецепторы - особые участки мембраны клетки, которые образуют с гормоном специфические комплексы. Рецепторы имеют определенные свойства, такие как:

1) высокое сродство к определенному гормону;

2) избирательность;

3) ограниченная емкость к гормону;

4) специфичность локализации в ткани.

Эти свойства характеризуют количественную и качественную избирательную фиксацию гормонов клеткой.

Связывание рецептором гормональных соединений является пусковым механизмом для образования и освобождения медиаторов внутри клетки.

Механизм действия гормонов с клеткой-мишенью происходит следующие этапы:

1) образование комплекса «гормон--рецептор» на поверхности мембраны;

2) активацию мембранной аденилциклазы;

3) образование цАМФ из АТФ у внутренней поверхности мембраны;

4) образование комплекса «цАМФ--рецептор»;

5) активацию каталитической протеинкиназы с диссоциацией фермента на отдельные единицы, что ведет к фосфорилированию белков, стимуляции процессов синтеза белка, РНК в ядре, распада гликогена;

6) инактивацию гормона, цАМФ и рецептора. [6]

Количество рецепторов в клетке может меняться в зависимости от внешних и внутренних факторов. В результате связывания гормона с рецептором возникают изменения в клетке (мембране, ферментах, генетическом аппарате), что и обуславливает влияние гормонов. [1]

Действие гормона может осуществляться и более сложным путем при участии нервной системы. Гормоны воздействуют на интерорецепторы, которые обладают специфической чувствительностью (хеморецепторы стенок кровеносных сосудов). Это начало рефлекторной реакции, которая изменяет функциональное состояние нервных центров. Рефлекторные дуги замыкаются в различных отделах центральной нервной системы.

Выделяют четыре типа воздействия гормонов на организм:

1) метаболическое воздействие - влияние на обмен веществ;

2) морфогенетическое воздействие - стимуляция образования,дифференциации, роста и метаморфозы;

3) пусковое воздействие - влияние на деятельность эффекторов;

4) корригирующее воздействие - изменение интенсивности деятельности органов или всего организма. [6]

Прекращение действия гормонов осуществляется с помощью тканевых ферментов и ферментов самих эндокринных желез, печени, почек. Многие продукты расщепления гормонов также активны и вызывают иногда сходные эффекты. Продукты распада гормонов выводятся главным образом почками, а также железами: слюнными, желудочно-кишечного тракта, потовыми и с желчью. [5]

3. Теплообразование в покое и при мышечной деятельности. Температурное «ядро» и «оболочка» тела, факторы определяющие колебания их температуры

Постоянство температуры тела у человека может сохраняться лишь при равенстве процессов теплообразования и теплоотдачи всего организма. В термонейтральной (комфортной) зоне существует баланс между теплопродукцией и теплоотдачей. Ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды. При её отклонении от комфортной зоны в организме устанавливается новый уровень теплового баланса, обеспечивающий изотермию в новых условиях среды. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией. Различают физическую (теплоотдача) и химическую (теплообразование) терморегуляцию.

Теплообразование - осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ. При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота - 65-70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты - первичной и вторичной - являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

Температура оказывает существенное влияние на протекание жизненных процессов в организме и на его физиологическую активность. Физико-химической основой этого влияния является изменение скорости протекания химических реакций, благодаря которым происходит энтропическое превращение всех видов энергии в тепловую.

Различают сократительный и несократительный термогенез.

Сократительный термогенез характеризуется тем, что при сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата в основном возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3-5 раз по сравнению с величиной основного обмена.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5-15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15-30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться. Хотя при выполнении нагрузки срабатывают различные механизмы теплоотдачи, наблюдается рабочая гипертермия. Возможно, это связано со снижением гипоталамического уровня регуляции.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25-40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Несократительный термогенез осуществляется путём ускорения процессов окисления и снижения эффективности сопряжения окислительного фосфорилирования. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

В скелетных мышцах повышение скорости несократительного термогенеза связано с уменьшением окислительного фосфорилирования за счёт разобщения различных этапов данного процесса. В печени повышение теплопродукции связано с активацией гликогенолиза и последующим расщеплением глюкозы. Повышение теплопродукции возможно за счёт распада бурого жира. Бурый жир, богатый митохондриями и окончаниями симпатических нервов, расположен в затылочной области, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя до 10% тепла образуется в буром жире. При охлаждении интенсивность его распада заметно повышается. Кроме того, повышение уровня образования тепла наблюдается за счёт специфико-динамического действия пищи.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной железы (разобщают окислительное фосфорилирование) и мозгового слоя надпочечников.

