Везикулярный транспорт. Двигательные органеллы клетки
Изучение постоянных внутриклеточных структур (органелл), их строение и функции. Характеристика строения и жизнедеятельности ресничек и жгутиков. Описание их контактирования с внешней средой и с другими клетками посредством везикулярного транспорта.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.10.2014 |
Размер файла | 25,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Карагандинский Государственный Медицинский Университет
Кафедра молекулярной биологии и медицинской генетики
СРС
на тему: «Везикулярный транспорт. Двигательные органеллы клетки»
Выполнила: Абенова Адель
Студентка 1-063 группы
Проверила: Татина Е.С.
Караганда 2014
Введение
Органеллы -- постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномем-бранным. органелла внутриклеточный везикулярный жгутик
Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы -- эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоли растительных и грибных клеток, пульсирующие вакуоли и др. К немембранным органеллам принадлежат рибосомы и клеточный центр, постоянно присутствующие в клетке Частями клетки называют структуры, которые не покрыты двойной мембранной оболочкой:
1. Рибосомы
2. Клеточный центр (центриоли)
3. Реснички и жгутики
В реферате речь пойдёт о ресничках и жгутиках, об их строении и функциях, и жизнедеятельности.
Для нормальной жизнедеятельности и функционирования клетки, как самостоятельного организма, так и в составе какого-либо органа, необходимо непрерывное её контактирование как с внешней средой, так и с другими клетками. Одним из способов таких контактов и взаимодействий служит везикулярный транспорт. Он обеспечивает транспорт веществ из клетки во внешнюю среду и обратно, секрецию, питание клеток и т.д.
1. Везикулярный транспорт
Синтез белка всегда начинается в цитоплазме. Окончание синтеза происходит в цитоплазме либо на шероховатом эндоплазматическом ретикулуме (ШЭР). Можно условно выделить два пути транспорта белка в клетке: 1. Из цитоплазмы в некоторые органеллы (ядро, пластиды, митохондрии) 2. Большой путь везикулярного транспорта из ШЭР через аппарат Гольджи (АГ) к другим органеллам (лизосомы, пероксисомы) и через секреторные везикулы во внеклеточную среду. Поскольку синтез всех белков начинается в цитоплазме, а конечная локализация каждого белка может быть различна внутри полипептида имеется система сигналов определяющая его транспортный путь. Первичный сигнал определяет путь из цитоплазмы (в ШЭР, в ядро, в митохондрию или в пластиду), вторичный сигнал определяет дальнейшее направление, например, внешняя или внутренняя мембрана митохондрии или матрикс; лизосома, пероксисома или секреторная гранула.
Мистика клеточной компартментализации волновала ученых с давних пор (и волнует до нынешнего времени). Совершенствование световой микроскопии легко и наглядно показало отличие эукариотической клетки от бактерий, однако с развитием электронной микроскопии и технологий подготовки биологических образцов внутренний мир клетки буквально ошеломил ученых своим ювелирным устройством. Пионерами этого удивительного мира стали лауреаты Нобелевской премии по физиологии и медицине 1974 года Альбер Клод,Джордж Паладе и Кристиан Де Дюв, подробно исследовавшие внутреннее устройство клетки. Еще раньше Камилло Гольджи открыл названный его именем аппарат Гольджи, служащий «шлюзом» для секретируемых клеткой белков (он также был удостоен в 1906 году Нобелевской премии по физиологии и медицине). Наконец, в 1999-м году Нобелевская премия была вручена Гюнтеру Блобелю, открывшему сигнальные последовательности в белках, играющие роль «бирок с адресом».
Однако все это оставляло еще один вопрос не отвеченным: как многие молекулы, включая гормоны, транспортные белки и нейротрансмиттеры, столь точно и своевременно доставляются по адресу? Первый луч света на это был пролит работами Паладе, который показал, что такие молекулы упаковываются в пузырьки, «отпочковывающиеся» от эндоплазматического ретикулума (ЭР) и сливающиеся позже с другими мембранами. Но как именно это происходит, и что управляет этим таинственным процессом, оставалось покрытым мраком.
