Особенности строения прокариотной клетки
Строение прокариотной клетки и разнообразие форм прокариот. Структура, состав и функции компонентов прокариотной клетки, химический состав клеточных стенок. Рост и способы размножения клеток. Запасные вещества и внутрицитоплазматические включения.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 17.05.2014 |
Размер файла | 357,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Прокариотная клетка. Особенности строения
Строение прокариотной клетки
Деления клеточных организмов на высшем уровне предусматривают выделение всех прокариот в отдельное царство. В 70-х гг. обнаружены микроорганизмы, структурно относящиеся к прокариотному типу, но значительно отличающиеся химическим строением важных клеточных макромолекул и способностью осуществлять уникальные биохимические процессы. Эти необычные прокариотные организмы были названы архебактериями.
Типичные прокариоты, или бактерии, получили соответственно название эубактерий (истинных бактерий). Число известных архебактерий по сравнению с эубактериями чрезвычайно мало.
Материал настоящей работы посвящен общей характеристике прокариотных организмов (в основном эубактерий), отличающихся морфологическим и особенно физиологическим разнообразием. В основе морфологического разнообразия лежат различия в размерах и форме отдельных клеток, способах их деления, природе и наборе цитоплазматических включений, строении клеточной стенки и структур, локализованных снаружи от нее, наличии и типе дифференцированных форм, образующихся в процессе жизненного цикла.
Форма прокариот
Рис. 1. Разнообразие форм прокариот: 1 -- кокк; 2 -- диплококк; 3 -- сарцина; 4 -- стрептококк; 5 -- колония сферической формы: 6 -- палочковидные бактерии (одиночная клетка и цепочка клеток); 7 -- спириллы; 8 -- вибрион; 9 -- бактерии, имеющие форму замкнутого или незамкнутого кольца; 10 -- бактерии, образующие выросты (простеки); 11 -- бактерия червеобразной формы; 12 -- бактериальная клетка в форме шестиугольной звезды; 13 -- представитель актиномицетов; 14 -- плодовое тело миксобактерии; 15 -- нитчатая бактерия рода Caryophanon с латерально расположенными жгутиками: 16 -- нитчатая цианобактерия. образующая споры (акинеты) и гетероцисты; 8, 15, 17, 18 -- бактерии с разными типами жгутикования; 19 -- бактерии, образующая капсулу; 20 -- нитчатые бактерии группы Sphaeroillus , заключенные в чехол, инкрустированный гидратом окиси железа; 21 -- бактерия, образующая шипы; 22 -- Galionella.
До недавнего времени большинство исследователей традиционно считали, что клетки прокариот достаточно однообразны и в подавляющем большинстве имеют форму сферы, цилиндра или спирали. Они бывают одиночными, в иных случаях образуют нити или колонии.
Прокариоты сферической формы, называемые кокками, могут после деления не расходиться. Если деление происходит в одной плоскости, образуются пары клеток (диплококки) или цепочки (стрептококки). В том случае, когда деление происходит относительно равномерно в трех взаимно перпендикулярных направлениях, и клетки после деления остаются соединенными друг с другом, возникают пакеты правильной формы (сарцины) или колонии сферической формы. Если же деление происходит в нескольких плоскостях неравномерно, образуются клеточные скопления неправильной формы (рис. 1; 1 - 5).
Прокариоты, имеющие форму цилиндра (палочковидные), сильно различаются по величине отношения длины клетки к ее поперечнику.
Прокариоты спиралевидной формы характеризуются разным числом витков: у спирилл -- от одного до нескольких витков, вибрионы выглядят наподобие изогнутых палочек, так что их можно рассматривать как неполный виток спирали (рис. 1; 6 - 8).
За последнее время среди прокариот обнаружены организмы, отличающиеся от описанных выше основных форм. Некоторые бактерии имеют вид кольца, замкнутого или разомкнутого в зависимости от стадии роста (рис. 1; 9).
У прокариот, в основном размножающихся почкованием, описано образование клеточных выростов (простек), число которых может колебаться от 1 до 8 и более (рис. 1; 10).
Из природных субстратов выделены бактерии червеобразной формы и напоминающие шестиугольную звезду (рис. 1; 11, 12).
Для некоторых видов характерно слабое или довольно хорошо выраженное ветвление (рис. 1; 13).
Описаны прокариоты, обладающие морфологической изменчивостью, в зависимости от условий имеющие вид палочек, кокков или обнаруживающие слабое ветвление.
Форма многоклеточных прокариот также разнообразна: это скопления различной конфигурации, чаще -- нити (рис. 1; 14 - 16). Своеобразие бактериальным клеткам придают жгутики, имеющие различное расположение на клеточной поверхности (рис. 1; 8, 15, 17, 18), а также выделения внеклеточных веществ разной химической природы (рис. 1; 19 - 22).
Структура, химический состав и функции компонентов прокариотной клетки
Клетка прокариот обладает рядом принципиальных особенностей, касающихся как ее ультраструктурной, так и химической организации (рис. 2). Структуры, расположенные снаружи от ЦПМ (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки), называют обычно поверхностными структурами. Термином "клеточная оболочка" часто обозначают все слои, располагающиеся с внешней стороны от ЦПМ (клеточная стенка, капсула, слизистый чехол). ЦПМ вместе с цитоплазмой называется протопластом. Рассмотрим сначала строение, химический состав и функции поверхностных клеточных структур.
Рис. 2. Комбинированное изображение прокариотной клетки: А -- поверхностные клеточные структуры и внеклеточные образования: 1 -- клеточная стенка; 2 -- капсула; 3 -- слизистые выделения; 4 -- чехол; 5 -- жгутики; 6 -- ворсинки; Б -- цитоплазматические клеточные структуры: 7 -- ЦПМ; 8 -- нуклеоид; 9 -- рибосомы; 10 -- цитоплазма; 11 -- хроматофоры; 12 -- хлоросомы; 13 -- пластинчатые тилакоиды; 14 -- фикобилисомы; 15 -- трубчатые тилакоиды; 16 -- мезосома; 17 -- аэросомы (газовые вакуоли); 18 -- ламеллярные структуры; В -- запасные вещества: 19 -- полисахаридные гранулы; 20 -- гранулы поли-b-оксимасляной кислоты; 21 -- гранулы полифосфата; 22 -- цианофициновые гранулы; 23 -- карбоксисомы (полиэдральные тела); 24 -- включения серы; 25 -- жировые капли; 26 -- углеводородные гранулы (по Schlegel, 1972).
Клеточная стенка
Клеточная стенка -- важный и обязательный структурный элемент подавляющего большинства прокариотных клеток, располагающийся под капсулой или слизистым чехлом или же непосредственно контактирующий с окружающей средой (у клеток, не содержащих этих слоев клеточной оболочки).