При этом энергия всегда расходуется для какой-нибудь работы, и выработка тепла является ее следствием. В покое у человека 70% тепла вырабатывается внутренними органами, а 30% - за счет мышц, волокна которых даже во время полного покоя незаметно и очень слабо, но постоянно сокращаются. Во время физической работы (тренировки) образование тепла возрастает в несколько раз и доля мышечной работы в этом процессе становится определяющей. Выработка тепла зависит главным образом от интенсивности работы мышц. [7]

В условиях физической нагрузки внутренняя температура повышается, а средняя температура кожи снижается вследствие вызванного работой выделения и испарения пота. Во время работы с субмаксимальной нагрузкой степень повышения внутренней температуры почти не зависит от окружающей температуры в пределах широкого диапазона (15-35°C), пока происходит выделение пота. Обезвоживание приводит к подъему внутренней температуры и тем самым лимитирует работоспособность.

Нормальная жизнедеятельность человека возможна в диапазоне всего в несколько градусов; понижение температуры тела ниже 35°С и повышение выше 40-41°С опасны и могут иметь тяжелые последствия для организма. [5]

Особенно чувствительны к изменениям температуры нервные клетки. С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешнего - оболочки, и внутреннего - ядра. Ядро - это часть тела, которая имеет постоянную температуру, а оболочка - часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой. Температура разных участков ядра различна. Например, в печени - 37.8-38.0°C, в мозге - 36.9-37.8°C в целом же, температура ядра тела человека составляет 37.0°C.

Температура кожи человека на различных участках колеблется от 24.4°C до 34.4°C. Самая низкая температура наблюдается на пальцах ног, самая высокая - в подмышечной впадине. Именно на основании измерения температуры в подмышечной впадине обычно судят о температуре тела в данный момент времени. По усреднённым данным, средняя температура кожи обнажённого человека в условиях комфортной температуры воздуха составляет 33-34°C.

Существуют циркадные - околосуточные - колебания температуры тела. Амплитуда колебаний может достигать 1°. Температура тела минимальна в предутренние часы (3-4 часа) и максимальна в дневное время (16-18 часов). Эти сдвиги вызваны колебаниями уровня регулирования, т.е. связаны с изменениями в деятельности ЦНС.

Известно также явление асимметрии аксилярной температуры. Она наблюдается примерно в 54% случаев, причем температура в левой подмышечной впадине несколько выше, чем в правой. Возможна асимметрия и на других участках кожи, а выраженность асимметрии более чем в 0,5° свидетельствует о патологии. [7]

4. Возрастные особенности развития системы дыхания у детей и подростков

Дыхание -- физиологическая функция, обеспечивающая газообмен (О2 и СО2) между окружающей средой и организмом в соответствии с его метаболическими потребностями.

Дыхание протекает в несколько стадий: 1) внешнее дыхание -- обмен О2 и СО2 между внешней средой и кровью легочных капилляров. В свою очередь внешнее дыхание можно разделить на два процесса: а) газообмен между внешней средой и альвеолами легких, что обозначается как «легочная вентиляция»; б) газообмен между альвеолярным воздухом и кровью легочных капилляров; 2) транспорт О2 и СО2 кровью; 3) обмен О2 и СО2 между кровью и клетками организма; 4) тканевое дыхание. [4]

Внешнее звено системы дыхания детей раннего возраста существенно отличается от такового у взрослых. Гортань у детей относительно уже, чем у взрослых. Бронхи узкие и длинные, имеют относительно мало разветвлений. От рождения ребенка до 5 лет происходит усиленный рост легких, отдельных его элементов и, естественно, показателей вентиляции.