Из одной органеллы в другую перемещение происходит в везикуле или на ее поверхности в виде интегральных белков. Донорый компартмент - органелла от которой отрывается мембрана в составе везикулы, акцепторный компартмент - принимает везикулу. конститутивная секреция - происходит постоянно и не зависит от внешних сигналов. регулируемая секреция - под ПМ происходит накопление пузырьков, которые сливаются с ПМ при наличии внешних сигналов - гормоны, нервы - и повышении конц. Ca2+ до 1мкм ретроградный транспорт - возвращение рецепторных белков и липидов из АГ в Эр - восполнение мембраны ЭР. антероградный транспорт - растворимые грузовые белки двигаются по секреторному пути ЭР. Окаймленные везикулы - покрыты белками, кот узнают и концентрируют специфич. м-ные белки и отделяют м-ну пузырька, формируют решетку и придают форму везикуле: клатриновые, COPI, COPII: Клатриновые везикулы - ~0,1мкм, транспорт из АГ и ПМ,клатрин - 3типа, 3 большие и 3 малые субъединицы формирующие трискелетон - собирающиеся на поверхности м-ны со стороны цитоплазмы в пента- и гексагоны, кот спонтанно формируют сферу. Адаптин - связывает клатрин с м-ной и ловит различные трансм-ные белки в том числе грузовые рецепторы, кот. захватывают р-римые грузовые белки, кот попадают внутрь везикулы. Имеетя по крайней мере 4 типа адаптинов динамин - GTP-аза, р-римый цитоплазматический белок, образует кольцо на отделяющейся клатриновой везикуле - регулирует кол-во клатрина отщепляющееся вместе с м-ной в составе везикулы, ассоциирует другие белки помогающие выпучить м-ну и белки модификаторы липидов, изменяющие локально липидный состав м-ны для выпучивания После отделения везикулы от м-ны клатрин и адипин отделяют шапероны - ATP-азы hsp70 семейства. Ауксилин - прикрепляется к везикуле и активирует АТФ-азу. Т.к кайма формирующейся везикулы сущ. дольше чем кайма отделенной - имеется стабилизирующий механизм. Клатриновая оболочка обеспечивает значительную силу для изгибания м-ны, т.к. везикулы из внутриклеточных компартментов образуются на уже выпученной м-не COP-I - транспорт от АГ и ЭР, 8субъединиц, GTP-белок - фактор рибозилирования АДФ -ARF - транспорт COP-II - транспорт из АГ и ЭР, 5 субъединиц Везикулы мб не только сферические, часто образуются трубчатые везикулы в которых высокое соотношение S/V Образование клатриновых и COP везикул регулируется GTP-связывающими белками, которые могут находится в активном GTP- и неактивном GDP-состоянии Два класса белков обменивают GDP-GTP: GEF-гуанин-нуклеотид-фактор обмена активирует белки заменяя GDF?GTF, GAP- белок активирующий GTP-азы - инактивирует GTP-связывающие белки меняя GTP?GDP. GTP-азы необходимые для сборки окаймленных везикул перед сборкой пузырьков: мономерные GTP-связывающие белки (GTP-азы): ARF-белки - необх для клатриновой и COP сборки на пов-ти м-ны АГ. Sar1 белок, необходим для COPII сборки на на ЭР м-не тримерные (G белки). GTP-азы находятся в цитозоле в неактивном состоянии, перед сборкой GEF встраивается в м-ну ЭР и связывает цитозольный SarI, кот обменивает GDF?GTP. В GTP состоянии SarI встраивается остатком жирной к-ты в м-ну ЭР. Ассоциирует белки об-ки и инициирует отпочковывание везикулы. GTP-азы попавшие в м-ну активируют фосфолипазу D, кот преобразует фосфолипиды в фосфотидную к-ту, что усиливает связывание оболочных белков. Вместе белок-белковые и белок-липидные взаимодействия изгибают м-ну SNARE - белки - отвечают за слияние донорной и акцепторной м-н, более 20, каждая на специфич пов-ти м-ны, трансмембранные белки на пов-ти везикулы - v-SNAR, на пов-ти донора - t-SNAR. Взаимодействуя v- и t-SNAR обвиваются др на друга в транс-SNAR-комплекс, обеспечивающий слияние м-н. SNF-белок разрушает транс-SNAR-комплексы - цитозольный шаперон ATP-аза, использует адаптирующие белки для связывания с комплексом-SNAR Rab-белки - мономерные GTP-азы, более 30, каждая органелла имеет хотя бы один Rab на м-не со стороны цитоплазмы, регулируют стыковку везикул и связывание v-SNAR-ов и t-SNAR-ов необходимых для слияния м-н. В состоянии