На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки. Клеточная стенка служит механическим барьером между протопластом и внешней средой и придает клеткам определенную, присущую им форму. Концентрация солей в клетке, как правило, намного выше, чем в окружающей среде, и поэтому между ними существует большое различие в осмотическом давлении. Клеточная стенка чисто механически защищает клетку от проникновения в нее избытка воды.
По строению и химическому составу клеточная стенка прокариот резко отличается от таковой эукариотных организмов. В ее состав входят специфические полимерные комплексы, которые не содержатся в других клеточных структурах. Химический состав и строение клеточной стенки постоянны для определенного вида и являются важным диагностическим признаком.
В зависимости от строения клеточной стенки прокариоты, относящиеся к эубактериям, делятся на две большие группы. Было обнаружено, что если фиксированные клетки эубактерий обработать сначала кристаллическим фиолетовым, а затем йодом, образуется окрашенный комплекс.
При последующей обработке спиртом в зависимости от строения клеточной стенки судьба комплекса различна. У так называемых грамположительных видов этот комплекс удерживается клеткой, и последние остаются окрашенными, у грамотрицательных видов, наоборот, окрашенный комплекс вымывается из клеток, и они обесцвечиваются. У некоторых эубактерий положительная реакция при окрашивании описанным выше способом свойственна только клеткам, находящимся в стадии активного роста. Выяснено, что окрашенный комплекс образуется на протопласте, но его удерживание клеткой или вымывание из нее при последующей обработке спиртом определяются особенностями строения клеточной стенки.
прокариотная клетка строение структура
Рис. 3. Клеточная стенка грамположительных (А) и грамотрицательных (Б) эубактерий: 1 -- цитоплазматическая мембрана; 2 -- пептидогликан; 3 -- периплазматическое пространство; 4 -- наружная мембрана: 5 -- цитоплазма, в центре которой расположена ДНК.
Клеточные стенки грамположительных и грамотрицательных эубактерий резко различаются как по химическому составу, так и по ультраструктуре (рис. 3).
В состав клеточной стенки эубактерий входят семь различных групп химических веществ, при этом пептидогликан присутствует только в клеточной стенке. У грамположительных 1 эубактерий он составляет основную массу вещества клеточной стенки (от 40 до 90 %), у грамотрицательных -- содержание пептидогликана значительно меньше (1 - 10 %). Клеточная стенка цианобактерий, сходная с таковой грамотрицательных эубактерий, содержит от 20 до 50 % этого гетерополимера.
Этот способ был впервые предложен в 1884 г. датским ученым X. Грамом (Ch. Gram), занимавшимся окрашиванием тканей. Позднее он был использован для бактерий.
Под электронным микроскопом клеточная стенка грамположительных эубактерий выглядит как гомогенный электронно-плотный слой, толщина которого колеблется для разных видов от 20 до 80 нм.
У грамотрицательных эубактерий обнаружена многослойная клеточная стенка. Внутренний электронно-плотный слой толщиной порядка 2 - 3 нм состоит из пептидогликана. Снаружи к нему прилегает, как правило, волнистый слой (8 - 10 нм), имеющий характерное строение: две электронно-плотные полосы, разделенные электронно-прозрачным промежутком. Такой вид характерен для элементарных мембран. Поэтому трехконтурный внешний компонент клеточной стенки грамотрицательных эубактерий получил название наружной мембраны.
Рис. 4. Структура повторяющейся единицы пептидогликана клеточной стенки эубактерий: 1, 2 -- места полимеризации гликанового остова молекулы; 3 -- место присоединения с помощью фосфодиэфирной связи молекулы тейхоевой кислоты в клеточной стенке грамположительных эубактерий; 4, 5 -- места, по которым происходит связывание между гликановыми цепями с помощью пептидных связей; 6 -- место ковалентного связывания (пептидная связь) с липопротеином наружной мембраны у грамотрицательных эубактерий; 7 -- место действия лизоцима.
Клеточная стенка грамположительных эубактерий плотно прилегает к ЦПМ, в отличие от клеточной стенки грамотрицательных видов, компоненты которой (пептидогликановый слой и наружная мембрана) разделены электронно-прозрачным промежутком и четко отделены аналогичным образом от ЦПМ. Пространство между цитоплазматической: и наружной мембранами получило название периплазматического. Оно, как можно видеть из строения клеточных стенок обеих групп эубактерий, характерно только для грамотрицательных форм.
Клеточная стенка грамположительных эубактерий. Основную массу клеточной стенки грамположительных эубактерий составляет специфический гетерополимер -- пептидогликан. Полисахаридный остов молекулы построен из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных между собой посредством b-1,4-гликозидных связей (рис. 4).
К N-ацетилмурамовой кислоте присоединен короткий пептидный хвост, состоящий из небольшого числа (обычно 4 - 5) аминокислот. У грамположительных эубактерий обнаружено более 100 различных химических типов пептидогликана. Большинство различий относится к пептидной части его молекулы.
Две особенности пептидного хвоста заслуживают внимания: наличие аминокислот в D-форме (неприродная конфигурация) и высокое содержание аминокислот с двумя аминогруппами. Это имеет принципиальное значение для пространственной организации пептидогликана. Обе аминогруппы этих аминокислот могут участвовать в образовании пептидных связей, причем вторые аминогруппы -- в формировании дополнительных пептидных связей между гетерополимерными цепочками.
Рис. 5. Пептидные мостики между гетерополимерными цепочками: Г -- N-ацетилглюкозамин; М -- N-ацетилмурамовая кислота; ала -- аланин; глу -- глутаминовая кислота; лиз -- лизин; ДАП -- диаминопимелиновая кислота; гли -- глицин; стрелками обозначено место действия пенициллина.
В большинстве случаев в образовании пептидной связи участвует карбоксильная группа D-аланина одного тетрапептида и свободная аминогруппа диаминокислоты другого (рис. 5, А). Иногда связь между тетрапептидами разных гликановых цепей осуществляется с помощью других аминокислот (рис. 5, Б). Нетрудно себе представить, что этим способом можно "сшить" между собой множество гетерополимерных цепей. Частота "сшивок" различна, поскольку не все пептидные хвосты участвуют в формировании межцепочечных связей. Некоторые образуют ковалентные связи с другими химическими молекулами, входящими в состав клеточной стенки, и, наконец, часть тетрапептидных хвостов находится в свободном состоянии.
Пептидогликан, окружающий протопласт грамположительных эубактерий, -- это по существу одна гигантская молекула, "сшитая" с помощью гликозидных и пептидных связей. Именно последние обеспечивают ей трехмерную пространственную организацию.
