Генетические теории определения пола
Хромосомная теория определения пола. Половые типы дрозофилы согласно балансовой теории. Типы интерсексуальности. Модификационная изменчивость. Сравнительная характеристика наследственной и ненаследственной изменчивости. Репликации хромосом эукариот.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 05.11.2014 |
Размер файла | 108,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки, молодежи и спорта Украины
Харьковский Национальный Университет имени В.Н. Каразина
КОНТРОЛЬНАЯ РОБОТА
по предмету: Генетика
Подготовила: студентка 3 курса
заочного отделения
биологического факультета
Бровач О.С.
Харьков 2014
Блок 1. Генетические теории определения пола. Гинандроморфизм. Интерсексуальность
1.1 Генетические теории определения пола
Хромосомная теория определения пола. В 1901 году при изучении хромосомных наборов половых клеток самцов и самок было установлено, что они различаются одной парой хромосом. Хромосомы этой пары были названы половыми, а остальные хромосомы, одинаковые у самцов и самок, аутосомами. У большинства организмов, в том числе животных и человека, в кариотипе самок содержится две одинаковые хромосомы, которые обозначают буквой X. У самцов имеется Х-хромосома и отличная от нее хромосома, обычно меньшего размера, которая обозначается буквой У. Таким образом, генотип самок по половым хромосомам будет XX, а генотип самцов - ХУ. Кроме такого типа определения пола, в природе встречаются и другие. Например, у птиц генотип самцов XX, а у самок содержится на одну хромосому меньше. Их генотип записывают обычно ХО или Х-. У пчел, ос и близких им видов пол зависит от количества хромосом. Самки имеют диплоидный набор хромосом - 2n, а самцы - гаплоидный n. У особей женского пола в процессе гаметогенеза образуется только один сорт гамет, несущий Х-хромосому. Поэтому этот пол называют гомогаметным, У самцов образуется два типа гамет, несущих X и У-хромосомы, и такой пол называется гетерогаметным, В связи с этим пол потомства будет зависеть от гетерогаметных особей, которыми у животных и человека являются самцы. Эта теория наглядно объясняет одинаковую вероятность рождения в природе самцов и самок.
Существует несколько типов определения пола.
1. Прогамный - до оплодотворения, по строению мужских и женских гамет.
2. Сингамный - генетическое определение пола при оплодотворении, которое зависит от характера сочетания половых хромосом либо от соотношения половых хромосом и аутосом.
3. Эпигамный - формируется под влиянием внешней среды.
К сингамному типу определения относится хромосомное определение пола с генетическим контролем. Ответственные за пол хромосомы назвали половыми. Нормальная мужская гамета несет либо Х либо Y-хромосому, а все яйцеклетки - Х-хромосому. В случае нормального расхождения хромосом при мейозе образуются нормальные яйцеклетки и сперматозоиды с обычным набором хромосом Х и Y. Пол зиготы определяется по соотношению хромосом в гамете. При этом различают гомогаметный и гетерогаметный пол. У гомогаметного пола одинаковые половые гаметы. Например, у млекопитающих, дрозофилы гомогаметный женский пол - ХХ. У птиц, рептилий, насекомых (бабочки) гомогаметным является мужской пол ZZ.
Хромосомная теория пола Корренса (1907) заключается в том, что пол определяется сочетанием половых хромосом при оплодотворении. Различают следующие типы хромосомного определения пола: ХY, ХО, ZW, ZO.
Хромосомное определение пола.
Типы хромосомного определения пола |
Генотипы |
типы гамет |
|||
Гетерогаметность мужского пола |
|||||
Прямокрылые насекомые (клопы Protenor, жуки, пауки, кузнечики) |
ХО |
ХХ |
Х, О |
Х |
|
Дрозофилы |
XY |
XX |
X,Y |
X |
|
Позвоночные (млекопитающие, человек) |
XY |
XX |
X,Y |
X |
|
Гетерогаметность женского пола |
|||||
Птицы, рыбы, бабочки, шелкопряд, рептилии, земноводные |
ХХ |
ХY |
Х |
Х,Y |
|
Моли и другие беспозвоночные |
ХХ |
ХО |
Х |
Х, О |
При нарушении течения митоза или мейоза могут образовываться особи-гинандоморфы. Содержание половых хромосом в разных клетках таких особей может быть разное (мозаичное). Случаи мозаицизма: ХХ/ХХХ, XY/XXX; XO/XXY и др.