GDP-не активны, нах в цитозоле, в состоянии GTP-активны и переходят на пов-ть м-ны органеллы или везикулы. В активном состоянии Rap связываются с м-ной липидным якорем и собирают другие белки участвующие в слиянии м-н неактивный Rab-GDP связан с GDI - GDP-диссоциирующий ингибитор. Rab-GDP связывается с GEF-гуанин нуклеотид меняющий фактор, связанный с м-ной донорного компартмента - меняет GDP на GTP. Rab-GTP связывается с м-ной формирующейся везикулы и ассоциирует v-SNARE, которые в составе везикулы транспортируются к органелле и связываются с Rab-эффекторами и t-SNARE, связанными с м-ной акцепторного компартмента и обеспечивают слияние м-н белок органелла Rab1 ЭР и АГ Rab2 цис-АГ Rab3A синаптич везикулы, секрет гранулы Rab4 ранние эндосомы Rab5A ПМ, клатриновые везикулы Rab5C ранние эндосомы Rab6 промежуточный- и транс-АГ Rab7 поздние эндосомы Rab8 секреторные везикулы (базолатеральные) Rab9 поздние эндосомы, trans-АГ Слияние м-н происходит не только при везикулярном транспорте: слияние спермия с яйцом, слияние миобластов во время развития мышечной клетки.
Белки, встроившиеся в мембрану ЭПС и попавшие оттуда в составе везикул в АГ, могут перемещаться на наружную мембрану клетки. Их направление к мембране осуществляется благодаря взаимодействию везикул с микротрубочками цитоскелета и благодаря особым стыковочным белкам, которые обеспечивают слияние везикул с мембраной
Экзоцитоз и трансцитоз
Экзоцитоз есть как у эукариот, так иу прокариот. Экзоцитоз (от греч. ёощ -- внешний и кэфпт -- клетка) у эукариот -- клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с наружной клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клеток эукариот этим способом.
У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство [4].
Экзоцитоз может выполнять различные задачи:
· доставка на клеточную мембрану липидов, необходимого для роста клетки;
· доставка на клеточную мембрану мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки;
· выделение различных веществ из клетки; это могут быть, например, непереваренные остатки пищи у фаготрофных протистов, пищеварительные ферменты у животных с полостным пищеварением, белки межклеточного вещества у животных и материал клеточной стенки у растений, сигнальные молекулы (гормоны или нейромедиаторы).
У эукариот различают два типа экзоцитоза:
1. Кальций-независимый конститутивный экзоцитоз встречается практически во всех эукариотических клетках. Это необходимый процесс для построения внеклеточного матрикса и доставки белков на внешнюю клеточную мембрану. При этом секреторные везикулы доставляются к поверхности клетки и сливаются с наружной мембраной по мере их образования.
2. Кальций-зависимый неконститутивный экзоцитоз встречается, например, в химических синапсах, где служит для выделения нейромедиаторов. При этом типе экзоцитоза секреторные пузырьки накапливаются в клетке, а процесс их высвобождения запускается по определённому сигналу, опосредованному быстрым повышением концентрации ионов кальция в цитозоле клетки. В пресинаптических мембранах процесс осуществляется специальным кальций-зависимым белковым комплексом.
2. Двигательные органеллы клетки
Реснички и жгутики
Электронные микрофотографии показывают, что реснички и жгутики имеют одинаковое внутреннее строение. Реснички-это просто укороченный ва риант жгутиков, и в отличие от жгутиков они чаще всего располагаются группами, а не по одиночке. На поперечных срезах видно, что и другие органеллы состоят из двух центральных фибрилл, окруженных девятью периферическими (рис.1),-так назы ваемая структура «9 + 2». Этот пучок фибрилл-аксонема - окружен мембраной, которая является продолжением плазматической мембраны.
Все периферические фибриллы построены из бел ка тубулина и состоят из микротрубочек А и В.
Каждая А-микротрубочка несет по паре «ручек», образованных другим белком-динеином, который обладает способностью гидролизовать АТФ, т.е. действует как АТФаза. Центральные фибриллы соединены с А-микротрубочками периферических фибрилл при помощи радиальных перекладин.
