Основные возможности, открываемые биотехнологией перед человечеством

Особенность сущности биотехнологии и истории ее возникновения. Генная инженерия как одна из магистральных направлений научно-технического прогресса. Характеристика основных назначений и методов. Практические достижения и перспективы в современной науке.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 05.07.2014
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Понятие и сущность биотехнологии, история ее возникновения

2. Основные направления и методы биотехнологии

3. Практические достижения и перспективы биотехнологии

Заключение

Список использованной литературы

Введение

Возможности, открываемые биотехнологией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.

Генная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая. Но особенно большие возможности биотехнология открывает перед медициной и фармацевтикой, поскольку ее применение может привести к коренным преобразованиям медицины.

Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению.

Под влиянием биотехнологии медицина может превратиться в дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.

1. Понятие и сущность биотехнологии, история ее возникновения

Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений. Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании. Собственно сам термин появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др.

Вероятно, древнейшим биотехнологическим процессом было сбраживание с помощью микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э.

В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение, и получение молочнокислых продуктов.

В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии и более традиционные формы биопроцессов.

Так, обычное производство спирта в процессе брожения - «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - «новая» биотехнология.

Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике. Всплеск исследований по биотехнологии в мировой науке произошел в 80-х годах, но, несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание, как ученых, так и широкой общественности. По прогнозам, уже в начале 21 века биотехнологические товары будут составлять четверть всей мировой продукции.

Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл.

Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения. Биотехнология - междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук. Биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусловли-вает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов, микробиологов и кле-точных физиологов, инженеров-технологов, конструкторов био-технологического оборудования и др. В Комплексной программе научно-технического прогресса стран членов СЭВ в качестве первоочередных задач биотехно-логии определены создание и широкое народнохозяйственное освоение:

- новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний, сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;

- микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов роста растений; новых высокопродуктивных и устойчивых к неблаго-приятным факторам внешней среды сортов и гибридов сельско-хозяйственных растений, полученных методами генетической и клеточной инженерии;

- ценных кормовых добавок и биологически активных ве-ществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сель-скохозяйственных животных;

- новых технологий получения хозяйственно ценных продук-тов для использования в пищевой, химической, микробиологи-ческой и других отраслях промышленности;

- технологий глубокой и эффективной переработки сельско-хозяйственных, промышленных и бытовых отходов, использова-ния сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

2. Основные направления и методы биотехнологии

Условно можно выделить следующие основные направления биотехнологии:

биотехнология пищевых продуктов;

биотехнология препаратов для сельского хозяйства;

биотехнология препаратов и продуктов для промышленного и бытового использования;

биотехнология лекарственных препаратов;

биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти. Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов
и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.Исторически, выделяют «три волны» в создании генно-модифицированных растений: Первая волна - конец 1980-х годов - создание растений с новыми свойствами устойчивости к вирусам, паразитам или гербицидам. В растениях «первой волны» дополнительно вводили всего один ген и заставляли его «работать», то есть синтезировать один дополнительный белок. «Полезные» гены «брали» либо у вирусов растений (для формирования устойчивости к данному вирусу), либо у почвенных бактерий (для формирования устойчивости к насекомым, гербицидам). биотехнология генный инженерия прогресс

Вторая волна - начало 2000-х годов - создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

3. Практические достижения и перспективы биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности.

Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.

В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.

Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Если говорить о перспективах развития биотехнологии, то центральной проблемой биотехнологии остается интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК.

Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.

В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.

В качестве источников сырья для биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.

Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей в формировании продовольственной базы человечества растениеводства и животноводства с одной стороны, и микробного синтеза - с другой.

Не менее важным аспектом современной микробиологической технологии является изучения участия микроорганизмов в биосферных процессах и направленная регуляция их жизнедеятельности с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений.

С этой проблемой тесно связаны исследования по выявлению роли микроорганизмов в плодородии почв (гумусообразовании и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и других химических соединений в почве.

Имеющиеся в этой области знания свидетельствуют о том, что изменение стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается как с экономической, так и с экологической точек зрения.

В данном направлении перед биотехнологией может быть поставлена цель регенерации ландшафтов. Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду.

Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия.

Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.

Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии.

Получение биогаза и этанола были рассмотрены выше, но есть и принципиально новые экспериментальные подходы в этом направлении.

Одним из них является получение фотоводорода:

«Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету происходит фотолиз воды - разложение ее на кислород и водород. Моделирование процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе - водороде».

Преимущества такого способа получения энергии очевидны:

* наличие избытка субстрата, воды;

* нелимитируемый источник энергии - Солнце;

* продукт (водород) можно хранить, не загрязняя атмосферу;

* водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3.5 ккал/г);

* процесс идет при нормальной температуре без образования токсических промежуточных продуктов;

* процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.

Хочется отметить биотехнология сельскохозяйственных растений. Так, начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.

Заключение

Широкое использование микроорганизмов не может не порождать новых взаимоотношений с живой природой, что вполне естественно ведет к желанию осмыслить сами эти взаимоотношения и соотнести их со сложившимися представлениями, с одной стороны, о роли живой природы в жизнедеятельности человека, а с другой - о роли человека в биотическом круговороте биосферы.

