Дослідження інформативності клітинних моделей для попередньої оцінки біологічної активності речовин
Аналіз ефектів фізіологічно активних речовин з протилежними біорегуляторними стереотипами. Вивчення інформативності біомоделей за допомогою методів штучних нейронних мереж і кластерного аналізу. Оцінка чутливості біомоделей до дії катіонів важких металів.
Рубрика | Биология и естествознание |
Вид | автореферат |
Язык | украинский |
Дата добавления | 29.09.2014 |
Размер файла | 69,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ
ІНСТИТУТ БІООРГАНІЧНОЇ ХІМІЇ ТА НАФТОХІМІЇ
АВТОРЕФЕРАТ
дисертації на здобуття наукового ступеня
кандидата біологічних наук
02.00.10 - біоорганічна хімія
ДОСЛІДЖЕННЯ ІНФОРМАТИВНОСТІ КЛІТИННИХ МОДЕЛЕЙ ДЛЯ ПОПЕРЕДНЬОЇ ОЦІНКИ БІОЛОГІЧНОЇ АКТИВНОСТІ РЕЧОВИН
Семенюта Іван Володимирович
Київ -2007
Дисертацією є рукопис.
Робота виконана у відділі медико-біологічних досліджень Інституту біоорганічної хімії та нафтохімії НАН України.
Наукові керівники |
член-кореспондент НАН України, доктор медичних наук, професор Луйк Олександр Ігорович |
|
доктор медичних наук, професор,заслужений діяч науки і техніки України Лук?янчук Віктор Дмитрович Луганський державний медичний університет, завідувач кафедри фармакології |
||
Офіційні опоненти: |
доктор біологічних наук, професор,Бєленічев Ігор Федорович, Запорізький державний медичний університет, завідувач кафедри фармакології та медичної рецептури |
|
доктор медичних наукЖирнов Віктор Валентинович, Інститут біоорганічної хімії та нафтохімії НАН України, завідувач відділу сигнальних систем клітини |
||
Провідна установа |
Інститут молекулярної біології і генетики НАН України,відділи комбінаторної хімії, молекулярної та квантової біофізики |
Захист відбудеться 15 червня 2007 року о 10 годині на засіданні спеціалізованої вченої ради Д 26.220.01 в Інституті біоорганічної хімії та нафтохімії НАН України, 02660, Київ-94, вул. Мурманська, 1.
З дисертацією можна ознайомитись в науковій бібліотеці Інституту біоорганічної хімії та нафтохімії НАН України, 02660, Київ-94, вул. Мурманська, 1.
Автореферат розісланий 15 травня 2007 року.
Вчений секретар
спеціалізованої вченої ради Д.М. Федоряк
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ
Актуальність теми. Пошук нових фізіологічно активних речовин (ФАР) та створення на їх основі лікарських препаратів є одними з найбільш важливих завдань сучасної біоорганічної хімії і фармакології (Thomas A. Ban, 2006; Белоусов Ю.Б., 2006). У більшості випадків відкриття нової ФАР є результатом емпіричного скринінгу десятків тисяч нових хімічних сполук. Незважаючи на значні успіхи сучасної науки в справі пошуку та дослідження властивостей біорегуляторів, створення нових лікарських препаратів, як і раніше, вимагає значних витрат людських і матеріальних ресурсів, причому значна частина витрат пов'язана зі скринінгом великої кількості речовин на різні види біологічної активності. З літературних джерел (Klech H., 2005) відомо, що провідні фармацевтичні компанії, для створення та впровадження в медичну практику одного лікарського препарату, синтезують та перевіряють понад 10000 хімічних сполук, на це витрачається 12 -15 років роботи та близько 1 млрд. доларів США.
Актуальність даного дослідження обумовлена необхідністю пошуку нових підходів до виявлення біологічної активності речовин, які б забезпечували його оптимізацію шляхом суттєвого прискорення та здешевлення. Особливої уваги, на нашу думку, заслуговує пошук біологічних моделей, максимально інформативних та чутливих до дії хімічних сполук різних класів, які б дозволяли з мінімальними затратами часу та матеріальних ресурсів виявляти ФАР серед нових речовин.
Здавалось перспективним застосувати біологічні моделі не тільки для скринінгу, а й для вивчення не менш складної проблеми дії ксенобіотиків на живі організми, особливо в концентраціях, значно нижчих від гранично допустимих (ГДК), оскільки зростаюче з кожним роком техногенне забруднення навколишнього середовища ставить проблему контролю стану довкілля на одне з перших місць (Ковальчук П.І., 2003). Особливий інтерес становить вплив на живі організми таких сильнодіючих хімічних агентів, як важкі метали (Mudryi I.V., 2002). Виходячи з цього, є актуальним вивчення впливу катіонів важких металів на клітинному рівні в концентраціях, нижче ГДК, що дотепер є маловивченими.
Таким чином, виходячи з вищесказаного, є актуальним пошук та дослідження інформативних та чутливих біологічних моделей для попередньої оцінки біологічної активності нових речовин, а також вивчення впливу катіонів важких металів на ці біологічні моделі в концентраціях, значно нижчих від ГДК.
Зв'язок роботи з науковими програмами, планами, темами. Дана робота є розвитком досліджень по вивченню дії ФАР на сигнальні системи клітини та функціональний стан різних біооб?єктів. Робота виконувалась в рамках наукової теми "Вивчення неспецифічної дії ксенобіотиків як основи для скринінгу біологічно активних речовин" (тема № 2.1.10.29-95, № держ. реєстрації 0195U025780) відділу медико-біологічних досліджень ІБОНХ НАН України та проекту Державної науково-технічної програми МОН України "Створення принципово нової системи моніторингу навколишнього природного середовища на основі сучасних фізико-хімічних методів вимірювання та математичного моделювання впливу шкідливих факторів на природні та штучні біооб?єкти" (шифр № 01.03/04646 "Біотест", № держ. реєстрації 0198U001926).
Мета та задачі дослідження. Мета роботи пошук інформативних та чутливих біомоделей для попередньої оцінки біологічної активності речовин з використанням експериментальних та математичних методів.
Основні задачі дослідження:
Вивчити та зробити попередню оцінку ефектів ФАР з протилежними біорегуляторними стереотипами на різних експериментальних біомоделях.
Оцінити рівень інформативності біомоделей за допомогою методів штучних нейронних мереж (ШНМ) та кластерного аналізу.
Провести експериментальну оцінку чутливості біомоделей до дії катіонів важких металів.
Розробити алгоритм ефективного пошуку та попередньої оцінки біологічної активності нових речовин.
Об'єкт дослідження - біологічні моделі.
Предмет дослідження - біорегуляторна дія ФАР, що виявляється на різних біологічних моделях.
Методи дослідження - метод розеткоутворення Т-лімфоцитів, електрофорез, кластерний аналіз, метод штучних нейронних мереж, методи математичної обробки результатів.