Тип дыхания ребенка первых лет жизни преимущественно брюшной (диафрагмальный). Грудной тип дыхания затруднен, так как ребра вследствие слабой эластической тяги занимают почти горизонтальное положение. У новорожденного эластическая тяга легких на выдохе отсутствует, так как они не растянуты, поэтому отрицательного давления в плевральной щели не наблюдается. С 3-7 лет в связи с развитием мышц плечевого пояса и увеличением эластической тяги легких ребра опускаются вниз, грудной тип дыхания начинает преобладать над брюшным. Половые различия типа дыхания начинают выявляться с 7-8-летнего возраста и полностью, формируются к 14-17 годам: у девушек формируется грудной, а у юношей - брюшной тип дыхания.

Транспорт кислорода изменяется. В грудном возрасте по мере замены НЬР на НЬА (в первые 4-5 месяцев) его содержание в крови начинает увеличиваться, к концу первого года жизни оно равно 120 г/л; затем в течение первых лет жизни достигает нормы взрослого (140-- 150 г/л). Постепенно возрастает содержание и О, в крови - в возрасте 5 лет оно равно уже 16 мл/100 мл крови (у взрослых - до 20 мл/100 мл крови). Но ткани ребенка получают О2 в достаточном количестве, так как у детей больше скорость кровотока, существенную роль играют анаэробные процессы. Однако в период полового созревания организм подростка менее устойчив к кислородному голоданию, чем организм взрослого человека, что, по-видимому, объясняется гормональной перестройкой.

Транспорт углекислого газа у новорожденного осуществляется в основном в виде физически растворенного и связанного с гемоглобином СО2, так как активность карбоангидразы еще низкая и составляет примерно 10-30% активности карбоангидразы взрослых. Поэтому участие бикарбонатов в выделении СО2 незначительно. Уровень активности карбоангидразы, характерной для взрослых, у детей устанавливается к концу первого года жизни.

Возбудимость дыхательного центра низкая, она постепенно повышается и к школьному возрасту становится такой же, как у взрослых. На 2-м году жизни с развитием речи начинает формироваться произвольная регуляция частоты и глубины дыхания, а к 4-6 годам дети могут по собственному желанию или по инструкции старших произвольно изменять частоту и глубину дыхания и задерживать дыхание.

Дыхательная система детей заканчивает свое созревание и достигает по всем показателям уровня взрослого человека к 18-20 годам. [5]

Литература

1. Семенов Е.В. Физиология и анатомия. - М.: Редакция газеты «Московская правда», 1997. - 470с.

2. Физиология человека\ под редакцией В.М. Покровского, Г.Ф. Коротько. - М.: Из-во «Медицина», 2007. - 656 с.

3. Смирнов В.М., Дубровский В.И. Физиология физического воспитания и спорта: Учеб. для студ. сред, и высш. учебных заведений. - М.: Изд-во ВЛАДОС-ПРЕСС, 2002. - 608 с: ил.

4. Кузина С.И., Фирсова С.С. Нормальная физиология: конспект лекций. - М.: изд-во «Эксмо», 2007. - 94c.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности желез внутренней секреции. Методы исследования функции желез внутренней секреции. Физиологические свойства гормонов. Типы влияния гормонов. Классификация гормонов по химической структуре и направленности действия. Пути действия гормонов.

    презентация [2,2 M], добавлен 23.12.2016

  • Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.

    курсовая работа [769,0 K], добавлен 18.02.2010

  • Общая характеристика желез внутренней секреции. Исследование механизма действия гормонов. Гипоталамо-гипофизарная система. Основные функции желез внутренней секреции. Состав щитовидной железы. Аутокринная, паракринная и эндокринная гормональная регуляция.

    презентация [1,2 M], добавлен 05.03.2015

  • Потребность организма в кислороде при покое и работе. Приспосабливаемость частоты и глубины дыхания к изменяющимся условиям. Реакции на изменения концентрации в крови углекислоты и кислорода. Локализация и функциональные свойства дыхательных нейронов.

    реферат [21,7 K], добавлен 05.06.2010

  • Понятие внутренней секреции как процесса выработки и выделения активных веществ эндокринными железами. Выделение гормонов непосредственно в кровь в процессе внутренней секреции. Виды желез внутренней секреции, гормонов и их функции в организме человека.