При не расхождении половых хромосом в гаметогенезе возможны их комбинации, что является причиной хромосомных аббераций у человека.
+ > |
Х |
ХХ |
О |
|
X |
XX |
XXX |
XO |
|
Y |
XY |
XXY |
YO |
|
XY |
XXY |
XXXY |
XYO |
|
O |
XO |
XX |
O |
В случае нерасхождения половых хромосом при мейозе образуются гаметы ХХ и О у самок, а так же ХY и О - у самцов. При участии их в оплодотворении формируются зиготы с необычным сочетанием половых хромосом. У человека такие аномалии встречаются 1 на 600-700 новорожденных. Зигота YО погибает на ранней стадии; особи ХХХ, ХХY, ХО - жизнеспособны. Избыток Х-хромосом вызывает конституциональные аномалии и дефекты интеллекта.
Но в природе встречаются особи, у которых Y хромосома генетически инертна и не оказывает особого влияния на определение пола. Так у дрозофилы обнаружены особи типа ХО, которые были самцами, но бесплодны, а особи ХХY - нормальные плодовитые самки.
Балансовая теория определения пола. Исследования на дрозофиле, проведенные учеником Т.Моргана К. Бриджесом, показали, что простой, на первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х-хромосома направляет развитие особи в сторону женского пола, однако У-хромосома у дрозофилы не влияет на пол. О том, что У-хромосома не оказывает никакого влияния на развитие пола у дрозофил, свидетельствует следующий факт. Можно получить мух с набором половых хромосом ХХУ; такие мухи будут настоящими плодовитыми самками, несмотря на наличие У-хромосомы. К.Бриджес скрещивал триплоидных (XXX) самок с нормальными самцами. В результате этого скрещивания он получил разнообразное потомство, наряду с нормальными самками и самцами были особи с отклонениями в формировании их половой системы.
Половые типы дрозофилы согласно балансовой теории
Число Х-хромосом |
Число наборов аутосом |
Половой индекс(Х:А) |
Пол организма |
|
3 |
2 |
1,5 |
сверхсамка |
|
2 |
2 |
1,0 |
норм. самка |
|
2 |
3 |
0,67 |
интерсекс |
|
1 |
2 |
0,5 |
норм. самец |
|
1 |
3 |
0,33 |
сверхсамец |
На основании опытов Бриджес пришел к выводу, что признаки женского пола контролируются Х-хромосомой, а признаки мужского пола - аутосомами. Пол же особи зависит от баланса между Х-хромосомами и аутосомами. Это следует из того, что все особи с балансом хромосом 1 и более представляют собой самок, соотношение 0,5 определяет самцов; баланс от 1 до 0,5 определяет промежуточное развитие пола. У дрозофилы и у некоторых других насекомых иногда появляются так называемые гинандроморфы, у которых одни участки тела несут признаки женского пола, другие - мужского. Причины такой мозаичности легко объяснить. В начале своего развития животное обладает двумя Х-хромосомами и начинает развиваться как самка, однако при первом дроблении оплодотворенного яйца по тем или иным причинам происходит утрата одной из Х-хромосом. В результате образуются клетки, содержащие только одну Х-хромосому. Если эти клетки продолжают делиться, то формируются ткани, характеризующиеся чисто мужскими признаками.
1.2 Гинандроморфизм
Гинандроморфизм (др.-греч. гхнЮ -- женщина + ?нЮс, род. п. ?ндсьт -- мужчина + мпсцЮ -- вид, форма) -- аномалия развития организма, выражающаяся в том, что в одном организме крупные участки тела имеют генотип и признаки разных полов. Является результатом наличия в мужских и женских клетках организма наборовполовых хромосом с разным количеством последних, как например у многих насекомых. Гинандроморфизм происходит как результат неправильного распределения половых хромосом по клеткам в ходе нарушенного созревания яйцеклетки, её оплодотворения или дробления.