Наукова новизна отриманих результатів. Отримані нові дані про вплив ФАР з протилежними біорегуляторними стереотипами на різні експериментальні біомоделі та вказані елементи спільності в регуляції функціонального стану досліджених біооб'єктів. За допомогою методів ШНМ та кластерного аналізу виявлено найбільш інформативні біомоделі, що можуть використовуватись для первинного тестування нових речовин. Вперше показані вплив катіонів важких металів на імунокомпетентні клітини та зміна функціонального стану лімфоцитів при їх дії в концентраціях, значно нижче ГДК. Розроблено оригінальну стратегію пошуку та попередньої оцінки біологічної активності синтезованих речовин, яка ґрунтується на їх взаємодії з клітинними сигнальними системами.
Практичне значення отриманих результатів. Отримані результати можуть бути використані для розробки та впровадження в практику принципово нової стратегії пошуку лікарських препаратів, яка ґрунтується на первинному тестуванні потенційних ФАР за допомогою запропонованих біомоделей, що дозволить з високим ступенем імовірності передбачати спектр тих чи інших видів біологічної активності в нових хімічних сполуках.
Ряд біомоделей, використаних в роботі, внаслідок значної чутливості до деяких хімічних факторів, можуть бути використані для контролю стану навколишнього середовища.
Особистий внесок здобувача. Проведення експериментальних досліджень впливу ФАР на біомоделі, статистична обробка результатів, застосування методу кластерного аналізу, розробка алгоритму ефективного пошуку та попередньої оцінки біологічної активності нових речовин були здійснені особисто здобувачем. Аналіз експериментальних результатів методом ШНМ з різними модифікаціями був проведений спільно з к.х.н. Ковалішиним В.В. Постановка завдань, обговорення результатів та формування висновків відбувалося спільно з керівниками. Результати робіт, що опубліковані у співавторстві та увійшли до дисертації, одержані особисто дисертантом. Автор глибоко вдячний к.б.н. Метелиці Л.О., к.б.н. Чарочкіній Л.Л., к.б.н. Прокопенку Р.А., к.б.н. Калашниковій Л.Є. за методичну допомогу при проведенні окремих фрагментів експериментальних досліджень.
Апробація результатів дисертації. Основні результати роботи були представлені на міжнародній науково-практичній конференції “Ліки - людині” (Харків, червень 2001) і XVI науковій конференції з біоорганічної хімії та нафтохімії (Київ, березень 2001), 1-й Всеукраїнській науково-технічній конференції „Информационные процессы и технологии. Информатика-2007” (Севастополь, квітень 2007).
Публікації. Основні результати роботи викладені в 4 статтях у наукових фахових виданнях та 2 тезах доповідей на наукових форумах.
Структура та обсяг роботи. Дисертація складається з вступу, огляду літератури, опису методів досліджень, експериментальної частини, викладу та обговорення результатів, висновків, списку літератури (196 найменувань) та 1 додатку. Дисертаційна викладена на 149 сторінках друкованого тексту (з додатком), проілюстрована 22 таблицями та 20 малюнками.
ОСНОВНИЙ ЗМІСТ РОБОТИ
Матеріали та методи дослідження. З огляду на те, що дія ФАР на клітинні сигнальні системи реалізується адекватною відповіддю, у першу чергу, на клітинному рівні, з наступним поширенням відповіді на рівень органів, систем органів та організму в цілому, то для об'єктивної оцінки ефектів досліджуваних ФАР на клітинному рівні в роботі були використані клітини крові, функції яких однозначно пов'язані з клітинними сигнальними системами, а саме: лімфоцити, поліморфноядерні лейкоцити (ПМЯЛ), а також тромбоцити. Виходячи з цього, використовували наступні модельні системи: розеткоутворення Т-лімфоцитів, міграційні властивості ПМЯЛ, агрегацію тромбоцитів, електрофоретичну рухливість нейтрофільних лейкоцитів, а також метод електростимульованих фазних скорочень гладеньких м'язів органу.
Для виявлення найбільш чутливих біооб'єктів вивчали кількісні та якісні зміни функціонального стану в різних експериментальних моделях на фоні впливу ФАР з відомими стереотипами дії на сигнальні системи клітини: +I/-II - активатори аденілатциклазної та інгібітори Са-мобілізуючої фосфоліпідної, -I/+II - інгібітори аденілатциклазної та активатори Са-мобілізуючої фосфоліпідної клітинних сигнальних систем. В експерименті були використані як відомі лікарські препарати різної хімічної будови з різними фармакологічними властивостями, так і ряд порівняно нових сполук.
Проводили дослідження чутливості лімфоцитів крові людини до катіонів важких металів: Сd2+, Zn2+, Co2+, Cu2+ і Pb2+, які в експериментах, для мінімізації аніонного впливу, використовували переважно у вигляді хлоридів.
Для аналізу багаторядними ШНМ були використані експериментальні дані, які відображають дію ФАР на модельні системи. Дані були попередньо оброблені методами масштабувания та нормалізації, в наслідок чого, для кожної з ФАР було отримано по 18 нормалізованих результатів. Для аналізу ШНМ з активними нейронами також був використаний набір даних, що складається з 18 вхідних ознак для кожної ФАР.
Результати дослідження та їх обговорення. З результатів дослідження впливу ФАР на розеткоутворення Т-лімфоцитів, представлених у табл.1, для ФАР класу +I/-II, у більшості випадків, встановлено достовірне інгібування цього процесу. Виняток складають біс-(в-хлоретил)-метатоліламін (МКДХЕА) в концентрації 10-6 моль/л, а також кофеїн у концентрації 10-4 -10-5 моль/л, які активують процес розеткоутворення (p0,05). При дії ФАР класу -I/+II у більшості випадків спостерігається активування цього процесу, за винятком обзидану, який у концентрації 10-4-10-5 моль/л достовірно інгібує процес розеткоутворення (p 0,05).
