Особенности проведения нервного импульса. Ясное видение в условиях изменения освещенности
Взаимодействия нейронов: химический синапс. Функциональная организация гладких мышц. Отличия электрических свойств гладкомышечных клеток от нервных и миоцитов скелетных мышц. Механизмы, обеспечивающие ясное видение в условиях изменения освещенности.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 02.11.2014 |
Размер файла | 43,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
- Введение
- Основные взаимодействия нейронов: химический синапс
- Функциональная организация гладких мышц. Основные отличия электрических свойств гладкомышечных клеток от нервных и миоцитов скелетных мышц
- Механизмы, обеспечивающие ясное видение в условиях изменения освещенности
- Большой и малый круг кровообращения
- Обмен углеводов
- Список литературы
Введение
Медико-биологические основы безопасности жизнедеятельности - комплексная дисциплина, изучающая взаимодействие окружающей среды и человека. Она находится на стыке медицины и экологии, объединяя физику, химию, биологию, физиологию, гигиену, токсикологию, медицину труда.
Объект изучения медико-биологических основ безопасности жизнедеятельности - среда обитания, предмет свойства среды, проявляющиеся во влиянии на здоровье человека, а цель - разработка профилактических мероприятий, обеспечивающих сохранение оптимального здоровья человека, долгой творческой активности.
Основные направления при изучении данной дисциплины:
1. Причинно-следственные связи и факторы, порождающие экологически и производственно обусловленные профессиональные заболевания.
2. Предупреждение заболеваний на основе анализа, моделирования и прогнозирования неблагоприятных ситуаций в среде обитания человека.
3. Защита людей от экологически и производственно обусловленных заболеваний за счёт использования защитных инженерных, технических решений, лечебно-профилактических мероприятий.
Основные взаимодействия нейронов: химический синапс
Для взаимодействия между нейронами существуют специализированные участки мембраны, расположенные как на теле клетки, так и на ее отростках - синапсы, имеющие характерное строение. Через синапсы происходит основной обмен информацией внутри нервной системы и осуществляется взаимодействие нейронов с другими органами. Нейрон может иметь от 1000 до 10000 синапсов и получать информацию от 1000 других нейронов.
Существуют простые - электрические синапсы, которые передают однозначный сигнал, и сложные - электрохимические синапсы, обладающие большей информационной ценностью, поскольку используют различные медиаторы. Каждый электрохимический синапс состоит из нескольких элементов: пресинаптической мембраны, где происходит выделение медиатора передачи нервного возбуждения, синаптической щели и постсинаптической мембраны с избирательной чувствительностью к медиаторам нервного возбуждения.
В типичном случае синапсы образуются между аксоном одной клетки и дендритом другой (аксодендритные синапсы). Существуют и другие типы синаптических контактов: между аксоном и аксоном (аксо-аксональные), аксоном и телом клетки (аксосоматические), дендритом и дендритом (дендродендритные), дендритом и телом клетки (дендросоматические).
Основная функция межнейронных синапсов и нервно-мышечных соединений состоит в передаче импульсов от рецепторов к эффекторам. Проведение нервного импульса имеет следующие особенности:
1. Однонаправленность передачи - нервные импульсы передаются только от пресинаптической мембраны к постсинаптической мембране, что обусловлено строением химического синапса. Таким образом, синапс работает по принципу клапана, что обеспечивает надежность работы нервной системы.
2. Усиление - так как мембраны пре - и постсинаптической области отделены друг от друга синаптической щелью, электрическая передача возбуждения практически невозможна из-за значительной потери тока во внеклеточной среде, поэтому химическая передача представляет собой необходимый усиливающий механизм, что повышает чувствительность системы.
3. Адаптация, или аккомодация - при непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены, тогда дальнейшая передача им сигналов тормозится. Это предотвращает повреждение эффекторов вследствие перевозбуждения.
4. Интеграция - постсинаптический нейрон может получать сигналы от большого числа возбуждающих и тормозных пресинаптических нейронов. Это явление называется синаптической конвергенцией. При этом постсинаптический нейрон способен суммировать сигналы от всех пресинаптических нейронов.
5. Дискриминация - временная суммация в синапсе позволяет отфильтровывать слабые импульсы прежде, чем они достигнут мозга.