В месте прикрепления к клетке ресничка или жгутик оканчивается базальным тельцем, которое по строению почти идентично аксонеме (имеет струк туру 9 + 0) и является производным центриоли. От центриоли оно отличается лишь наличием у его основания сложной структуры, названной «колесом со спицами». Как полагают, базальное тельце в процессе формирования ресничек и жгутиков служит матрицей для сборки микротрубочек. Нередко от базального тельца в цитоплазму отходят волокон ца, фиксирующие его в определенном положении. Но хотя реснички и жгутики имеют одинаковый план строения, способы их работы заметно раз личаются.
Жгутик совершает симметричные движения, при этом в каждый данный момент по нему проходит несколько последовательных волн. Бие ние жгутика может происходить в одной плоскости, но (реже) может быть и спиралеобразным, что приводит к вращению организма вокруг своей про дольной оси с одновременным продвижением впе ред по спиральной траектории. У неко торых жгутиконосцев жгутик расположен на перед нем конце тела и как бы тянет животное за собой. На жгутиках такого типа обычно есть мельчайшие боковые выступы-мастигонемы, повышающие эф фективность такого способа локомоции. Чаще жгу тик располагается на заднем конце клетки (как, например, у сперматозоида) и толкает ее вперед.
Биение ресничек асимметрично после быстрого и энергичного удара прямой реснички она изгибается и медленно возвращается в исходное положение. При скоплении большого числа ресни чек необходим какой-то механизм, координирую щий их активность. У инфузории Paramecium эти функции обычно приписывают нейрофанам - нитям, соединяющим базальные тельца. Обычно биение ресничек синхронизовано, так что вдоль тела про бегают волны их активности в одном определенном направлении. Это' называется метахронным ритмом.
Было много споров относительно механизма дви жения самих ресничек или жгутиков. Судя по но вейшим данным, этот механизм в основе своей очень близок к взаимодействию актина и миозина при мышечном сокращении. Как полагают, изгиба ние жгутика связано с присоединением двух динеиновых отростков А-микротрубочек к соседним В-микротрубочкам в периферических фибриллах. При этом происходит гидролиз АТФ, и микро трубочки А и В скользят друг по другу, приводя в движение жгутик. По-видимому, пять перифериче ских фибрилл на одной стороне инициируют перво начальный изгиб, а остальные четыре фибриллы на другой стороне включаются в работу позже, что приводит к возвратному движению жгутика. Радиальные перекладины, препятствуя скольжению, сводят его к локальному изгибанию жгутика. Возможно, что центральные фибриллы проводят сигнал о начале скольжения от базального тельца по всей длине реснички или жгутика. Было показано, что реснички могут работать только в присутствии ионов Mg2+ и что направление биения определяется концентрацией Са2+ внутри клетки. Интересно, что реакция избегания контролируется у парамеции следующим образом: когда инфузория наталкивается на препятствие, направление биения ресничек у нее меняется на противоположное, а затем она возобновляет движение вперед. Такое изменение стимулируется внезапным притоком ионов Са2+ в клетку в результате повышения про ницаемости для этих ионов.
У мелких эукариотических организмов реснички или жгутики широко используются для передвиже ния в воде, проталкивая тело сквозь окружающую вязкую жидкость. Этот способ локомоции может быть эффективным только при очень малых разме рах тела, когда отношение поверхности к объему намного больше, чем у крупных животных. Для последних создаваемая ресничками мощность была бы недостаточной. Однако реснички часто встре чаются внутри тела многоклеточных организмов, где они выполняют ряд важных функций. Они могут прогонять по протокам жидкость, как это происхо дит у кольчатых червей в метанефридиях при удале нии отходов метаболизма. С помощью ресничек перемещаются яйца в яйцеводах млекопитающих и различные материалы по внутренней поверхности органов, например слизь в дыхательных путях, где работа ресничек позволяет удалять частички пыли и другой «мусор». Реснички могут также создавать поток наружной жидкости, из которой некоторые организмы, в том числе парамеция, отфильтровыва ют пищевые частицы (нередко с помощью ресничек иного типа).
Жгутики есть и у некоторых бактерий, но они существенно отличаются от жгутиков эукариот; они более короткие, тонкие и весьма жесткие. Жгутик бактерии - это внеклеточное образование, он не по крыт плазматической мембраной и напоминает от дельную микротрубочку в жгутике эукариот. Он движется за счет силы, развиваемой в месте его прикрепления к бактериальной клетке.