Таблиця 1. Розеткоутворення Т-лімфоцитів під впливом ФАР (М±m, n =10)
НазваФАР |
Кількість розеток на 2·103 клітинКонцентрація ФАР, моль/л |
||||
10-4 |
10-5 |
10-6 |
10-5 ФАР+ 10-7 КТ***** |
||
1. Атропін |
2,4±0,1* |
1,9±0,1* |
3,4±0,1 |
3,1±0,1 |
|
2. BW-755С** |
1,8±0,2* |
2,0±0,2* |
3,8±0,1* |
2,5±0,1* |
|
3. Ембіхін |
2,0±0,2* |
1,1±0,1* |
2,6±0,2* |
2,7±0,1 |
|
4. Теофілін |
1,0±0,2* |
1,3±0,2* |
2,8±0,1 |
3,0±0,2 |
|
5. Кверцетин |
2,4±0,1* |
1,6±0,1* |
2,5±0,1* |
2,0±0,2* |
|
6. Дімедрол |
2,0±0,2* |
2,9±0,3 |
2,6±0,2* |
2,7±0,1 |
|
7. МКДХЕА*** |
2,1±0,1* |
2,4±0,2* |
3,6±0,2* |
2,4±0,2* |
|
8. Ізадрин |
2,0±0,2* |
1,3±0,1* |
2,6±0,2* |
2,7±0,3 |
|
9. Форидон |
2,7±0,5 |
2,8±0,1* |
2,0±0,2* |
2,9±0,1 |
|
10. Аспірин |
2,1±0,1* |
2,4±0,1* |
3,2±0,2 |
2,0±0,2* |
|
11. Вольтарен |
1,2±0,1* |
1,9±0,1* |
2,7±0,1* |
2,5±0,1* |
|
12. Папаверин |
1,7±0,1* |
2,3±0,2* |
2,7±0,2 |
3,5±0,2 |
|
13. Циклофосфан |
1,0±0,2* |
0,9±0,1* |
2,2±0,1* |
2,9±0,5 |
|
14. Кофеїн |
4,0±0,2* |
4,9±0,2* |
2,8±0,2 |
3,5±0,1 |
|
15. Сульпірид |
1,9±0,2* |
1,9±0,1* |
2,5±0,2* |
3,2±0,2 |
|
16. Нітрендипін |
2,0±0,2* |
1,8±0,2* |
2,5±0,1* |
2,5±0,1* |
|
17. Мілдронат |
2,1±0,1* |
1,7±0,1* |
1,5±0,1* |
3,0±0,2 |
|
18. Йохімбін |
2,0±0,2* |
3,0±0,2 |
3,2±0,1 |
3,1±0,1 |
|
19. Празозин |
1,5±0,1* |
2,2±0,2* |
2,9±0,1 |
2,9±0,2 |
|
20. Галоперидол |
1,4±0,1* |
1,5±0,1* |
1,8±0,2* |
3,4±0,1 |
|
21. Фторацизин |
2,2±0,1* |
2,0±0,2* |
2,8±0,1 |
2,9±0,3 |
|
22. Аміназин |
2,9±0,1 |
3,1±0,2 |
3,1±0,2 |
3,0±0,2 |
|
23. Іміпрамін |
2,0±0,2* |
2,0±0,2* |
2,6±0,1* |
3,1±0,1 |
|
24. Дроперидол |
2,0±0,2* |
1,5±0,1* |
3,0±0,2 |
3,0±0,2 |
|
25. Верапаміл |
2,0±0,2* |
2,2±0,1* |
3,2±0,2 |
2,8±0,2 |
|
26. FMLP**** |
2,5±0,1* |
5,0±0,2* |
6,0±0,2* |
4,0±0,2* |
|
27. Мезатон |
3,8±0,1* |
4,3±0,1* |
3,2±0,1 |
3,5±0,2 |
|
28. Обзидан |
2,5±0,1* |
1,6±0,1* |
3,0±0,2 |
3,0±0,2 |
|
29. Клонідин |
4,8±0,2* |
5,1±0,2* |
4,0±0,2* |
3,1±0,4 |
|
Контроль |
3,1±0,1 |
3,1±0,1 |
3,1±0,1 |
2,9±0,2 |
Примітка. - розбіжності достовірні (Р 0,05) у порівнянні з контролем, ** - 1-(3-трифторметил-феніл)-4,5-дигідро-1Н-піразол-3-іламін, *** - біс-(в-хлоретил)-метатоліламін, **** - форміл-метіоніллейцин-фенілаланін, ***** - коклюшний токсин.
При дії ФАР класу +I/-II на процес хемокінезу ПМЯЛ (табл.2), також спостерігається у більшості випадків достовірне гальмування хемокінетичних властивостей ПМЯЛ, за винятком теофіліну, що достовірно активує цей процес в концентрації 10-6моль/л (p0,05). Ця закономірність зберігається й при вивченні хемотактичних властивостей ПМЯЛ (див.табл.2) за умов активування аденілатциклазної та інгібування Са-мобілізуючої фосфоліпідної клітинних сигнальних систем. При дослідженні впливу ФАР класу -I/+II, необхідно відзначити в більшості випадків достовірну активацію як реакції хемокінезу, так і реакції хемотаксису ПМЯЛ. Виняток складає мезатон, який інгібує процес хемотаксису в концентрації 10-6моль/л (p 0,05).
Таблиця 2. Міграційні властивості ПМЯЛ під впливом ФАР (М±m, n = 4)
Назва ФАР |
Кількість клітин, що проникли в пори фільтруКонцентрація ФАР, моль/л |
|||||||
Хемокінез |
Хемотаксис |
|||||||
10-4 |
10-5 |
10-6 |
10-5 ФАР + 10-7 КТ |
10-4 |
10-5 |
10-6 |
||
1. Атропін |
12,5±0,5 |
5,9±1,3* |
6,5±0,5* |
11,3±1,2 |
30,0±1,5 |
13,9±2,6* |
16,5±1,0* |
|
2. BW-755C |
7,0±0,5* |
7,9±0,8 |
8,2±0,5 |
9,1±0,9 |
17,0±0,5* |
14,5±1,1* |
20,8±0,5 |
|
3. Ембіхін |
5,0±0,5* |
6,0±0,5* |
10,3±2,5 |
8,2±1,2* |
8,0±1,0* |
11,8±0,9* |
21,1±1,5 |
|
4. Теофілін |
12,3±1,0 |
8,7±1,0* |
16,4±2,0* |
14,2±1,0 |
17,8±1,0* |
29,5±1,0 |
29,2±1,5 |
|
5. Кверцетин |
5,0±0,5* |
7,0±0,5* |
6,2±1,0* |
4,3±0,5* |
12,0±0,5* |
13,2±1,5* |
13,0±2,0* |
|
6. Дімедрол |
7,9±1,0* |
8,6±0,5* |
8,6±0,5 |
5,5±0,5* |
9,0±1,0* |
9,2±1,0* |
9,6±1,0* |
|
7. МКДХЕА |
1,0±0,1* |
6,3±0,5* |
7,0±0,5* |
11,5±1,0 |
11,0±0,5* |
11,0±2,0* |
12,0±1,5* |
|
8. Ізадрин |
5,0±1,0* |
12,4±1,5 |
12,0±0,5 |
18,1±0,5* |
17,5±0,5* |
11,2±0,5* |
24,5±1,5 |
|
9. Форидон |
6,0±0,5* |
5,5±1,0* |
1,0±0,1* |
8,8±0,5* |
9,0±0,5* |
8,5±1,0* |
6,5±0,5* |
|
10. Аспірин |
11,0±0,5 |
12,0±1,5 |
12,0±0,5 |
13,0±0,5 |
24,0±0,5 |
24,5±1,0 |
25,0±1,0 |
|
11. Вольтарен |
6,0±0,5* |