    учебное пособие [20,2 K], добавлен 23.03.2010

  • Классификация различных регуляторных механизмов сердечно-сосудистой системы. Влияние автономной (вегетативной) нервной системы на сердце. Гуморальная регуляция сердца. Стимуляция адренорецепторов катехоламинами. Факторы, влияющие на тонус сосудов.

    презентация [5,6 M], добавлен 08.01.2014

  • Особенности размера и формы сердца человека. Строение правого и левого желудочков. Положение сердца у детей. Нервная регуляция сердечно-сосудистой системы и состояние кровеносных сосудов в детском возрасте. Врожденный порок сердца у новорожденных.

    презентация [2,1 M], добавлен 04.12.2015

  • Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация [5,9 M], добавлен 21.11.2013

  • Строение сердца, система автоматизма сердца. Основное значение сердечно-сосудистой системы. Течение крови через сердце только в одном направлении. Главные кровеносные сосуды. Возбуждение, возникшее в синоатриальном узле. Регуляция деятельности сердца.

    презентация [3,0 M], добавлен 25.10.2015

  • Железы внутренней секреции у животных. Механизм действия гормонов и их свойства. Функции гипоталамуса, гипофиза, эпифиза, зобной и щитовидной железы, надпочечников. Островковый аппарат поджелудочной железы. Яичники, желтое тело, плацента, семенники.

    курсовая работа [422,0 K], добавлен 07.08.2009

  • Регуляция деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь. Основные функции эндокринной системы. Основные задачи гипофиза, гипоталамуса, щитовидной железы, надпочечника, поджелудочной железы.

    презентация [704,1 K], добавлен 22.10.2017

  • Система гормональной регуляции. Номенклатура и классификация гормонов. Принципы передачи гормонального сигнала клеткам-мишеням. Строение гидрофильных гормонов, механизм их действия. Метаболизм пептидных гормонов. Представители гидрофильных гормонов.

    реферат [676,8 K], добавлен 12.11.2013

  • Единство и отличительные особенности нервных и гуморальных регуляций. Механизмы гуморальной регуляции в организме. Особенности строения и свойства клеточных мембран, функции и механизм их реализации. Диффузия и транспорт веществ через клеточные мембраны.

    курсовая работа [195,5 K], добавлен 09.01.2011

  • Определение гуморальной регуляции как механизма координации процессов жизнедеятельности, осуществляемых через жидкие среды организма. Значение щитовидной и поджелудочной железы, эпифиза, гипофиза, надпочечников и тимуса для выработки гормонов человека.

    презентация [418,1 K], добавлен 20.04.2012

  • Регуляция деятельности внутренних органов посредством гормонов. Строение, функции, кровоснабжение, лимфоотток и иннервация гипофиза, сосудов и нервов, эпифиза, щитовидной железы, паращитовидной железы, поджелудочной железы, надпочечников, тимуса.

    презентация [1,3 M], добавлен 27.04.2016

  • Изучение сути дыхания – непрерывного процесса, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. Регуляция деятельности дыхательного центра. Механизм адаптации дыхания к мышечной деятельности.

    курсовая работа [398,4 K], добавлен 04.04.2011

  • Автоматия сердца - способность органа, ткани, клетки возбуждаться под влиянием импульсов, возникающих без внешних раздражителей. Отличие атипических клеток сердца от сократительных. Проводящая система сердца. Особенности автоматии сердца у детей.

    презентация [3,9 M], добавлен 02.10.2016

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • Особенности строения и локализации желез внутренней секреции. Бранхиогенная и неврогенная группы, группа адреналовой системы. Мезодермальные и энтодермальные железы. Патологические варианты работы желез. Особенности патологии и болезней щитовидной железы.

    курсовая работа [48,8 K], добавлен 21.06.2014

  • Сосуды, по которым кровь выносится из сердца. Кровоснабжение сердца. Мягкий скелет сердца. Состояние коронарных артерий. Последовательность сокращений камер сердца. Регуляция силы и частоты сердечных сокращений. Артериальная система и капилляры.

    реферат [198,6 K], добавлен 06.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.