Кроме пептидогликана в состав клеточных стенок грамположительных эубактерий входит другой уникальный класс химических соединений -- тейхоевые кислоты, представляющие собой полимеры, построенные на основе рибита (пятиатомного спирта) или глицерина (трехатомного спирта), остатки которых соединены между собой фосфодиэфирными связями (рис. 6). Некоторые свободные гидроксильные группы в молекулах спиртов могут быть замещены остатками D-аланина, глюкозы, N-ацетилглюкозамина и некоторых других сахаров.
Тейхоевые кислоты ковалентно могут соединяться с N-ацетилмурамовой кислотой (см. рис. 4). Поскольку это длинные линейные молекулы, они могут пронизывать весь пептидогликановый слой, достигая внешней поверхности клеточной стенки. В этом случае, вероятно, они являются основными антигенами грамположительных эубактерий. Остающиеся свободные гидроксилы фосфорной кислоты придают тейхоевой кислоте свойства полианиона. Как полианионы тейхоевые кислоты определяют поверхностный заряд клетки. Сахарные компоненты тейхоевых кислот входят в состав рецепторов для некоторых бактериофагов и определяют возможность адсорбции фага на клеточной поверхности.
Рис. 6. Структурная формула глицеринтейхоевой кислоты. Содержит чередующиеся остатки D-аланина и N-ацетилглюкозамина (по Rose, 1971).
В составе клеточной стенки грамположительных эубактерий в небольших количествах также найдены полисахариды, белки и липиды. Для полисахаридов и липидов показана возможность ковалентного связывания с макромолекулами клеточной стенки, в отличие от белков, которые (у тех видов, где имеются) формируют на ее внешней поверхности отдельный слой.
Таким образом, основными компонентами клеточной стенки грамположительных эубактерий являются три типа макромолекул: пептидогликаны, тейхоевые кислоты и полисахариды, которые с помощью ковалентных связей образуют сложную структуру с весьма упорядоченной пространственной организацией.
Клеточная стенка бацилл, например Bacillus subtilis, приблизительно соответствует толщине 40 молекул пептидогликана. В целом клеточную стенку грамположительных эубактерий можно представить в виде губчатой структуры с порами диаметром примерно 1 - 6 нм. Возможность прохождения молекул через такую клеточную стенку определяется ее зарядом и размером пор.
Клеточная стенка грамотрицательных эубактерий. У грамотрицательных эубактерий строение клеточной стенки намного сложнее, чем у грамположительных (см. рис. 3). В ее состав входит гораздо большее число макромолекул разного химического типа (см. табл. 1).
Таблица 1/3
Химический состав клеточных стенок грамположительных и грамотрицательных эубактерий (по Rose, 1971; Freer, Salton, 1971)
Компоненты клеточной стенки |
Грамположительные эубактерии |
Грамотрицательные эубактерии |
||
внутренний слой (пептидогл-ый) |
внешний слой (наружная клеточная мембрана) |
|||
Пептидогликан |
+ |
+ |
- |
|
Тейхоевые кислоты |
+ |
- |
- |
|
Полисахариды |
+ |
- |
+ |
|
Белки |
± |
- |
+ |
|
Липиды |
± |
- |
+ |
|
Липополисахариды |
- |
- |
+ |
|
Липопротеины |
- |
± |
+ |
Обозначения: (-) -- отсутствуют, (+) -- присутствуют, (±) -- присутствуют не у всех видов
Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. Для разных видов грамотрицательных эубактерий содержание этого гетерополимера колеблется в широких пределах. У большинства видов он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями (рис. 7).
Рис. 7. Однослойная структура пептидогликана
Линиями обозначены гетерополимерные цепочки, образованные чередующимися остатками N-ацетилглюкозамина (Г) и N-ацетилмурамовой кислоты (М), соединенными между собой b-1,4-гликозидными связями. Кружочками обозначены аминокислоты пептидного хвоста.
Химическая структура пептидогликана грамотрицательных эубактерий в основном сходна со структурой типичного пептидогликана грамположительных эубактерий (см. рис. 4; 5, А).
Снаружи от пептидогликана располагается дополнительный слой клеточной стенки -- наружная мембрана. Она состоит из фосфолипидов, типичных для элементарных мембран, белков, липопротеина и липополисахарида (рис. 8, А). Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения, занимающий около 30 - 40 % ее поверхности и локализованный во внешнем слое (рис. 8, 5).
Рис. 8. А. Клеточная стенка грамотрицательных эубактерий: 1 -- цитоплазматическая мембрана; 2 -- пептидогликановый слой; 3 -- периплазматическое пространство; 4 -- молекулы белков (заштрихована гидрофобная часть); 5 -- фосфолипид; 6 -- липополисахарид. Б. Строение молекулы липополисахарида: 1 -- липид А; 2 -- внутреннее полисахаридное ядро; 3 -- наружное полисахаридное ядро; 4 -- О-антиген.
Белки наружной мембраны можно разделить на основные и минорные. Основные белки представлены небольшим числом различных видов, но составляют почти 80 % всех белков наружной мембраны. Одна из функций этих белков -- формирование в мембране гидрофильных пор диаметром примерно 1 нм, через которые осуществляется неспецифическая диффузия молекул с массой до 600 - 900 Да7 (7Да -- дальтон, или единица атомной массы, равен 1,66033 x 10-27 кг).
Это означает, что через такие поры могут проходить сахара, аминокислоты, небольшие олигосахариды и пептиды. Белки, пронизывающие наружную мембрану насквозь и образующие гидрофильные поры, называют поринами.
Минорные белки наружной мембраны представлены гораздо большим числом видов. Их основная функция -- транспортная и рецепторная. Примером минорных белков могут служить белки, ответственные за специфический транспорт в клетку железосодержащих соединений.
Помимо слоев клеточной стенки, типичных для большинства грамотрицательных эубактерий, у некоторых представителей этой группы обнаружены дополнительные слои разной электронной плотности, располагающиеся с внешней стороны от наружной клеточной мембраны. Однако до настоящего времени не ясно, относятся ли они к клеточной стенке, являясь результатом ее последующего усложнения, или же представляют собой структурные элементы многослойного чехла.
Необычные клеточные стенки прокариот
Некоторые скользящие бактерии (миксобактерии, флексибактерии) способны в процессе перемещения по твердому субстрату периодически менять форму клеток, например, путем изгибания, что говорит об эластичности их клеточной стенки, и в первую очередь ее пептидогликанового слоя. Электронно-микроскопическое изучение, однако, обнаружило у них клеточную стенку, типичную для грамотрицательных эубактерий. Наиболее вероятное объяснение гибкости клеточной стенки этих бактерий -- чрезвычайно низкая сшитость ее пептидогликанового компонента.