7,5±0,5* |
8,0±0,5* |
13,0±1,0 |
6,0±0,5* |
7,3±1,0* |
19,5±0,6* |
|
12. Папаверин |
9,0±1,0 |
11,0±1,0 |
12,0±0,5 |
12,5±0,5 |
24,3±1,0 |
24,5±0,5 |
26,0±1,0 |
|
13. Циклофосфан |
2,0±0,5* |
6,0±1,0* |
3,0±0,5* |
2,0±0,5* |
21,5±0,5 |
17,5±0,5* |
17,0±0,5* |
|
14. Кофеїн |
13,5±0,5 |
13,5±0,5 |
11,0±1,0 |
8,0±1,0* |
29,5±0,5 |
35,5±1,5* |
23,5±0,5 |
|
15. Сульпірид |
12,5±1,5 |
12,5±1,5 |
14,0±1,0 |
12,5±1,0 |
21,0±1,0 |
21,5±1,5 |
21,0±0,5 |
|
16. Нітрендипін |
13,5±0,5 |
10,2±1,5 |
12,5±0,5 |
11,0±0,5 |
15,5±0,5* |
13,4±1,5* |
21,0±0,5 |
|
17. Мілдронат |
8,5±0,5* |
8,0±0,5* |
9,0±1,0 |
11,6±0,5 |
24,3±0,5 |
22,5±2,0 |
22,0±0,5 |
|
18. Йохімбін |
7,5±0,5* |
8,0±0,5* |
9,5±0,5 |
9,6±1,0 |
17,0±1,0* |
18,5±0,5* |
25,5±1,0 |
|
19. Празозин |
9,5±1,0 |
9,5±1,0 |
9,5±0,5 |
10,2±1,5 |
26,5±1,0 |
26,5±1,0 |
27,0±0,5 |
|
20. Галоперидол |
14,1±1,3 |
11,5±1,5 |
11,5±1,0 |
6,0±1,0* |
14,1±2,0* |
20,0±0,5* |
27,5±1,0 |
|
21. Фторацизин |
6,5±0,5* |
10,0±0,5 |
10,0±0,5 |
8,7±1,0* |
26,0±1,0 |
23,0±0,5 |
24,0±1,0 |
|
22. Аміназин |
14,0±0,5 |
10,0±0,5 |
10,0±0,5 |
6,4±0,5* |
28,5±0,5 |
29,5±0,5 |
28,0±1,0 |
|
23. Іміпрамін |
13,0±0,5 |
9,5±0,5 |
12,0±1,0 |
8,1±1,5 |
16,0±0,5* |
14,0±1,0* |
20,8±1,5 |
|
24. Дроперидол |
12,0±1,0 |
10,8±1,0 |
14,0±1,5 |
9,1±1,5 |
18,0±1,0* |
13,6±1,5* |
19,6±1,0* |
|
25. Верапаміл |
11,4±1,0 |
10,3±0,5 |
13,6±1,0 |
10,2±0,5 |
15,5±0,5* |
26,0±2,0 |
25,6±1,0 |
|
26. FMLP |
14,5±0,5 |
16,0±1,0* |
12,0±0,5 |
11,0±0,5 |
19,0±1,5* |
20,0±2,0 |
24,0±2,5 |
|
27. Мезатон |
17,6±1,5* |
23,2±1,0* |
21,0±2,5* |
15,1±0,5 |
48,6±1,0* |
50,4±1,5* |
19,9±1,0* |
|
28. Обзидан |
17,5±1,5* |
21,7±1,3* |
15,5±0,9* |
10,5±0,9 |
25,5±1,0 |
26,6±2,0 |
24,0±1,0 |
|
29. Клонідин |
20,5±0,5* |
24,2±2,3* |
15,0±1,0* |
20,4±0,5* |
33,0±0,5* |
36,5±0,5* |
26,0±0,5 |
|
Контроль |
11,3 ± 1,5 |
11,3 ± 1,5 |
11,3 ± 1,5 |
11,3 ± 1,5 |
26,0 ± 2,5 |
26,0 ± 2,5 |
26,0 ± 2,5 |
Примітка. - розбіжності достовірні (Р 0,05) у порівнянні з контролем.
Аналіз результатів, отриманих при дії ФАР класу +I/-II на агрегацію тромбоцитів (табл.3) показує, що у своїй більшості ФАР цього класу сповільнюють агрегацію тромбоцитів за винятком празозину в концентрації 10-5моль/л, іміпраміну в концентрації 10-5 -10-6моль/л та сульпіриду в концентрації 10-4 моль/л і 10-6моль/л, які достовірно прискорюють вищевказаний процес. У свою чергу, ФАР класу -I/+II або сповільнюють агрегацію тромбоцитів, або не чинять статистично достовірного впливу.
Таблиця 3. Агрегація тромбоцитів під впливом ФАР (М±m, n = 6)
Назва ФАР |
Швидкість агрегації, D/хв*1000Концентрація ФАР, моль/л |
|||
10-4 |
10-5 |
10-6 |
||
1. Атропін |
9,5±0,3 |
7,8±0,2* |
8,9±0,3 |
|
2. BW-755C |
7,0±0,2* |
9,9±0,6 |
10,7±0,5 |
|
3. Ембіхін |
9,7±0,8 |
10,0±0,4 |
11,2±0,2 |
|
4. Теофілін |
8,6±0,7 |
10,1±0,2 |
10,9±0,4 |
|
5. Кверцетин |
9,1±0,4 |
9,8±0,4 |
11,9±0,3 |
|
6. Дімедрол |
9,8±0,4 |
6,5±0,3* |
7,6±0,4* |
|
7. МКДХЕА |
5,8±0,6* |
7,6±0,3* |
7,7±0,6* |
|
8. Ізадрин |
8,3±0,3 |
10,1±0,2 |
9,8±0,4 |
|
9. Форидон |
8,5±0,2 |
9,6±0,4 |
9,0±0,4 |
|
10. Аспірин |
6,3±0,2* |
6,0±0,6* |
6,8±0,1* |
|
11. Вольтарен |
0,3±0,04* |
6,0±0,4* |
7,2±0,5* |
|
12. Папаверин |
4,0±0,2* |
6,0±0,3* |
9,2±0,1 |
|
13. Циклофосфан |
8,5±0,3 |
9,0±0,2 |
9,5±0,4 |
|
14. Кофеїн |
3,4±0,3* |
7,0±0,6* |
10,1±0,4 |
|
15. Сульпірид |
13,5±0,5* |
9,5±0,2 |
12,5±0,3* |
|
16. Нітрендипін |
3,9±0,1* |
9,8±0,3 |
9,3±0,2 |
|
17. Мілдронат |
7,9±0,3* |
8,4±0,5 |
8,4±0,2 |
|
18. Йохімбін |
5,5±0,3* |
7,2±0,1* |
13±0,1* |
|
19. Празозин |
6,1±0,2* |
16,2±0,3* |
10,8±0,1 |
|
20. Галоперидол |
5,0±0,2* |
5,0±0,1* |
9,8±0,2 |
|
21. Фторацизин |
9,9±0,1 |
9,6±0,2 |
9,5±0,2 |
|
22. Аміназин |
1,6±0,1* |
2,3±0,1* |
11,9±0,3 |
|
23. Іміпрамін |
10,9±0,2 |
14,9±0,1* |
14,2±0,2* |
|
24. Дроперидол |
3,3±0,2* |
1,3±0,1* |
5,6±0,2* |
|
25. Верапаміл |
10,6±0,2 |
8,6±0,1 |
8,1±0,2 |
|
26. FMLP |
0,5±0,1* |
3,9±0,2* |
9,9±0,3 |
|
27. Мезатон |
8,8±0,7 |
9,1±0,4 |
10,5±0,3 |
|
28. Обзидан |
7,4±0,5* |
9,9±0,1 |
7,4±0,6* |
|
29. Клонідин |
8,1±0,4 |
10,2±0,7 |
10,5±0,4 |
|
Контроль |
10,1±0,9 |
10,1±0,9 |
10,1±0,9 |
Примітка. * - розбіжності достовірні (Р 0,05) у порівнянні з контролем.