6. Торможение - передача сигналов через синапсы и нервно-мышечные соединения может затормаживаться определенными блокирующими агентами. Наблюдается пресинаптическое торможение и постсиниптическое торможение. Такое устройство позволяет изменять воздействие данного пресинаптического нейрона с помощью сигналов.
Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.
Функциональная организация гладких мышц. Основные отличия электрических свойств гладкомышечных клеток от нервных и миоцитов скелетных мышц
Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию - создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке. Важнейшую роль выполняют гладкие мышцы в системе кровообращения и лимфообращения - изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах. Гладкие мышцы могут существенно влиять на функцию связочного аппарата, т. к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры.
Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении - расслабляется. В периоды состояния относительного покоя величина мембранного потенциала в среднем равна - 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала величиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжительность ПД 50-250 мс; встречаются ПД различной формы. В некоторых гладких мышцах, например мочеточника, желудка, лимфатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках миокарда. Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участвующего в последующем в активации сократительных белков гладкомышечных клеток. Ионная природа ПД гладкой мышцы определяется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропускают не только ионы Са2+, но и другие двухзарядные ионы (Bа 2+, Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокирование кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и тонуса сосудов при лечении больных гипертонической болезнью.
Автоматия. ПД гладких мышечных клеток имеют авторитмиче¬ский (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в раз¬личных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроиз¬вольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.
Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.
Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.
Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.
В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин - рецептивный белок для иона Са2+). Возникающий комплекс активирует ферменткиназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является присоединение Са2+ к тропонину.
Механизмы, обеспечивающие ясное видение в условиях изменения освещенности
В условиях изменения освещенности ясное видение обеспечивается зрачковым рефлексов, темновой и световой адаптацией.
Светоощущение - это способность зрительного анализатора воспринимать свет и различать степени его яркости. При исследовании светоощущения определяют способность различать минимальное световое раздражение - порог раздражения - и улавливать наименьшую разницу в интенсивности освещения - порог различения.
Процесс приспособления глаза к различным условиям освещения называется адаптацией. Различают два вида адаптации: адаптацию к темноте при понижении уровня освещенности и адаптацию к свету при повышении уровня освещенности.
Каждому известно, насколько беспомощным чувствуешь себя, попадая из ярко освещенного помещения в темное. Только спустя 8-10 мин начинается различение плохо освещенных предметов, а для того чтобы достаточно свободно ориентироваться, требуется еще по крайней мере 20 мин, пока зрительная чувствительность в темноте достигает необходимой для этого степени. При темновой адаптации увеличивается чувствительность к свету, максимальная адаптация наблюдается через час.
Обратный процесс адаптации к высокому уровню освещенности протекает намного быстрее, чем адаптация к темноте. При адаптации к свету понижается чувствительность глаза к световому раздражителю, она длится около 1 мин. По выходе из темного помещения зрительный дискомфорт исчезает уже спустя 3-5 мин. В первом случае - в процессе темновой адаптации проявляется скотопическое зрение, во втором, при световой адаптации - фотопическое.
Зрительная система адекватно реагирует как на быстрые, так и на медленные перепады лучистой энергии. Причем для нее характерна практически мгновенная реакция на быстро изменяющуюся обстановку. Светочувствительность зрительного анализатора столь же вариабельна, сколь разнообразны характеристики световых раздражителей окружающего нас мира. Необходимость адекватно воспринимать энергию как очень слабых, так и очень сильных источников света, не подвергаясь структурным повреждениям, обеспечивается способностью к перестройке режима работы. рецепторов. На ярком свету световая чувствительность глаза снижается, но вместе с тем обостряется реакция на пространственную и временную дифференцировку объектов. В темноте весь процесс происходит наоборот. Этот комплекс изменений как светочувствительности, так и разрешающей способности глаза в зависимости от внешней (фоновой) освещенности называют зрительной адаптацией.
Скотопически адаптированная сетчатка максимально чувствительна к световой энергии самого низкого уровня, но при этом резко снижается ее пространственная разрешающая способность и исчезает цветоощущение. Фотопически адаптированная сетчатка, будучи низкочувствительной для различения слабых источников света, вместе с тем обладает высокой пространственной и временной разрешающей способностью, а также цветоощущением. По указанным причинам даже в безоблачный день блекнет луна и гаснут звезды, а ночью без подсвечивания мы теряем способность читать текст, набранный даже крупным шрифтом.