Наконец, обнаружены прокариоты, клеточная стенка которых по структуре и химическому составу резко отличается от описанных выше типов. Они принадлежат к группе архебактерий.
Клеточные стенки метанобразующих архебактерий содержат пептидогликан особого химического строения. У других представителей этой группы клеточная стенка состоит исключительно из кислого гетерополисахарида, а у некоторых экстремально галофильных, метанобразующих и ацидотермофильных архебактерий -- только из белка.
Архебактерии с клеточной стенкой белковой природы не окрашиваются по Граму, остальные типы архебактериальной клеточной стенки дают грамположительную реакцию.
Прокариоты без клеточной стенки
При воздействии определенными химическими веществами оказалось возможным получать в лаборатории из разных видов эубактерий формы с частично (сферопласты) или полностью (протопласты) отсутствующей клеточной стенкой.
Впервые это обнаружили при действии на бактериальные клетки лизоцимом, ферментом из группы гликозидаз, содержащимся в яичном белке, слезной жидкости и выделяемом некоторыми бактериями. Лизоцим разрывает b-1,4-гликозидные связи в гетерополисахаридной цепи (см. рис. 4), что в конечном итоге может привести к полному удалению пептидогликана из клеточной стенки. Полученные под действием лизоцима сферопласты (из грамотрицательных эубактерий) или протопласты (из грамположительных) принимают сферическую форму и очень чувствительны к внешнему осмотическому давлению. Существовать они могут только в условиях, когда осмотическое давление питательной среды сбалансировано с осмотическим давлением внутри клетки. В благоприятных условиях сферопласты и протопласты проявляют определенную метаболическую активность, но утрачивают способность к размножению.
Прокариоты, не содержащие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека. Формы, сходные с микоплазмами, были получены также опытным путем с помощью пенициллина, лизоцима и других факторов. Это так называемые L-формы. В благоприятных условиях они обладают метаболической активностью и способностью к размножению. Предполагают, что микоплазмы произошли в результате мутации, нарушившей синтез веществ клеточной стенки, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные L-формы.
Уникальность химического состава клеточной стенки прокариот, ее отличие от таковой эукариот сделали возможным создание и применение лекарственных препаратов, специфически действующих только на прокариотную клеточную стенку. На этом основано действие пенициллина и некоторых других антибиотиков, подавляющих разные этапы синтеза пептидогликана. Пенициллин, например, ингибирует образование связей между пептидными хвостами на этапе "сшивания" полимера, происходящего в клеточной стенке в процессе роста прокариотной клетки (см. рис. 5).
Функции клеточной стенки прокариот
Клеточная стенка прокариот выполняет разнообразные функции: механически защищает клетку от воздействий окружающей среды, обеспечивает поддержание ее внешней формы, дает возможность клетке существовать в гипотонических растворах. В первую очередь в этом "заслуга" пептидогликана.
Структурная дифференцировка клеточной стенки у грамотрицательных эубактерий, приведшая к формированию дополнительного слоя в виде наружной мембраны, значительно расширила круг функций клеточной стенки.
Прежде всего, это связано с проблемами проницаемости и транспорта веществ в клетку. Наружная мембрана имеет специфические и неспецифические каналы (поры) для пассивного транспорта веществ и ионов, необходимых клетке, т. е. осуществляет функции молекулярного "сита". Наружная мембрана также препятствует проникновению в клетку токсических веществ, что находит отражение в большей устойчивости грамотрицательных эубактерий (сравнительно с грамположительными) к действию некоторых ядов, химических веществ, ферментов и антибиотиков.
Появление у грамотрицательных эубактерий дополнительной мембраны в составе клеточной стенки фактически привело к созданию обособленной полости (периплазматического пространства), отграниченной от цитоплазмы и внешней среды специфическими мембранами и несущей важную функциональную нагрузку.
Периплазматическое пространство, куда погружен пептидогликановый слой, заполнено раствором, в состав которого входят специфические белки, олигосахариды и неорганические молекулы.
Периплазматические белки представлены двумя типами: транспортными белками и гидролитическими ферментами. Транспортные белки -- это переносчики, связывающиеся с соответствующими субстратами внешней среды и транспортирующие их от наружной мембраны к цитоплазматической.
Было обнаружено также, что многие бактерии способны в больших количествах вырабатывать ферменты (гликозидазы, протеазы, липазы и др.), гидролизующие все типы полимерных молекул. Последними могут быть как молекулы, синтезируемые самой клеткой, так и чужеродные, попавшие в клетку извне. Отрицательные последствия гидролиза собственных молекул (самопереваривание) очевидны. В то же время прокариоты нуждаются в гидролитических ферментах, так как это расширяет круг используемых ими веществ, включая в него полимеры разного типа. Становится понятна необходимость изолирования этих ферментов от цитоплазматического содержимого. Грамположительные эубактерий выделяют гидролитические ферменты во внешнюю среду, у грамотрицательных -- они локализованы в периплазматическом пространстве.
Разнообразные функции выполняют макромолекулы, локализованные частично или полностью на внешней стороне клеточной стенки, контактирующей с окружающей средой; это специфические рецепторы для фагов и колицинов; антигены (липополисахарид грамотрицательных эубактерий, тейхоевые кислоты грамположительных); макромолекулы, обеспечивающие межклеточные взаимодействия при конъюгации, а также между патогенными бактериями и тканями высших организмов.
Капсулы, слизистые слои и чехлы
Снаружи клеточная стенка прокариот часто бывает окружена слизистым веществом. Такие образования в зависимости от структурных особенностей получили название капсул, слизистых слоев или чехлов. Все они являются результатом биосинтеза прокариотами органических полимеров и отложения их вокруг клеток.
Под капсулой понимают слизистое образование, обволакивающее клетку, сохраняющее связь с клеточной стенкой и имеющее аморфное строение (см. рис. 1, 19; 2, 2). Если толщина образования меньше 0,2 мкм и, следовательно, оно может быть обнаружено только с помощью электронного микроскопа, говорят о микрокапсуле. Если больше 0,2 мкм, говорят о макрокапсуле. Последнюю можно видеть в обычный световой микроскоп. Для этого препарат просматривают в капле туши, которая не в состоянии проникнуть в капсулу. На темном фоне выделяются клетки, окруженные светлыми зонами. Если же слизистое вещество имеет аморфный, бесструктурный вид и легко отделяется от поверхности прокариотной клетки, говорят о слизистых слоях, окружающих клетку (см. рис. 2; 3).