Резюмуючи дані, отримані нами, а також Калашниковою Л.Є. і Прокопенком Р.А., які опубліковані в спільних роботах (Семенюта И.В. и др., 2004) та представлені в їх дисертаціях, при вивченні впливу ФАР на процес електрофорезу нейтрофільних лейкоцитів і наведені в табл.4, необхідно відзначити, що ФАР класу +I/-II у більшості випадків збільшують електрофоретичну рухливість лейкоцитів, а ФАР протилежного класу (-I/+II) - зменшують рухливість клітин в електричному полі.
Таблиця 4. Електрофоретична рухливість лейкоцитів та електростимульовані фазні скорочення гладеньких м'язів органу під впливом ФАР (М±m, n = 4)
Назва ФАР |
Амплітудні значення скорочуваності, мН Концентрація ФАР, моль/л |
Електрофоретична рухливість клітин, (мкм•см /В•с), при концентрації ФАР 10-4 моль/л |
|||
10-6 |
10-5 |
10-4 |
|||
1. Нітрендипін |
5,4±0,2* |
5,0±0,2*1 |
0,6±0,1* |
0,65±0,04* |
|
2. Празозин |
6,1±0,1 |
6,3±0,2 |
5,8±0,1 |
0,61±0,03* |
|
3. Галоперидол |
6,2±0,2 |
6,3±0,2 |
0,9±0,1* |
0,75±0,06 |
|
4. Фторацизин |
5,9±0,2 |
5,9±0,21 |
1,0±0,1*1 |
0,51±0,04* |
|
5. Аміназин |
6,1±0,2 |
6,7±0,3 |
2,3±0,1* |
0,59±0,03* |
|
6. Іміпрамін |
6,0±0,2 |
6,5±0,31 |
1,2±0,1*1 |
0,65±0,06* |
|
7. Дроперидол |
5,9±0,3 |
6,0±0,31 |
1,4±0,2*1 |
0,70±0,04* |
|
8. Верапаміл |
5,4±0,2 |
2,6±0,3*1 |
2,3±0,1* |
0,60±0,03* |
|
9. FMLP |
6,3±0,1 |
6,4±0,2 |
6,5±0,2 |
0,93±0,07* |
|
10. Атропін |
5,8±0,1 |
5,8±0,2 |
5,7±0,2 |
0,59±0,12*1 |
|
11. BW-755C |
6,3±0,21 |
6,3±0,2 |
5,5±0,2* |
0,68±0,04*1 |
|
12. Ембіхін |
5,9±0,2 |
5,8±0,2 |
5,9±0,1 |
0,86±0,111 |
|
13. Теофілін |
5,9±0,1 |
5,7±0,1*1 |
4,9±0,1*1 |
0,55±0,03*1 |
|
14. Кверцетин |
5,8±0,2 |
4,3±0,1*1 |
1,5±0,2*1 |
0,55±0,06*1 |
|
15. Дімедрол |
6,4±0,2 |
6,3±0,1 |
3,7±0,2*1 |
0,66±0,04*1 |
|
16. МКДХЕА |
6,6±0,2 |
7,9±0,3* |
8,5±0,4* |
0,46±0,02*1 |
|
17. Ізадрин |
5,7±0,1*1 |
4,8±0,1*1 |
4,7±0,2*1 |
0,48±0,03*1 |
|
18. Форидон |
0,5±0,1* |
0,45±0,1* |
0,4±0,1* |
0,55±0,04*1 |
|
19. Аспірин |
5,9±0,1 |
5,9±0,2 |
5,7±0,2 |
0,55±0,08*1 |
|
20. Вольтарен |
5,9±0,2 |
6,6±0,2 |
7,7±0,3*1 |
0,82±0,021 |
|
21. Папаверин |
5,8±0,1 |
4,7±0,2*1 |
0,3±0,1*1 |
0,79±0,041 |
|
22. Циклофосфан |
6,3±0,2 |
6,0±0,1 |
6,1±0,2 |
0,43±0,05*1 |
|
23. Кофеїн |
5,8±0,2 |
5,8±0,1 |
5,7±0,1* |
0,72±0,05*1 |
|
24. Сульпірид |
6,5±0,2 |
6,4±0,2 |
6,2±0,2 |
0,76±0,021 |
|
25. Мілдронат |
6,4±0,2 |
6,3±0,1 |
6,1±0,2 |
0,71±0,07*1 |
|
26. Йохімбін |
6,4±0,2 |
5,2±0,2* |
4,5±0,1* |
0,78±0,021 |
|
27. Мезатон |
6,4±0,2 |
7,3±0,2* |
9,0±0,3* |
0,98±0,03*1 |
|
28. Обзидан |
6,3±0,2 |
6,1±0,1 |
4,0±0,1*1 |
1,19±0,07*1 |
|
29. Клонідин |
5,9±0,1 |
6,6±0,1* |
6,9±0,1*1 |
1,28±0,06*1 |
|
Контроль |
6,1±0,1 |
6,1±0,1 |
6,1±0,1 |
0,84±0,03 |
Примітка. - розходження достовірні (Р 0,05) у порівнянні з контролем, 1 - з дисертацій Калашникової Л.Є. та Прокопенка Р.А.