Диапазон освещенности, в пределах которого осуществляется зрительная адаптация, огромен; в количественном выражении он измеряется от миллиарда до нескольких единиц.
Рецепторы сетчатки обладают очень высокой чувствительностью - они могут раздражаться одним квантом видимого света. Это связано с действием биологического закона усиления, когда после активации одной молекулы родопсина сотни его молекул активируются. Кроме того, палочки сетчатки организованы в крупные функциональные единицы при слабом освещении. Импульс от большого количества палочек конвергирует в биполярные, а затем в ганглиозные клетки, вызывая эффект усиления.
По мере увеличения освещенности сетчатки зрение, определяемое в основном палочковым аппаратом, сменяется колбочковым зрением, причем максимум чувствительности сдвигается в направлении от коротковолновой к длинноволновой части спектра. Этот феномен, описанный Пуркинье еще в XIX в., хорошо иллюстрируется бытовыми наблюдениями. В букете из полевых цветов в солнечный день выделяются желтые и красные маки, в сумерках - синие васильки (сдвиг максимума чувствительности от 555 до 519 нм).
Светочувствительность максимально высока у 20-летних и после этого возраста начинает снижаться, достигая к старости минимальных значений. Понижение темновой адаптации является симптомом некоторых глазных и общих заболеваний.
Адаптация - это приспособление глаза к данным условиям освещения и изменение в соответствии с этим чувствительности глаза. Различают адаптацию темновую, световую и цветовую (хроматическую).
Темновая адаптация - повышение чувствительности глаза к свету в условиях малой освещенности. После яркого солнечного света в темном подвальном помещении сначала ничего не видно, но спустя несколько минут мы начинаем постепенно различать предметы. В помещении не стало светлее, но повысилась чувствительность сетчатой оболочки к свету, глаз адаптирован к слабому освещению.
При длительном наблюдении за темновой адаптацией обнаруживается постоянное повышение чувствительности сетчатки к свету, которая может быть выражена и количественно. По истечении 24 ч, например, чувствительность в 5,5 раза больше чувствительности, зарегистрированной через час после начала процесса адаптации.
Световая адаптация - снижение чувствительности глаза к свету в условиях большой освещенности. Если из темного помещения выйти на дневной свет, то в первый момент свет ослепляет глаза. Приходится закрыть глаза и смотреть через узкую щелочку. Лишь спустя несколько минут глаз привыкает опять к дневному свету. С одной стороны, это достигается благодаря зрачку, который при сильном свете суживается, а при слабом расширяется. С другой стороны (главным образом), это обеспечивается чувствительностью сетчатой оболочки, которая при сильном световом раздражении понижается, а при слабом возрастает.
При темновой или световой адаптации глаз никогда не достигает полной способности зрительного восприятия. Поэтому на рабочем месте следует избегать резких световых контрастов и тем самым по возможности исключать необходимость переадаптации глаза, поскольку она снижает остроту зрения.
Глаз всегда фиксирует наиболее светлые пятна. Если в поле зрения человека находится сильный источник света или ослепительно яркая плоскость, то они оказывают наиболее сильное действие на чувствительность сетчатой оболочки глаза. Поэтому, когда мы смотрим на светлое окно, окружающая его поверхность стены кажется нам темной и расплывчатой. Если же исключить действие падающего из окна света на глаз, то та же поверхность видится нами более светлой и четкой.
Большой и малый круг кровообращения
Большой (системный) круг кровообращения.
Структура.
Начинается из левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, в результате кровоток распределяется согласно сегментарному строению по сосудистым сетям, обеспечивая подачу кислорода и питательных веществ всем органам и тканям. Дальнейшее деление артерий происходит на артериолы и капилляры. Общая площадь поверхности всех капилляров в организме человека примерно 1500 м2. Через тонкие стенки капилляров артериальная кровь отдаёт клеткам тела питательные вещества и кислород, а забирает от них углекислый газ и продукты метаболизма, попадает в венулы становясь венозной. Венулы собираются в вены. К правому предсердию подходят две полые вены: верхняя и нижняя, которыми заканчивается большой круг кровообращения. Время прохождения крови по большому кругу кровообращения составляет 23-27 секунд.