В отличие от капсул чехлы имеют тонкую структуру. Нередко в них обнаруживают несколько слоев с разным строением (см. рис. 2; 4). Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами. Между этими структурами у прокариот обнаружено много переходных форм, так что иногда нельзя четко отграничивать капсулу от слизистых клеточных выделений или капсулу от чехла.
Наличие капсулы зависит от штамма микроорганизма и условий его культивирования. Бактерии, образующие капсулу, могут легко в результате мутации превращаться в бескапсульные формы, что не приводит к какому-либо нарушению клеточной активности, поэтому капсулы нельзя рассматривать как обязательный структурный компонент прокариотной клетки.
Капсулы, слизистые образования и чехлы могут содержать компоненты, одинаковые с клеточной стенкой, однако их химические составы не идентичны. Как правило, химический состав капсул, образуемых бактериями, родо- или видоспецифичен. Основные химические компоненты большинства капсул прокариот -- полисахариды гомо- или гетерополимерной природы. Исключение составляет капсула некоторых видов Bacillus, построенная из полипептида, являющегося полимером D-глутаминовой кислоты. Для ряда бактерий показана способность синтезировать и выделять в окружающую среду волокна целлюлозы.
Чехлы как более сложные структуры имеют обычно и более сложный химический состав. Чехол Sphaerotilus natans , например, содержит 36 % сахаров, 11 -- гексозамина, 27 -- белка, 5,2 -- липида и 0,5 % фосфора.
Хотя капсулы, слизистые вещества и чехлы являются необязательными структурами прокариотной клетки, им приписывают определенные полезные для клетки функции. Вязкость внеклеточной среды, обусловленная наличием слизистых веществ, очевидно, благоприятна для клетки. Они защищают клетку от механических повреждений, высыхания, создают дополнительный осмотический барьер, служат препятствием для проникновения фагов. Иногда слизистые образования могут служить источником запасных питательных веществ. С помощью слизи осуществляется связь между соседними клетками в колонии, а также прикрепление клеток к различным поверхностям. Способность определенных бактерий синтезировать эти своеобразные внеклеточные полимеры находит практическое применение: их используют в качестве заменителя плазмы крови, а также для получения синтетических пленок.
Жгутики и механизмы движения
На клеточной поверхности многих прокариот имеются структуры, определяющие способность клетки к движению в жидкой среде. Это -- жгутики. Их число, размеры, расположение, как правило, являются признаками, постоянными для определенного вида, и поэтому учитываются при систематике прокариот. Однако накапливаются данные о том, что количество и расположение жгутиков у одного и того же вида могут в значительной степени определяться условиями культивирования и стадией жизненного цикла, и, следовательно, не стоит переоценивать таксономическое значение этого признака.
Если жгутики находятся у полюсов или в полярной области клетки, говорят об их полярном или субполярном расположении, если -- вдоль боковой поверхности, говорят о латеральном расположении.
В зависимости от числа жгутиков и их локализации на поверхности клетки различают монополярные монотрихи (один жгутик прикреплен к одному полюсу клетки; см. рис. 1; 8), монополярные политрихи (пучок жгутиков расположен на одном полюсе клетки), биполярные политрихи (на каждом полюсе -- по пучку жгутиков; см. рис. 1; 17 ) и перитрихи (многочисленные жгутики расположены по всей поверхности клетки или вдоль ее боковой поверхности; см. рис. 1; 18 ). В последнем случае число жгутиков может достигать 1000 на клетку.
Рис. 9. Строение жгутика грамотрицательных эубактерий: 1 -- нить; 2 -- крюк; 3 -- базальное тело; 4 -- стержень; 5 -- L-кольцо; 6 -- P-кольцо; 7 -- S-кольцо; 8 -- M-кольцо; 9 -- ЦПМ; 10 -- периплазматическое пространство; 11 -- пептидогликановый слой; 12 -- наружная мембрана (по De Pamphilis, Adier, 1971).
Обычная толщина жгутика -- 10 - 20 нм, длина -- от 3 до 15 мкм. У некоторых бактерий длина жгутика может на порядок превышать диаметр клетки. Как правило, полярные жгутики более толстые, чем перитрихиальные. Жгутик представляет собой относительную жесткую спираль, обычно закрученную против часовой стрелки. Вращение жгутика также осуществляется против часовой стрелки с частотой от 40 до 60 об/с, что вызывает вращение клетки, но в противоположном направлении. Поскольку клетка намного массивнее жгутика, она вращается со значительно меньшей скоростью -- порядка 12 - 14 об/мин. Вращательное движение жгутика преобразуется также в поступательное движение клетки, скорость которого в жидкой среде для разных видов бактерий составляет от 16 до 100 мкм/с.
Изучение строения жгутика под электронным микроскопом обнаружило, что он состоит из трех частей (рис. 9). Основную массу жгутика составляет длинная спиральная нить (фибрилла), у поверхности клеточной стенки переходящая в утолщенную изогнутую структуру -- крюк. Нить с помощью крюка прикреплена к базальному телу, вмонтированному в ЦПМ и клеточную стенку. У большинства прокариот нить состоит только из одного типа белка -- флагеллина. Белковые субъединицы уложены в виде спирали, внутри которой проходит полый канал. Наращивание жгутика происходит с дистального конца, куда субъединицы поступают по внутреннему каналу. У некоторых видов жгутик снаружи дополнительно покрыт чехлом особого химического строения или же являющимся продолжением клеточной стенки и, вероятно, построенным из того же материала.
Крюк (толщина 20-45 нм) состоит из белка, отличающегося от флагеллина, и служит для обеспечения гибкого соединения нити с базальным телом. Базальное тело содержит 9 - 12 белков и представляет собой систему из двух или четырех колец, нанизанных на стержень, являющийся продолжением крюка. Два внутренних кольца (M и S) -- обязательные составные части базального тела, в то время как наружные кольца (Р и L) отсутствуют у грамположительных эубактерий и, следовательно, не необходимы для движения. M-кольцо локализовано в ЦПМ, S-кольцо располагается в периплазматическом пространстве грамотрицательных или в пептидогликановом мешке грамположительных эубактерий.
Рис. 10. Клетка Salmonella typhimurium в состоянии покоя (А) и при движении (Б). Стрелками показано направление вращения и движения клетки.
Кольца Р и L, имеющиеся только у грамотрицательных эубактерий, локализованы соответственно в пептидогликановом слое и в наружной мембране. Особенности строения базального тела определяются, таким образом, строением клеточной стенки. Интактность последней необходима для движения жгутиковых бактерий. Обработка клеток лизоцимом, приводящая к удалению пептидогликанового слоя клеточной стенки, вызывает и потерю способности бактерий к движению, хотя жгутики остаются при этом неповрежденными.