При вивченні впливу ФАР класу +I/-II на електростимульовані фазні скорочення гладеньких м'язів органу (див.табл.4) у більшості досліджень спостерігається зменшення амплітуди скорочення м'язів. Виняток складають МКДХЕА в концентрації 10-4 -10-6 моль/л, вольтарен у концентрації 10-4 -10-5 моль/л, а також аміназин у концентрації 10-5 моль/л, які достовірно підсилюють м'язові скорочення. ФАР класу -I/+II, у свою чергу, у більшості випадків збільшують амплітудні значення скорочуваності гладких м'язів органу, за винятком обзидану в концентрації 10-4 моль/л, який чинить протилежну дію на процес електростимульованих скорочень м'язів (p0,05).
Таким чином, відповідно до одержаних даних, ФАР класу -I/+II у переважній більшості випадків активують функціональні процеси біомоделей, а ФАР протилежного класу - інгібують. Дана закономірність між дією ФАР на трансмембранні сигнальні каскади та отриманими функціональними відгуками модельних систем добре корелює з даними в доступній літературі (Кухарь В.П. и др., 1991). При цьому, той факт, що найбільш інформативними моделями є імунологічні реакції (розеткоутворення Т-лімфоцитів, міграційні властивості ПМЯЛ) та електрофоретична рухливість нейтрофільних лейкоцитів, не є винятком, приймаючи до уваги відомості про чутливість імунокомпетентних клітин до фізичних та хімічних факторів (Прокопенко В.В. и др., 1999). Серед найменш інформативних біомоделей необхідно відзначити агрегацію тромбоцитів та скорочуваність гладких м'язів органу. Важливо відзначити, що як під час дії ФАР класу +I/-II, так і дії ФАР протилежного класу на агрегацію тромбоцитів була отримана парадоксальна реакція, пов'язана зі зниженням швидкості агрегації тромбоцитів в обох випадках, що можна спробувати пояснити використанням тромбіну в якості індуктору агрегації, який за даними літератури є інгібітором Са-мобілізуючої фосфоліпідної системи та блокує дію ФАР класу -I/+II.
Дослідження дії хімічних агентів на клітинні реакції. Результати дослідження впливу катіонів важких металів на процес розеткоутворення Т-лімфоцитів, представлені в табл.5, вказують на достовірне гальмування процесу розеткоутворення при мінімальних концентраціях катіонів, що склали для катіонів Сd2+ і Co2+ - 10-4 ммоль/л, для Zn2+ і Cu2+ - 10-5 ммоль/л і для іонів Pb2+ - 10-6 ммоль/л.
Ці факти, а також літературні дані (Луйк А.И. и др., 1999) дозволяють зробити висновок про досить високу чутливість функціональних реакцій лейкоцитарної популяції клітин крові до важких металів. Отримані дані добре корелюють з результатами впливу фармакологічних агентів на процес розеткоутворення, детально розглянутими раніше, а також підтверджують припущення про значну чутливість лімфоцитів до ксенобіотиків взагалі. Порівнюючи результати дослідження з діючими нормами ГДКв необхідно відмітити, що інгібування процесу розеткоутворення в присутності катіонів Zn2+, Co2+, Cu2+ і Pb2+ спостерігалося в концентраціях на 2-3 порядки нижче діючих норм ГДКв.
Аналіз отриманих результатів методами ШНМ та кластерного аналізу. Для пошуку найбільш інформативних та чутливих біомоделей використовувався метод ШНМ та кластерного аналізу. Для аналізу даних методом ШНМ застосовувалось декілька модифікацій ШНМ: багаторядні ШНМ з прямим розповсюдженням сигналів на основі методу послідовного видалення та методу повного перебору ознак; ШНМ з активними нейронами на основі методу повного перебору ознак та комбінації методу повного перебору з методом ковзаючого контролю та попередньої оптимізації набору ознак послідовним скороченням їхньої кількості. Основною відмінністю між вищевказаними модифікаціями методу ШНМ є те, що в багаторядних ШНМ кількість рядів мережі задається дослідником, а ШНМ з активними нейронами мають активні нейрони, кількість яких задається алгоритмом програми в залежності від поставленого завдання.
Таблиця 5. Розеткоутворення Т-лімфоцитів під впливом катіонів важких металів (М±m, n = 4)
Досліджуваний катіон і його ГДКв, ммоль/л |
Концентрація Ме 2+ у пробі, ммоль/л |
Кількість Т-розеток на 102 клітин |
|
Сd2+ 9·10-5 |
10-4 10-5 10-6 |
220,5* 280,7 271,7 |
|
Zn2+ 1,5·10-2 |
10-3 10-4 10-5 10-6 |
150,3* 210,5* 250,6* 280,8 |
|
Co2+ 1,7·10-2 |
10-3 10-4 10-5 10-6 |
190,4* 230,5* 280,3 280,8 |
|
Cu2+ 1,6·10-3 |
10-3 10-4 10-5 10-6 |
120,3* 220,5* 240,6* 260,6 |
|
Pb2+ 5·10-4 |
10-3 10-4 10-5 10-6 10-7 |
180,4* 200,5* 210,5* 210,5* 270,5 |
|
Контроль |
- |
280,7 |
Примітка. *- розбіжності достовірні (Р<0,05) у порівнянні з контролем.
Оцінка інформативності ознак була зроблена на основі кількості правильно класифікованих ФАР. На наступній стадії досліджень була створена підсумкова таблиця, у якій на основі частоти повторюваності ознак по результатам аналізу ШНМ, оцінювався ступінь їхньої інформативності. На заключному етапі досліджень, для біомоделей, що вивчались, на основі отриманих результатів про інформативність ознак, була розрахована середня інформативність біомоделі, за результатами якої стало можливим об'єктивно зробити оцінку ступеня інформативності тієї чи іншої модельної системи. Розроблений та використаний у роботі алгоритм аналізу даних методом ШНМ представлено на рис.1.
Размещено на http://www.allbest.ru/
Рис.1. Алгоритм аналізу даних методами розпізнавання образів.
Застосування багаторядних ШНМ. На першому етапі аналізу даних використовувався метод послідовного скорочення кількості вхідних ознак. Вибір початкових параметрів та алгоритму навчання ШНМ були проведені з використанням відомих методик та перевірено на ряді теоретичних задач розпізнавання образів. Кількість нейронів на прихованому рівні варіювалась від 2 до 7. В результаті такого аналізу вдалося досягти близько 60 % правильних класифікацій і не завжди вдавалося досягти заданого мінімуму середньоквадратичної помилки (СКП). Низький рівень класифікаційної здатності ШНМ пов'язаний, ймовірно, з недостатньою для даного методу коректністю аналізу та недостатньою інформативністю ознак, використаних для класифікації лікарських препаратів. З цієї причини, на другому етапі аналізу, для підвищення прогнозуючої здатності ШНМ до раніше використаних 18 ознак були додані додатково ще 4, які описують у більш загальному виді вплив ФАР на клітинні сигнальні системи в цілому й окремі компоненти і мали номери 19 - 22. В результаті був сформований набір даних, що містив 22 вхідні ознаки, а в якості вихідних категорій були 2 умовні класи. Для поліпшення класифікаційної здатності, застосовували ШНМ з архітектурою 22-5-2 у вигляді ансамблю з 200 мереж. В результаті аналізу, кількість правильно класифікованих сполук склала 86 % (25 з 29).