Особенности кровотока:
Венозный отток от непарных органов брюшной полости осуществляется не напрямую в нижнюю полую вену, а через воротную вену (сформированную верхней, нижней брыжеечными и селезёночной венами). Воротная вена, войдя в ворота печени (отсюда и название) вместе с печёночной артерией делится в печёночных балках на капиллярную сеть, где кровь очищается и только после этого по печёночным венам поступает в нижнюю полую вену.
Гипофиз также обладает воротной или "чудесной сетью": передняя доля гипофиза (аденогипофиз) получает питание из верхней гипофизарной артерии, которая распадается на первичную капиллярную сеть, контактирующую с аксовазальными синапсами нейросекреторных нейронов медиобазального гипоталамуса, вырабатывающих рилизинг-гормоны. Капилляры первичной капиллярной сети и аксовазальные синапсы образуют первый нейрогемальный орган гипофиза. Капилляры собираются в портальные вены, которые идут в переднюю долю гипофиза и там повторно разветвляются, образуя вторичную капиллярную сеть, по которой рилизинг-гормоны достигают аденоцитов. В эту же сеть секретируются тропные гормоны аденогипофиза после чего капилляры сливаются в передние гипофизарные вены, несущие кровь с гормонами аденогипофиза к органам-мишеням. Поскольку капилляры аденогипофиза лежат между двумя венами (портальной и гипофизарной), они относятся к "чудесной" капиллярной сети. Задняя доля гипофиза (нейрогипофиз) получает питание из нижней гипофизарной артерии, на капиллярах которой образуются аксовазальные синапсы нейросекреторных нейронов - второй нейрогемальный орган гипофиза. Капилляры собираются в задние гипофизарные вены. Таким образом, задняя доля гипофиза (нейрогипофиз) в отличие от передней (аденогипофиз) не производит собственных гормонов, а депонирует и секретирует в кровь гормоны, вырабатывающиеся в ядрах гипоталамуса.
В почках также существуют две капиллярные сети - артерии разделяются на приносящие артериолы капсулы Шумлянского-Боумена, каждая из которых распадается на капилляры и собирается в выносящую артериолу. Выносящая артериола доходит до извитого канальца нефрона и повторно распадается на капиллярную сеть.
Лёгкие также имеют двойную капиллярную сеть - одна принадлежит большому кругу кровообращения и питает лёгкие кислородом и энергией, забирая продукты метаболизма, а другая - малому кругу и служит для оксигенации (вытеснения из венозной крови углекислого газа и насыщения её кислородом).
Сердце также имеет собственную сосудистую сеть: по венечным (коронарным) артериям в диастолу кровь попадает в сердечную мышцу, проводящую систему сердца и так далее, а в систолу через капиллярную сеть выдавливается в коронарные вены, впадающие в коронарный синус, открывающийся в правое предсердие.
В малом кругу кровообращения венозная кровь идёт по артериям, а артериальная - по венам.
Функции:
Кровоснабжение всех органов организма человека, в том числе лёгких.
Малый (лёгочный) круг кровообращения.
Структура:
Начинается в правом желудочке, выбрасывающем венозную кровь в лёгочный ствол. Лёгочный ствол делится на правую и левую лёгочные артерии. Лёгочные артерии дихотомически делятся на долевые, сегментарные и субсегментарные артерии. Субсегментарные артерии делятся на артериолы, распадающиеся на капилляры. Отток крови идет по венам, которые собираются в обратном порядке и в количестве четырёх штук впадают в левое предсердие, где заканчивается малый круг кровообращения. Кругооборот крови в малом круге кровообращения происходит за 4-5 секунд.
Малый круг кровообращения впервые был описан Мигелем Серветом в XVI веке в книге "Восстановление христианства". Лезгин.
Функции:
Основная задача малого круга газообмен в лёгочных альвеолах и теплоотдача.