Локомоция эвглены
Локомоторный жгутик расположен на переднем конце тела и тянет животное вперед. Волны движе ния генерируются в самом жгутике, и по мере прохождения этих волн от основания жгутика к его концу их скорость и амплитуда увеличиваются. Работа жгутика заставляет тело эвглены вращаться вокруг своей оси со скоростью около одного оборота в секунду и в то же время обеспечивает продвижение в воде вперед по спирали. За 1 с эвглена может продвинуться на полмиллиметра, что вчетверо больше длины ее тела. С помощью сократимых мионем, которые тянутся через всю клетку, эвглена способна изменять форму своего тела и вместе с тем направление его перемещения. Такое движение на зывают эвгленоидным.
Передвижение парамеции
Реснички, расположенные на поверхности тела ряда ми, бьют назад по диагонали слева направо; при этом парамеция, продвигаясь вперед, вращается вокруг своей продольной оси. В то же время сильное биение ресничек околоротовой воронки заставляет передний конец тела поворачиваться вокруг заднего конца. Реснички работают в метахронном ритме и их активность, возможно, координируется моториу мом - тельцем, связанным нейрофанами (нейроне мами) с базальными тельцами. Парамеция плавает со скоростью около 1 мм/с, т.е. продвигается на четыре длины собственного тела в секунду.
Заключение
Подготовив работу на тему «Везикулярный транспорт. Двигательные органеллы » я поняла, что это очень важный и сложный процесс.
Сложная организация эукариотических клеток требует налаженных механизмов внутриклеточного везикулярного транспорта. Новейшие исследования показали, что механизмы, лежащие в основе таких функционально важных процессов как эндо- и экзоцитоз уникальны и, сохранившись в процессе эволюции, эффективно действуют как в клетке дрожжей, так и в нейроне гиппокампа. Как эндоцитоз лиганд-рецепторного комплекса с поверхности плазматической мембраны, так и транспорт вновь синтезируемых секреторных белков из эндоплазматического ретикулума через цис-, медиал-, транс- Гольджи к поверхности плазматической мембраны осуществляются в везикулах. Транспортные везикулы формируются и отпочковываются от донорной мембраны и после осуществления раунда внутриклеточного транспорта сливаются с акцепторной мембраной. Специализированные белки цитоплазмы покрывают вновь образованные везикулы. Согласно современным представлениям, формирование транспортной везикулы на мембране внутриклеточного компартмента начинается после взаимодействия белков, переносимых везикулой, с трансмембранным рецептором. Изменение структурного состояния связанного рецептора может распознаваться цитоплазматическими белками, которые ассоциируются с мембраной и инициируют образование транспортной везикулы.
Реснички и жгутики идентичны по своему строению, но жгутики длиннее ресничек. Обе эти органеллы представляют собой выросты клеток. Движутся они либо однонаправленно (биение ресничек), либо волнообразно (движения жгутиков). Служат реснички и жгутики как для передвижения отдельных клеток. Строение и принцип работы жгутиков и ресничек совершенно одинаковы. Различия между ними лишь в количестве: обычно на одну клетку приходится один или несколько жгутиков, а ресничек до нескольких тысяч. Жгутики и реснички представляют собой подвижные цитоплазматические отростки, служащие либо для передвижения всего организма (у бактерий, водорослей, грибов, ресничных червей и др.), либо репродуктивных клеток (изогамет, спермиев, зооспор), либо для транспорта частиц и жидкостей (например, реснички у мерцательных клеток слизистой носа и трахеи, яйцеводов и т. д.).
Литература
1. Н. Грин, У. Стаут, Д. Тейлор - Биология
2. Н.Н. Мушкамбаров., С.Л Кузнецов -Молекулярная Биология
Размещено на Allbest.ru
...Подобные документы
Реснички как органеллы, представляющие собой тонкие волосковидные структуры на поверхности эукариотических клеток. Строение и механизм работы ресничек. Субкультуры жгутиков бактерий: филамент, крюк. Траектория движения эвглены. Механизм движения клетки.
реферат [641,4 K], добавлен 19.11.2014Основные органеллы клетки. Цитоплазма - полужидкая среда, в которой находятся ядро клетки и все органоиды, ее состав. Схема строения комплекса Гольджи. Органоиды движения включения (реснички и жгутики). Форма и размеры ядра, его главные функции.