Оскільки класифікаційна здатність ШНМ застосовувалася для виявлення найбільш інформативних вхідних ознак, то основними критеріями оцінки інформативності використаних даних були: кількість правильно класифікованих ФАР, а також значення СКП при n-послідовних відкиданнях вхідних ознак. Раціональне використання значення СКП дозволяє досить об'єктивно оцінити класифікаційну здатність ШНМ та робити якісну оцінку інформативності вхідних параметрів. Вхідні ознаки, при відкиданні яких, значення СКП збільшувалося, мають більший внесок при класифікації на фоні інших, відповідно, мають найбільшу інформативність. При навчанні ШНМ на навчальній вибірці та перевірці результатів на контрольній вибірці значення СКП знаходилося в межах Е 0,15. Отримані результати аналізу вказують на те, що значення СКП зменшується після відкидання ознак Х(2, 7, 8, 15, 18), тобто класифікаційна здатність, ШНМ поліпшується, отже, зазначені ознаки є найменш інформативними та зашумлючими вхідний набір ознак. З огляду на той факт, що вхідні ознаки Х(19-22) були додані до вхідного набору і мають певний суб'єктивний відтінок, вони не аналізувалися і надалі не будуть розглядатися. В свою чергу, найбільш інформативними є ті ознаки, при видаленні яких значення СКП збільшується. До цієї категорії відносяться ознаки Х(5, 6, 9, 12, 16, 17).
На наступному етапі використовували метод перебору даних, який включає поперемінне видалення вхідних ознак з одночасним їх аналізом та комбінуванням. На відміну від попередніх досліджень, у даному випадку застосовували перебір вхідних ознак у різних комбінаціях та оцінку СКП класифікаційної здатності. У результаті був отриманий інший набір інформативних ознак Х(3, 6, 7, 14, 15, 18) і зменшене значення СКП до 0,0965. біомодель інформативний активний речовина
Таким чином, в результаті аналізу вхідних ознак багаторядними ШНМ двома модифікаціями було отримано два набори найбільш інформативних ознак № 1 - Х(5, 6, 9, 12, 16, 17) і набір №2 - Х(3, 6, 7, 14, 15, 18). Оскільки ці результати мають деяку неоднорідність, надалі аналіз наявних даних був продовжений ШНМ з активними нейронами.
Використання ШНМ з активними нейронами. Вихідними категоріями, як і в попередній серії досліджень, були умовні 2 класи. Класифікуючу здатність ШНМ оцінювали по кількості правильно згрупованих препаратів, а також за значенням критерію варіації помилки прогнозу - RR. На першому етапі використовували метод повного перебору ознак, який передбачає пошук такої комбінації вхідних параметрів, при якій досягалася б найкраща класифікуюча здатність і найменше значення RR. Цей мінімум (RR=0,47) був знайдений для комбінації з п'яти ознак Х(2, 3, 4, 5, 6, 8, 16, 18). При цьому, класифікуюча здатність ШНМ склала 93 % (27 з 29 препаратів були класифіковані правильно).
На другому етапі досліджень був зроблений повний перебір ознак з використанням методу ковзаючого контролю (МКК), який дозволяє оптимізувати вибір найбільш інформативних ознак та зменшити імовірність помилкових класифікацій. Найменше значення RR= 0,212 було отримано для групи з п'яти ознак Х(3, 4, 5, 6, 8, 18), а також був відзначений кращий результат класифікацій - 93 % (27 з 29 препаратів). Для подальшого підвищення класифікуючої здатності ШНМ, була зроблена оптимізація кількості ознак за допомогою методу послідовного скорочення вхідних параметрів. При цьому, на кожному етапі скорочення класифікація проводилася однорядною мережею та визначалося значення RR. Скорочення вхідного набору ознак продовжувалося до одержання оптимального набору, тобто такого, при якому значення RR було мінімальним. У результаті процесу оптимізації була отримана множина ознак Х( 2, 4, 5, 6, 8, 13, 15, 18), якому відповідає значення RR=0,70381. Далі, для цього набору ознак була побудована ШНМ з активними нейронами, у якій відбувалося збільшення кількості рядів ШНМ до локального зниження RR, якому відповідає значення RR=0,301 та класифікуюча здатність - 90 % (26 з 29 препаратів правильно класифіковані).
У табл.6 наведені результати аналізу ознак методом ШНМ із різними модифікаціями. Для визначення ступеня інформативності в останньому стовпці таблиці представлена інформативність ознак на підставі частоти їхньої повторюваності в результатах аналізу.
Таблиця 6. Результати аналізу набору вхідних ознак багаторядними ШНМ та ШНМ з активними нейронами в різних модифікаціях
Номер ознаки |
Багаторядні ШНМ зі зворотним розповсюдженням помилки |
ШНМ з активними нейронами |
Повторюваність даної ознаки в результатах аналізу, % |
||||
Послідовне видалення |
Повний перебір |
Повний перебір |
Повний перебір + МКК |
Оптимізація набору |
|||
1 |
0 |
||||||
2 |
+ |
+ |
40 |
||||
3 |
+ |
+ |
+ |
60 |
|||
4 |
+ |
+ |
+ |
60 |
|||
5 |
+ |
+ |
+ |
+ |
80 |
||
6 |
+ |
+ |
+ |
+ |
+ |
100 |
|
7 |
+ |
20 |
|||||
8 |
+ |
+ |
+ |
60 |
|||
9 |
+ |
20 |
|||||
10 |
0 |
||||||
11 |
0 |
||||||
12 |
+ |
20 |
|||||
13 |
+ |
20 |
|||||
14 |
+ |
20 |
|||||
15 |
+ |
+ |
40 |
||||
16 |
+ |
+ |
40 |
||||
17 |
+ |
20 |
|||||
18 |
+ |
+ |
+ |
+ |
80 |
Проведений детальний аналіз отриманих результатів (див. табл. 6) показав, що серед найбільш інформативних ознак, у яких відсоток повторюваності в результатах аналізу дорівнює 60-100%, знаходяться наступні ознаки: Х(3, 4, 5, 6, 8, 18). Слід відмітити, що найбільш інформативною є ознака № 6, яка є результатом впливу ФАР у концентрації 10-5 моль/л на хемокінетичні властивості ПМЯЛ. Наступними, за ступенем інформативності, є ознаки № 5 та 18, які представляють собою дію ФАР у концентрації 10-4 моль/л на хемокінетичні властивості ПМЯЛ та електрофоретичну рухливість нейтрофільних лейкоцитів відповідно. Серед найбільш інформативних ознак мають місце також ознаки № 3 і 4, які є результатом впливу ФАР у концентрації 10-6 моль/л і 10-5 ФАР+10-7 КТ моль/л на процес утворення спонтанних Е - розеток Т-лімфоцитів, а також ознака №8, яка є наслідком дії ФАР у концентрації 10-5 моль/л + 10-7 моль/л КТ на процес хемокінезу ПМЯЛ. Серед ознак середньої інформативності знаходяться наступні модельні системи: скорочуваність гладеньких м'язів органу при дії ФАР у концентрації 10-4 - 10-5 моль/л (ознаки № 15 і 16), а також утворення спонтанних Е - розеток Т-лімфоцитів (№ 2) при дії ФАР у концентрації ...