Обмен углеводов
Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. К углеводам относят соединения, обладающие разнообразными и зачастую сильно отличающимися функциями. Углеводы участвуют во многих метаболических процессах, но прежде всего они являются основными поставщиками энергии. На долю углеводов приходится примерно 75 % массы пищевого суточного рациона и более 50 % от суточного количества необходимых калорий. Однако неправильно сводить функцию углеводов только к энергетическому обеспечению процессов жизнедеятельности организма. Следует отметить и структурную роль углеводов. Так, в виде гликозаминогликанов углеводы входят в состав межклеточного матрикса. Большое число белков (ферменты, белки-транспортёры, белки-рецепторы, гормоны) - гликопротеины, углеводная составляющая которых повышает их специфичность. Например, различия в строении олигосахаридных фрагментов клеточной оболочки эритроцитов обеспечивают групповую принадлежность крови. Из углеводов в процессе метаболизма образуется большое число органических соединений, которые служат исходными субстратами для синтеза липидов, аминокислот, нуклеотидов. Производные углеводов - глюкурониды - участвуют в детоксикации ксенобиотиков и инактивации веществ эндогенного происхождения. Углеводы могут быть синтезированы в организме с использованием других метаболитов: некоторых аминокислот, глицерина, молочной кислоты. Углеводы нельзя считать незаменимыми компонентами пищи. Однако если исключить углеводы из диеты, то следствием может быть гипогликемия, для компенсации которой будут расходоваться белки и липиды. Таким образом, углеводы - обязательные пищевые компоненты, потому что помимо их основной энергетической функции (клеточные "дрова") углеводы участвуют во многих метаболических клеточных процессах.
Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии.
Функции углеводов в организме:
Углеводы являются непосредственным источником энергии для организма.
Участвуют в пластических процессах метаболизма.
Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.
Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.
Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза).
Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза).
Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).
нейрон химический синапсис освещенность
В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.
В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.
Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом "депо".
В организме происходит постоянное использование глюкозы различными тканями. Одним из главных потребителей глюкозы являются скелетные мышцы. Расщепление в них углеводов осуществляется с использованием аэробных и анаэробных реакций. При преобладании анаэробных реакций метаболизма глюкозы в мышцах накапливается большое количество молочной кислоты.
Суточная потребность организма в углеводах - не менее 100-150 г. Депо глюкозы (гликоген) в печени, мышцах в среднем 300-400 г.
При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.
Список литературы
1. Савельев А.В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // Искусственный интеллект. - НАН Украины, Донецк, 2006. - № 4. - С.323-338
2. Грегори Р.Л. Глаз и мозг: психология зрительного восприятия. - М.: Прогресс, 1970
3. Николаева Е.И. Психофизиология. - Персэ, Логос, 2003
4. Психофизиология/ под ред. Александрова Ю.И. - СПб.: Питер, 2003
5. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшей нервной деятельности. - М.: ADEMA, 2003
6. Ноздрачев А.Д., Баженов Ю.И., Баранникова И.А. и др. Общий курс физиологии человека и животных. . Проверено 16 июля 2012. Архивировано из первоисточника 5 августа 2012.
Размещено на Allbest.ru
...Подобные документы
Зрительный анализатор как совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения. Функции и механизмы, обеспечивающие ясное видение в различных условиях. Цветовое зрение, зрительные контрасты и последовательные образы.
контрольная работа [2,2 M], добавлен 27.10.2010Виды мышечных волокон: скелетные, сердечные и гладкие. Функции скелетных и гладких мышц, изометрический и изотонический режимы их сокращения. Одиночное и суммированное сокращения, строение мышечного волокна. Функциональные особенности гладких мышц.
контрольная работа [1,4 M], добавлен 12.09.2009Свойства и особенности гладких мышц. Сократимость и рефрактерность мышц. Медленная циклическая активность акто-миозиновых мостиков. Особенности молекулярных механизмов, лежащих в основе сокращений гладких мышц. Пути активации сократительного аппарата ГМК.
лекция [3,5 M], добавлен 25.09.2012Строение и функции суставов, позвоночника, скелетных мышц. Основные группы мышц и особенности их работы. Возрастные изменения костно-мышечной системы. Последствия гиподинамии, ключевые фазы и виды работоспособности человека. Проблема снятия переутомления.