Предполагают, что вращение жгутика определяется вращением M-кольца. Другие кольца базального тела неподвижны и служат для крепления стержня, проходящего через клеточную стенку грамотрицательных эубактерий. У грамположительных эубактерий эту функцию в основном выполняет многослойный жесткий пептидогликановый мешок.
Большие успехи достигнуты в расшифровке механизма движения прокариот, имеющих жгутики. Если в клетке много жгутиков, все они при движении собираются в пучок, вращаясь в одном направлении (рис. 10). Вращение жгутиков передается клетке, начинающей вращаться в противоположном направлении, и обеспечивает эффективное движение (плавание) в жидкой среде и более медленное перемещение по поверхности твердых сред.
Для работы двигательного аппарата прокариот необходима энергия. Установлено, что движение жгутиковых прокариот обеспечивается энергией трансмембранного электрохимического потенциала (Dm H +), причем обе его составляющие -- электрическая (Dy) и концентрационная (DpH) -- поддерживают движение.
Скорость вращения жгутиков прямо зависит от величины мембранного потенциала. Таким образом, прокариотная клетка обладает механизмом, позволяющим превращать электрохимическую форму энергии непосредственно в механическую. Молекулярное устройство, обеспечивающее это превращение, к настоящему времени не выяснено, но можно полагать, что оно должно быть весьма эффективным, так как, по проведенным расчетам, энергия, расходуемая на движение, составляет десятые доли процента от общего количества энергетических потребностей клетки.
Рис. 11. Клетка спирохеты в продольном (А) и поперечном (Б) разрезе. На рис. А изображена клетка, содержащая по одной аксиальной фибрилле у каждого конца; на рис. Б -- поперечный разрез, прошедший через среднюю часть клетки, где показаны два пересекающихся пучка, состоящих из множества аксиальных фибрилл: 1 -- протоплазматический цилиндр; 2 -- наружный чехол; 3 -- аксиальные фибриллы; 4 -- место прикрепления аксиальных фибрилл; 5 -- пептидогликановый слой клеточной стенки; 6 -- ЦПМ
Необычная локализация структур, ответственных за движение, описана у спирохет (рис. 11). Трехслойная структура, окружающая клетку и называемая у спирохет наружным чехлом, аналогична наружной мембране клеточной стенки грамотрицательных эубактерий. Этот чехол окружает так называемый протоплазматический цилиндр, состоящий из пептидогликанового слоя клеточной стенки, ЦПМ и цитоплазматического содержимого. Протоплазматический цилиндр обвивается пучком нитчатых структур -- аксиальных фибрилл. Число их колеблется от 2 до 100. Один конец каждой аксиальной фибриллы прикреплен вблизи полюса протоплазматического цилиндра, другой -- свободный. Клетка содержит по два набора фибрилл, прикрепленных субполярно у каждого клеточного конца. Так как каждая аксиальная фибрилла тянется почти вдоль всей длины клетки, пучки фибрилл, прикрепленных у разных полюсов, в центральной части перекрываются.
Изучение строения и химического состава аксиальных фибрилл спирохет обнаружило их близкое сходство с бактериальными жгутиками. Отличие заключается в том, что аксиальные фибриллы спирохет -- внутриклеточные структуры, но обеспечивают движение как в жидкой среде, так и по твердому субстрату. Движение спирохет осуществляется за счет вращения фибрилл в периплазматическом пространстве между пептидогликановым слоем и наружной мембраной клеточной стенки, вызывающего эластичную волну на поверхности клеточной стенки. Спирохеты совершают движения трех типов: быстро вращаются вокруг длинной оси спирали, способны к изгибанию клеток и осуществляют передвижение по винтовому или волнообразному пути. Для спирохет (так же как для типичных жгутиковых бактерий) показано, что движение обеспечивается энергией в форме Dm H +.
Присущая спирохетам локализация двигательного аппарата интересна тем, что позволяет сделать вывод о возможности его работы в условиях нахождения в "закрытом" клеточными структурами состоянии. Это может служить ключом к пониманию еще одного вида движения, присущего части прокариот, -- скольжения. Последнее определяют как способность организма передвигаться по твердому или полужидкому субстрату без помощи наружных локомоторных структур -- жгутиков.
Способность к скольжению обнаружена у разных групп прокариот, как одноклеточных, так и многоклеточных, имеющих нитчатое строение: некоторых микоплазм, миксобактерий, цитофаг, нитчатых серобактерий, цианобактерий и др. Скорость этого типа движения невелика: 2 - 11 мкм/с.
Общим для всех скользящих организмов является способность к выделению слизи. Кроме того, у ряда скользящих форм в составе клеточной стенки между пептидогликановым слоем и наружной мембраной обнаружен тонкий слой, состоящий из белковых фибрилл. Например, у нитчатой цианобактерий Oscillatoria к наружной поверхности пептидогликанового слоя примыкают параллельные ряды фибрилл диаметром 5 - 7 нм: на 1 мкм 2 поверхности приходится до 55 таких фибрилл.
У нитчатых цианобактерий фибриллы формируют единую систему, непрерывно в виде спирали обволакивающую весь трихом (нить). Скольжение нитчатых форм сопровождается и одновременным их вращением, так что любая точка на поверхности трихома описывает при движении спираль. Направление вращения является видоспецифическим признаком и коррелирует с направлением хода спирали белковых фибрилл.
Механизм скользящего движения не ясен. Согласно гипотезе реактивного движения оно обусловлено выделением слизи через многочисленные слизевые поры в клеточной стенке, в результате чего клетка отталкивается от субстрата в направлении, противоположном направлению выделения слизи. Однако анализ этой модели привел к заключению, что для обеспечения скольжения по "реактивному" механизму клетке необходимо в течение 1 с выделять такой объем слизи, который во много раз превосходит ее цитоплазматическое содержимое.
По другой гипотезе, получившей распространение в последние годы, скользящее движение связано с особенностями строения клеточной стенки подвижных безжгутиковых форм -- наличием белкового слоя, состоящего из упорядоченно расположенных фибрилл, аналогичных нитям жгутиков, с той разницей, что находятся фибриллы "внутри" клеточной стенки. У некоторых скользящих бактерий описаны структуры, весьма напоминающие базальные тела жгутиковых форм. Вращательное движение фибрилл, "запускаемое" этими структурами, приводит к появлению на поверхности клетки так называемой "бегущей волны", т. е. движущихся микроскопических выпуклостей клеточной стенки, в результате чего клетка отталкивается от твердого или вязкого субстрата. На скольжение расходуется около 5 % энергии от общего объема клеточных энергетических затрат. Скользящее движение в разных группах бактерий обеспечивается энергией в форме АТФ или Dm H +.