Подобные документы
Загальна характеристика поверхнево активних речовин, їх класифікація, молекулярна будова та добування. Вплив на мікроорганізми, організм людини та живі системи. Роль ендогенних поверхнево активних речовин в регуляції всмоктування поживних речовин.
реферат [177,3 K], добавлен 18.11.2014Застосування ферментів в промисловості. Протеїнази, амілази і амілоглікозидази. Іммобілізовані ферменти. Добування хімічних речовин з біологічної сировини. Добування металів за допомогою біотехнологій. Біогеотехнологія.
реферат [196,6 K], добавлен 04.04.2007Предмет, структура та основні поняття біофізики і біосистем. Об’єкти дослідження фізики клітинних процесів. Жива клітина – основна форма життя. Мембранний транспорт речовин у клітинах. Механізми активного транспорту речовин через біологічні мембрани.
реферат [305,7 K], добавлен 10.02.2011Ознайомлення з результатами фітохімічного дослідження одного з перспективних видів рослин Українських Карпат - волошки карпатської. Розгляд залежності вмісту досліджуваних біологічно активних речовин від виду сировини. Аналіз вмісту фенольних сполук.
статья [23,3 K], добавлен 11.09.2017Оптимізація складу живильних середовищ для культивування продуцентів біологічно активних речовин, способи культивування. Мікробіологічний контроль ефективності методів стерилізації. Методи очищення кінцевих продуктів біотехнологічних виробництв.
методичка [1,9 M], добавлен 15.11.2011Характеристика організації органічних речовин. Молекулярний опис пристрою матерії, його зв’язок з полімерним рівнем структурної організації матерії. Полімерна організація хімічної форми руху матерії як предтеча клітинного рівня біологічної форми руху.
презентация [819,1 K], добавлен 02.11.2014Обмін речовин як основна функція життя. Роль білків у обміні речовин. Значення жирів та вуглеводів у організмі. Водний і мінеральний обмін. Значення води в процесі росту і розвитку дитини. Класифікація та призначення витамінів. Норми та режим харчування.
реферат [34,8 K], добавлен 29.11.2009Травлення як сукупність фізичних, хімічних і фізіологічних процесів для обробки і перетворення харчових продуктів. Характеристика харчових речовин, вивчення процесів обміну білків, жирів та вуглеводів. Значення води і мінеральних речовин у травленні.
реферат [15,7 K], добавлен 26.06.2010Розкриття суті явища транспорту речовин через біологічні мембрани та його ролі в життєдіяльності клітини. Ознайомлення з видами транспорту, з їх механізмами дії - з вбудованими в мембрану транспортними системами, з тим, як регулює мембрана потоки речовин.
реферат [998,3 K], добавлен 11.05.2012Основні відмінності живих систем від неживих. Вивчення характерних рис процесів у живій природі: єдність хімічного складу, обмін речовин, самовідтворення (репродукція), спадковість та мінливість, ріст і розвиток, дискретність, ритмічність, гомеостаз.
реферат [20,9 K], добавлен 11.11.2010Продигіозин - один з декількох вторинних бактеріальних метаболітів у якому метоксибіпірольний фрагмент включений у дипірометиленову структуру. Дослідження впливу концентраційного ряду іонів металів на інтенсивність кольору пігменту у мікроорганізмів.
статья [327,4 K], добавлен 19.09.2017Важкі метали в навколишньому середовищі. Їх хімічні властивості і роль для живої природи. Вплив важких металів на ріст і розвиток рослин. Важкі метали - забруднювачі навколишнього середовища. Межі витривалості навантаження важкими металами.
реферат [28,7 K], добавлен 31.03.2007Дія стресу, викликаного іонами важких металів. Дослідження змін активності гваякол пероксидази та ізоферментного спектру гваякол пероксидази рослин тютюну в умовах стресу, викликаного важкими металами. Роль антиоксидантної системи в захисті рослин.
курсовая работа [1,6 M], добавлен 31.12.2013Управління обміном вуглеводів. Математичний аналіз системи регуляції рівня кальцію в плазмі. Основна модель регуляції обміну заліза у клітинах. Управління обміном білків, жирів і неорганічних речовин. Баланс тепла в організмі. Регуляція температури тіла.
реферат [25,9 K], добавлен 09.10.2010Біосинтез білка. Будова рибосом прокаріотів та еукаріотів. Роль мембран у формуванні клітинних компартментнів. Ароморфози як біологічний процес. Асиметричність плазматичної і внутрішніх мембран клітини. Транспортування речовин через мембрани.
контрольная работа [69,2 K], добавлен 04.11.2010Цілющі властивості рослин у досвіді народної медицини. Лікарські препарати рослинного походження. Біологічна сила рослинних речовин. Вміст вітамінів та мінеральних речовин в овочах та їх застосування в їжу та при лікуванні. Хімічний склад овочів.
реферат [26,0 K], добавлен 27.04.2010Огляд відтворення в штучних умовах особливих технічних систем окремих властивостей і закономірностей біологічної форми руху матерії. Практична спрямованість біоніки як науки. Методи вивчення принципів дії, побудови і функціонування біологічних систем.
реферат [24,9 K], добавлен 14.09.2010Поняття мінеральних речовин та визначення їх необхідності в раціоні людини. Характеристика основних макро- та мікроелементів та їх походження, джерела в харчуванні. Результати нестачі в організмі людини, особливо дитини, даних речовин, їх поповнення.
контрольная работа [31,9 K], добавлен 08.12.2010Зміст та головні етапи процесу формування ґрунту, визначення факторів, що на нього впливають. Зелені рослини як основне джерело органічних речовин, показники їх біологічної продуктивності. Вплив кореневої системи на структуроутворення ґрунтової маси.
реферат [20,8 K], добавлен 11.05.2014Механізми дії регуляторів росту рослин, їх роль в підвищенні продуктивності сільськогосподарських культур. Вплив біологічно-активних речовин на площу фотосинтетичної поверхні гречки, синтез хлорофілів в її листках, формування його чистої продуктивності.
реферат [19,0 K], добавлен 10.04.2011