презентация [764,3 K], добавлен 13.11.2014Понятие и физиологическая роль везикулярного транспорта как перемещения макромолекул в составе мембранных пузырьков между компартментами клетки, одного из базовых клеточных процессов. Молекулярные механизмы и этапы формирования и движения пузырьков.
контрольная работа [948,9 K], добавлен 07.02.2017Сущность и функции везикулярного транспорта. Процессы эндоцитоза и экзоцитоза. Образование отщепляющейся вакуоли, ее внутриклеточное перемещение. Транспорт белков через аппарат Гольджи. Механизм биосинтеза и секреции белковых и полипептидных гормонов.
презентация [1,3 M], добавлен 23.11.2013Основные механизмы деятельности клетки. Клетка как единица физиологических процессов обмена. Основные представления о регуляции. Функции клеточных органелл, мембранные системы внутриклеточных органелл. Обмен веществами между клеткой и окружающей средой.
презентация [268,6 K], добавлен 04.02.2016Классификация органелл клетки общего и специального значения. Основные задачи и функции плазмалеммы. Эндоплазматическая сеть, ее строение и структура. Цитоплазматический матрикс, структура микрофиламентов и микротрубочек. Пластинчатый комплекс Гольджи.
презентация [3,4 M], добавлен 16.02.2014Исследование основных фаз процесса образования микротрубочек. Изучение особенностей их строения и функций. Анализ структур, образуемых системой микротрубочек и организующих их центров. Центросома - регулятор хода клеточного цикла в клетках эукариот.
презентация [564,8 K], добавлен 13.04.2013Авторы создания клеточной теории. Особенности архей и цианобактерий. Филогения живых организмов. Строение эукариотической клетки. Подвижность и текучесть мембран. Функции аппарата Гольджи. Симбиотическая теория происхождения полуавтономных органелл.
презентация [1,6 M], добавлен 14.04.2014Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014Расположение и число жгутиков на поверхности клетки бактерии. Направление вращения жгутиков и основные виды таксисов. Количество колец у грамотрицательных и грамположительных бактерий. Локализация структур, ответственных за движение у спирохет.
доклад [2,4 M], добавлен 24.06.2013Характеристика сущности клетки - элементарной единицы строения и жизнедеятельности всех живых организмов (кроме вирусов), обладающей собственным обменом веществ, способной к самостоятельному существованию, самовоспроизведению и развитию. Строение клетки.
реферат [607,1 K], добавлен 13.11.2010Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.
презентация [2,9 M], добавлен 26.11.2013Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.
контрольная работа [69,6 K], добавлен 08.02.2011Клеточные стенки и клеточные мембраны. Состав мембранных липидов. Структура и функции органелл. Природа жирных кислот в мембранных липидах. Особенности строения клеточной стенки у разных организмов. Соотношение различных классов фосфолипидов в мембране.
контрольная работа [642,7 K], добавлен 26.07.2009Клетка как элементарная целостная живая система, основа строения и жизнедеятельности всех животных и растений, общая характеристика химического состава. Знакомство с особенностями строения ядра. Рассмотрение основных функций эндоплазматической сети.
презентация [2,1 M], добавлен 10.12.2013Исследование механических свойств мембран эритроцитов. Структура и функции цитоскелета. Анализ особенностей фибриллярных компонентов цитоплазмы эукариотических клеток. Основные типы фибрилл в составе цитоскелета. Микрофиламенты и промежуточные волокна.
презентация [2,0 M], добавлен 27.11.2012Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.
контрольная работа [1014,7 K], добавлен 04.08.2015Изучение клеточного уровня организации жизни. Сущность и строение эукариотической клетки - открытой системы, связанной с окружающей средой обменом веществ и энергии. Взаимосвязь строения и функций органоидов клеток: цитоплазмы, ядра, лизосом, митохондрий.
презентация [954,6 K], добавлен 26.02.2012Изучение строения и характеристика элементов опорно-двигательного аппарата человека как функциональной совокупности костей скелета, сухожилий и суставов, обеспечивающих двигательные действия. Функции двигательного аппарата: опорная, защитная, рессорная.
контрольная работа [346,0 K], добавлен 06.01.2011Кожные болезни современности. Строение и функции эпидермиса, характеристика его слоев. Анатомия и гистология дермы. Подкожная жировая клетчатка, ее основные функции. Классификация и строение жировой ткани. Структура адипоцита - клетки жировой ткани.
реферат [27,0 K], добавлен 24.09.2013