Необходимость для скольжения слизи пока не ясна. Скольжение может происходить в среде подходящей консистенции без какого-либо выделения слизи. Более того, выделение больших количеств слизи, как правило, затрудняет движение клетки и приводит к потере ею подвижности. Согласно гипотезе "бегущей волны" выделение слизи не является абсолютно необходимым для скольжения, но облегчает в определенных условиях отталкивание клетки от субстрата.
Подвижные бактерии активно перемещаются в направлении, определяемом теми или иными внешними факторами. Такие направленные перемещения бактерий называют таксисами. В зависимости от фактора различают хемотаксис (частный случай -- аэротаксис), фототаксис, магнитотаксис, термотаксис и вискозитаксис.
Наибольшее внимание привлекает изучение хемотаксиса, т. е. движения в определенном направлении относительно источника химического вещества. Для каждого организма все химические вещества в этом плане могут быть разделены на две группы: инертные и вызывающие таксисы (эффекторы). Среди последних выделяют аттрактанты (вещества, привлекающие бактерий) и репелленты (вещества, отпугивающие бактерий).
Аттрактантами могут быть сахара, аминокислоты, витамины, нуклеотиды и другие химические молекулы; репеллентами -- некоторые аминокислоты, спирты, фенолы, неорганические ионы. Аттрактантом для аэробных и репеллентом для энаэробных прокариот является молекулярный кислород. Аттрактанты часто представлены пищевыми субстратами, хотя не все вещества, необходимые для организма, выступают в качестве аттрактантов. Также не все ядовитые вещества служат репеллентами и не все репелленты вредны.
Фототаксис, т. е. движение к свету или от него, свойствен, прежде всего, фототрофным бактериям. Способность перемещаться по силовым линиям магнитного поля Земли или магнита -- магнитотаксис -- обнаружен у разных бактерий, обитающих в пресной и морской воде. В клетках этих бактерий найдены непрозрачные частицы определенной геометрической формы -- магнитосомы, заполненные железом в форме магнетита (Fe3O4) и выполняющие функцию магнитной стрелки.
На долю магнетита может приходиться до 4 % сухого вещества бактерий. В северном полушарии такие магниточувствительные бактерии плывут в направлении северного полюса Земли, в южном -- в направлении южного. У ряда бактерий обнаружен вискозитаксис -- способность реагировать на изменение вязкости раствора и перемещаться в направлении ее увеличения или уменьшения.
За чувствительность бактерий к градиентам определенных факторов ответственны специфические рецепторы. Изучение хемотаксиса у Escherichia coli позволило обнаружить свыше 30 различных хеморецепторов, представляющих собой белки, синтезируемые независимо от присутствия индуктора или только в результате индукции. Рецептор реагирует на эффектор и передает сигнал по определенному пути, конкретный механизм которого неизвестен, на "мотор" жгутика. У бактерий с перитрихиальным жгутикованием выявлены два вида двигательного поведения: прямолинейное движение и кувырканье, т. е. периодические и случайные изменения направления движения. Если бактерия перемещается в сторону оптимальной концентрации аттрактанта, ее прямолинейное движение, ориентированное по отношению к химическому веществу, становится более длительным, а частота кувырканий более низкой, что позволяет ей в конечном итоге перемещаться в нужном направлении.
Ворсинки
К поверхностным структурам бактериальной клетки относятся также ворсинки (фимбрии, пили) (см. рис. 2; 6). Их насчитывается от нескольких единиц до нескольких тысяч на клетку. Эти структуры не имеют отношения к движению бактерий и обнаружены у подвижных и неподвижных форм. Ворсинки построены из одного вида белка -- пилина -- и представляют собой прямые белковые цилиндры, отходящие от поверхности клетки. Они, как правило, тоньше жгутиков (диаметр -- 5 - 10 нм, длина 0,2 - 2,0 мкм), расположены перитрихиально или полярно. Больше всего сведений имеется о ворсинках Е. coli. У этой бактерии описаны ворсинки общего типа и половые.
Ворсинки общего типа придают бактериям свойство гидрофобности, обеспечивают их прикрепление к клеткам растений, грибов и неорганическим частицам, принимают участие в транспорте метаболитов. Через ворсинки в клетку могут проникать вирусы.
Наиболее хорошо изучены половые ворсинки, или F-пили, принимающие участие в половом процессе бактерий. F-пили необходимы клетке-донору для обеспечения контакта между ней и реципиентом и в качестве конъюгационного тоннеля, по которому происходит передача ДНК. Ворсинки нельзя считать обязательной клеточной структурой, так как и без них бактерии хорошо растут и размножаются.
Мембраны
Содержимое клетки отделяется от клеточной стенки цитоплазматической мембраной (ЦПМ) -- обязательным структурным элементом любой клетки, нарушение целостности которого приводит к потере клеткой жизнеспособности. На долю ЦПМ приходится 8 - 15 % сухого вещества клеток. У большинства прокариотных клеток ЦПМ -- единственная мембрана. В клетках фототрофных и ряда хемотрофных прокариот содержатся также мембранные структуры, располагающиеся в цитоплазме и получившие название внутрицитоплазматических мембран. Их происхождение и функции будут рассмотрены ниже.
Химический состав мембран
ЦПМ -- белково-липидный комплекс, в котором белки составляют 50 - 75 %, липиды -- от 15 до 45 %. Кроме того, в составе мембран обнаружено небольшое количество углеводов. Как правило, липиды и белки составляют 95 % и больше вещества мембран.
Главным липидным компонентом бактериальных мембран являются фосфолипиды -- производные 3-фосфоглицерина. Хотя у прокариот найдено множество различных фосфолипидов, набор их в значительной степени родо- и даже видоспецифичен.
Широко представлены в бактериальных мембранах различные гликолипиды. Стерины отсутствуют у подавляющего большинства прокариот, за исключением представителей группы микоплазм и некоторых бактерий. Так, в ЦПМ Acholeplasma содержится 10 - 30 % холестерина, поглощаемого из внешней среды, от общего содержания мембранных липидов. Из других групп липидов в мембранах прокариот обнаружены каротиноиды, хиноны, углеводороды.