реферат [53,9 K], добавлен 14.01.2014Исследование структуры и функционального значения мышц. Анализ современных представлений о мышечном сокращении и расслаблении. Виды мышечной ткани. Скорость проведения возбуждения в скелетных мышцах. Физиологические свойства мышц. Мышечное утомление.
презентация [1,3 M], добавлен 27.04.2015Произвольные и непроизвольные мыщцы. Отведение и вращение внутрь – основные функции мышц. Свойства мышечной ткани: возбудимость, сократимость, растяжимость, эластичность. Функции скелетных (соматических) мышц. Особенности мышц синергистов и антагонистов.
презентация [789,0 K], добавлен 13.12.2010Значение мышечной системы в жизнедеятельности организма человека. Строение скелетных мышц, основные группы и гладкие мышцы и их работа. Характеристика основных групп скелетных мышц. Возрастные особенности мышечной системы. Мышцы руки, кисти и голени.
презентация [1,9 M], добавлен 11.12.2014Особенности физиологии мышечной системы. Проведение потенциала действия (ПД) по нерву, его передача через синапс. Синаптическая щель, медиатор (химический посредник). Скелетные (поперечно-полосатые) и гладкие мышцы. Шаговый механизм мышечных сокращений.
презентация [640,8 K], добавлен 29.08.2013Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.
презентация [4,1 M], добавлен 09.12.2013Изучение взаимодействия нейронов между собой и нервными клетками. Электрические процессы на постсинаптической мембране. Строение химических синапсов. Особенности формирования и распространения быстрых и медленных электрических потенциалов медиаторов.
контрольная работа [374,5 K], добавлен 19.08.2015Строение и типы мышц. Изменение макро- и микроструктуры, массы и силы мышц в разные возрастные периоды. Основные группы мышц, их функции. Механизм мышечного сокращения. Формирование двигательных навыков. Совершенствование координации движений с возрастом.
реферат [15,6 K], добавлен 15.07.2011Уникальные свойства нервных клеток, их развитие под влиянием генетических факторов и условий среды. Образование периферической нервной системы и ее формирование в раннем периоде. Образование предшественников нервных клеток и глии, миграция нейронов.
реферат [1,1 M], добавлен 31.10.2009Зависимость состояния нервного центра от взаимодействия нейронов. Основные виды состояния нейронов. Понятие функционального состояния центральной нервной системы, особенности его формирования. Активирующие структуры, принципы их функционирования.
презентация [259,5 K], добавлен 05.01.2014Изучение особенностей строения и функций мышц - активной части двигательного аппарата человека. Характеристика мышц туловища, фасций спины (поверхностных и глубоких), груди, живота, головы (мышцы лица, жевательные мышцы). Физиологические свойства мышц.
реферат [45,4 K], добавлен 23.03.2010Открытие Линды Бак и Ричарда Акселя. План организации и общие принципы строения обонятельной системы, ее возрастные изменения и патологии. Структура лимбической системы. Обновление нервных клеток. Механизм работы рецепторов обонятельного эпителия.
курсовая работа [1,2 M], добавлен 16.01.2014Механизм передачи нервных импульсов от одной клетки организма другой, значение синапса в данном процессе. Природа синапсов и их разновидности. Метод Гольджи и его роль в изучении строения нервных клеток. Выделение медиатора при химическом синапсе.
реферат [65,0 K], добавлен 08.08.2009Основы функционирования нейронов и глии. Нейрон как структурно-функциональная единица центральной нервной системы человека и общие принципы функционального объединения нейронов. Анатомическое и функциональное понятие о нервных центрах человека.
учебное пособие [998,4 K], добавлен 13.11.2013Взаимосвязи в простых нервных системах, сложные нейронные сети и высшие функции мозга. Строение сетчатки и связи нейронов, тело клетки, дендриты, аксоны. Методы идентификации нейронов и прослеживание их связей. Клеточная и молекулярная биология нейронов.
реферат [363,0 K], добавлен 24.10.2009Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.
лекция [44,4 K], добавлен 27.07.2013Схожесть и отличия прокариотических и эукариотических клеток. Строение муреина у бактерий. Характеристика микроорганизмов по способам питания. Химическое строение, структурная организация вирусов, морфология, особенности взаимодействия с клеткой-хозяином.
шпаргалка [3,2 M], добавлен 23.05.2009