Имеющийся пока не слишком богатый опыт развития биотехнологии все-таки содержит в себе много непривычного и вместе с тем многообещающего для возможной оптимизации человеческой жизнедеятельности.

А остро вставшая перед Homo sapiens проблема самосохранения вынуждает его к лихорадочным поискам возможных вариантов стратегии своей жизнедеятельности. Этому привлечению природы, причем именно мира микроорганизмов, и положила начало новая биотехнология.

Можно, видимо, сказать, что биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

«Явившись прямым результатом научных разработок, биотехнология оказывается непосредственным единением науки и производства, еще одной ступенькой к единству познания и действования, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности».

И все-таки она является только небольшим шагом. Поскольку, как заметил Б. Шоу, наука всегда ошибается. Она никогда не разрешает какой-то проблемы, не создав еще десять новых.

Биотехнология сама оказывается всего лишь крупной индустрией, соединением технических и биологических элементов и, естественно, наследует отрицательные свойства уже существующего индустриально-промышленного комплекса.

Их действительное преодоление и решение проблемы человека предполагают выход человечества на новые, более совершенные ступени социально-культурного развития, основанного на новых способах познания и действования.

Поэтому весьма существенное значение приобретает проблема выбора стратегии взаимодействия человека и природы: или это самонадеянное управление природой или же сознательное и целенаправленное приспособление всей жизнедеятельной деятельности, к существующему биотическому круговороту биосферы.

Список использованной литературы

1. Егоров Н.С. Биотехнология проблемы и перспективы. М., 1994.

2. Калашникова Е.А., Шевелуха В.С., Воронин Е.С. Биотехнология. М: Высшая школа, 2005.

Размещено на Allbest.ru

...

Подобные документы

  • Структура современной биотехнологии. Промышленные процессы, выполняемые с помощью ферментации. Генная инженерия: достижения и проблемы. Возможности коррекции генотипа при генетических заболеваниях. Биологическая очистка сточных вод. Трансгенные растения.

    реферат [684,9 K], добавлен 09.01.2014

  • Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.

    реферат [17,3 K], добавлен 04.09.2007

  • Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

    реферат [28,9 K], добавлен 02.01.2008

  • Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад [15,1 K], добавлен 10.05.2011

  • История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.

    презентация [604,9 K], добавлен 19.04.2011

  • Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат [32,4 K], добавлен 23.07.2008

  • Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.

    реферат [25,0 K], добавлен 11.01.2013

  • Генная инженерия как метод биотехнологии, который занимается исследованиями по перестройке генотипов. Этапы процесса получения рекомбинантных плазмид. Конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

    презентация [819,2 K], добавлен 20.11.2011

  • Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.

    реферат [39,2 K], добавлен 04.03.2010

  • Промышленное использование биологических процессов на основе микроорганизмов, культуры клеток, тканей и их частей. История возникновения и этапы становления биотехнологии. Основные направления, задачи и методы: клонирование, генная и клеточная инженерия.

    презентация [1,5 M], добавлен 22.10.2016

  • Генная инженерия как раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. История ее возникновения и развития, этапы генного синтеза. Безопасна ли генная модификация? Примеры ее применения.

    реферат [24,4 K], добавлен 23.11.2009

  • Исследование сущности и предназначения генной инженерии - метода биотехнологии, который занимается исследованиями по перестройке генотипов. Метод получения рекомбинантных, то есть содержащих чужеродный ген, плазмид - кольцевых двухцепочных молекул ДНК.

    презентация [264,8 K], добавлен 19.02.2012

  • Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.

    презентация [616,1 K], добавлен 04.12.2013

  • Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа [2,5 M], добавлен 11.07.2012

  • Генетическая инженерия - инструмент биотехнологии для получения рекомбинантных РНК и ДНК, осуществления манипуляций с генами и белковыми продуктами, введения их в другие организмы. Современное состояние науки о наследственности и хромосомных болезнях.

    реферат [23,9 K], добавлен 23.06.2009

  • Биотехнология, её направления: генная инженерия, клонирование. Роль клеточной теории в становлении биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты.

    презентация [2,7 M], добавлен 02.10.2011

  • Возникновение молекулярной биотехнологии. История проблемы биологического кода. Политика в области генной терапии соматических клеток. Накопление дефектных генов в будущих поколениях. Генная терапия клеток зародышевой линии. Генетика и проблема человека.

    реферат [41,9 K], добавлен 25.09.2014

  • Понятие биотехнологии как науки о методах и технологиях производства ценных веществ и продуктов с использованием природных биологических объектов. Традиционная и новая биотехнология, ее перспективные направления развития. Генная и клеточная инженерия.

    презентация [547,9 K], добавлен 21.11.2013

  • История развития генетики как науки. Ее основные положения. В основе генетики лежат закономерности наследственности, обнаруженные австрийским биологом Г. Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Генная инженерия.

    контрольная работа [32,1 K], добавлен 16.06.2010

  • Генетика пола. Генетические механизмы формирования пола. Наследование признаков, сцепленных с полом. Наследование признаков, контролируемых полом. Хромосомная теория наследственности. Механизм сцепления. Биотехнологии и генная инженерия.

    реферат [72,9 K], добавлен 06.10.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.