Рис. 12. Структура основных фосфолипидов мембран эубактерий. R1 и R2 -- остатки длинноцепочечных жирных кислот, образующих гидрофобный "хвост" молекулы; R3 может быть остатком глицерина, его производных, этаноламина, инозита и других соединений. Эта часть составляет гидрофильную "голову" молекулы. Простейшим фосфолипидом является фосфатидная кислота, не имеющая R3-остатка, связанного с фосфорной кислотой сложноэфирной связью. 1 -- общая структура фосфолипида; 2 -- фосфатидилглицерин; 3 -- дифосфатидилглицерин (кардиолипин); 4 -- фосфатидилинозит; 5 -- фосфатидилэтаноламин; 6 -- фосфатидилсерин.
Все липиды эубактерий -- производные глицерина -- содержат один или несколько остатков жирных кислот, состав которых весьма своеобразен (рис. 12). В основном это насыщенные или мононенасыщенные жирные кислоты с 16 - 18 углеродными атомами. Полиненасыщенные жирные кислоты у эубактерий отсутствуют. Исключение составляют цианобактерии, у разных видов которых найдены полиненасыщенные жирные кислоты типа C 16:2, C 18:2, C 18:3, C 15:4.
Помимо обычных жирных кислот, т. е. обнаруживаемых и в клетках эукариот, в составе мембранных липидов эубактерий находят и кислоты, не встречающиеся, как правило, в мембранах эукариот. Это циклопропановые жирные кислоты, содержащие одно или больше трехчленных колец, присоединенных вдоль углеводородной цепи. Другие, редко встречающиеся и обнаруженные практически только у эубактерий кислоты -- это разветвленные жирные кислоты с 15 - 17 углеродными атомами.
Набор жирных кислот в мембранных липидах также чрезвычайно видоспецифичен. У некоторых грамположительных эубактерий C 15-жирная кислота с разветвленной цепью может составлять до 90 % всех жирных кислот липидов. Главная функция липидов -- поддержание механической стабильности мембраны и придание ей гидрофобных свойств.
Особый состав липидов обнаружен в мембранах архебактерий. У них не найдены типичные для эубактерий эфиры глицерина и жирных кислот, но присутствуют эфиры глицерина и высокомолекулярных С 20-, С 40-спиртов, а также нейтральные изопреноидные С 20 - С 30-углеводороды.
На долю белков приходится больше половины сухой массы мембран. К мембранам с наиболее высоким содержанием белка относятся бактериальные ЦПМ. При изучении их белкового состава не было обнаружено какого-либо универсального структурного белка. ЦПМ Escherichia coli содержит 27 основных и множество минорных белков, но ни один из основных белков не присутствует в преобладающих количествах. Поскольку ЦПМ прокариот многофункциональна и участвует в осуществлении разнообразных ферментативных процессов, был сделан вывод, что мембранные белки -- это, как правило, ферменты. По аминокислотному составу мембранные белки не отличаются от других клеточных белков, за исключением того, что в них содержится мало (иногда следы) цистеина.
В некоторых бактериальных мембранах в значительных количествах обнаружены углеводы. По-видимому, они содержатся не в свободном состоянии, а входят в состав гликолипидов и гликопротеинов.
Структура мембран
Мембранные липиды всех эубактерий и части архебактерий образуют бислои, в которых гидрофильные "головы" молекул обращены наружу, а гидрофобные "хвосты" погружены в толщу мембраны (рис. 13).
Углеводородные цепи, прилегающие к гидрофильным "головам", довольно жестко фиксированы, а более удаленные части "хвостов" обладают достаточной гибкостью. У некоторых архебактерий (ряд метаногенов, термоацидофилы) мембранные липиды, в состав которых входит C 40-спирт, формируют монослойную мембрану, по толщине равную бислойной. Монослойные липидные мембраны обладают большей жесткостью сравнительно с бислойной. При "биологических" температурах мембранные липиды находятся в жидкостно-кристаллическом состоянии, характеризующемся частичной упорядоченностью структуры. При понижении температуры они переходят в квазикристаллическое состояние. Чем более не насыщены и разветвлены остатки жирных кислот или чем большее число циклических группировок они содержат, тем ниже температура перехода из жидкостно-кристаллического состояния в квазикристаллическое.
...Подобные документы
Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.
лекция [44,4 K], добавлен 27.07.2013Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.
презентация [3,1 M], добавлен 09.10.2013Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.
реферат [27,3 K], добавлен 16.01.2005Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.
презентация [2,2 M], добавлен 08.11.2012Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).
реферат [28,2 K], добавлен 11.07.2010Обобщение факторов, от которых зависит рост и размножение микроорганизмов, то есть увеличение количества химических компонентов микробной клетки. Изучение понятия бактериальной массы, которая выражается плотностью бактерий. Завершенное деление клетки.
реферат [19,9 K], добавлен 10.05.2012Основные органеллы клетки. Цитоплазма - полужидкая среда, в которой находятся ядро клетки и все органоиды, ее состав. Схема строения комплекса Гольджи. Органоиды движения включения (реснички и жгутики). Форма и размеры ядра, его главные функции.
презентация [764,3 K], добавлен 13.11.2014Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.
контрольная работа [1,0 M], добавлен 05.09.2011Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.
презентация [2,9 M], добавлен 26.11.2013Схема строения прокариотической клетки. Доядерные клетки — бактерии и синезеленые, у которых отсутствуют оформленное ядро, окруженное ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Характерные особенности клеток-прокариот.
презентация [103,3 K], добавлен 06.02.2012Субклеточные структуры растительной клетки. Клеточная стенка и ее химический состав. Одревеснение, опробковение и кутинизация клеточной стенки. Ослизнение и минерализация клеточной стенки. Формирование рост и функции клеточной стенки.
реферат [33,9 K], добавлен 16.01.2009Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.
реферат [39,6 K], добавлен 14.05.2011Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.
презентация [12,3 M], добавлен 03.11.2013Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.
реферат [36,2 K], добавлен 13.12.2007Особенности строения и роста растительных клеток. Методы изучения растительной клетки. Электронная микроскопия, возможности светового микроскопа. Метод замораживания-скалывания. Дифференциальное центрифугирование, фракционирование. Метод культуры клеток.
реферат [30,9 K], добавлен 04.06.2010Тканеспецифичные стволовые клетки, стволовые клетки крови млекопитающих. Базальные кератиноциты - стволовые клетки эпидермиса. Способность клеток к специализации (дифференцировке). Регенерация сердечной ткани. Перспективы применения стволовых клеток.
реферат [25,2 K], добавлен 07.04.2014Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.
контрольная работа [47,7 K], добавлен 22.12.2014Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.
презентация [4,1 M], добавлен 13.12.2015Характеристика сущности клетки - элементарной единицы строения и жизнедеятельности всех живых организмов (кроме вирусов), обладающей собственным обменом веществ, способной к самостоятельному существованию, самовоспроизведению и развитию. Строение клетки.
реферат [607,1 K], добавлен 13.11.2010Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014