В конце XIX века при изучении некоторых насекомых было обнаружено, что хромосомные наборы самцов и самок различаются между собой. В дальнейшем работами школы Т. Моргана, а также американского цитолога Э. Вильсона было сформулировано положение о том, что важнейшая роль в генетической детерминации пола принадлежит хромосомному аппарату. Как было отмечено выше, наиболее распространенный тип определения пола - сингамный, при котором пол детерминирован с момента оплодотворения. Как выяснилось в дальнейшем, механизм этого феномена основан на разных сочетаниях половых хромосом. В зависимости от числа и состава половых хромосом выделяют три основных типа хромосомного определения пола, названных по тем видам живых организмов, у которых данный тип был впервые описан.
Особи -- гинандроморфы наиболее ярко выражены у насекомых с четко проявляющимися признаками полового диморфизма, при этом морфологически выделяются следующие типы гинандроморфов:
1. билатеральные, у которых одна продольная половина тела имеет признаки мужского пола, другая -- женского;
2. передне-задние, у которых передняя часть тела несет признаки одного пола, а задняя -- другого;
3. мозаичные, у которых перемежаются участки тела, несущие признаки разных полов.
У позвоночных животных и у человека вследствие действия половых гормонов подобные явления приводят к половым аномалиям, при которых секториальное распределение мужских и женских тканей обычно проявляется не так резко.
1.3 Интерсекчуальность
Интерсексуальность (от лат. inter-- между и sexus--пол), термин, введенный Гольдшмидтом (Goldschmidt) для обозначения наличия у одной и той же особи признаков, по своему строению переходных между мужскими и женскими, или одних признаков мужских, других--женских. Интерсексуальность, по Гольдшмидту, появляется в результате развития организма сначала в направлении одного 60S пола, потом другого, в отличие отгинандро-морфизма, при котором направление развития известных участков тела предопределено с самого начала и на одной и той же особи отдельные участки являются или чисто мужскими или чисто женскими и могут быть расположены даже на одном и том же органе.
Интерсексуальность встречается как у животных с нецентрализованным определением пола, так и с централизованным, зависящим от гормонов, связанных с половой железой.
Эмбриональное развитие такого организма называется интерсексом, начинается нормально, но с определённого момента продолжается по типу другого пола. Чем раньше меняется направление развития организма, тем резче интерсексуальность выражена у него.
Различают несколько типов интерсексуальности.
Зиготная, или генетически обусловленная, И. -- результат отклонения от нормы набора половых хромосом и генов, предопределяемого в момент оплодотворения при соединении гамет в зиготу. В зависимости от характера нарушений различают триплоидную (или иную -- анеуплоидную), вызванную отклонением от нормы числа хромосом в зиготе, и диплоидную, вызванную нарушением в соотношении генов, привнесённых в зиготу. Триплоидная (анеуплоидная) И. впервые была изучена на мухе дрозофиле. Показано, что у дрозофил - интерсексов нарушено соотношение числа половых хромосом иаутосом; степень интерсексуальности особи определяется так называемым хромосомным, или генным, балансом, т. е. отношением числа половых хромосом к числу аутосом и заключённых в них полоопределяющих генов.
Различные формы интерсексуальности, или так называемого псевдогермафродитизма, обнаруженные у человека, также вызваны нарушением нормального числа половых хромосом. В зависимости от того, какие из хромосом, определяющих соответственно мужской или женский пол, находятся в избытке, различают "мужской" или "женский" псевдогермафродитизм. Диплоидная И. наблюдается у бабочки непарного шелкопряда при скрещивании разных географических рас. В зависимости от типа скрещивания И. отмечается либо у самок, либо у самцов. Так как при этом не обнаруживается нарушения нормального числа хромосом, немецкий биолог Р. Гольдшмидт выдвинул теорию (1912) о разной "силе" генов, определяющих пол, у разных рас (что, возможно, обусловливается качественными различиями аллелей или наличием других полоопределяющих генов).
Гормонная интерсексуальность наблюдается у животных, у которых половые железы выделяют женские или мужские половые гормоны, определяющие развитие вторичных половых признаков. При кастрации такого животного и пересадке ему половой железы другого пола происходит маскулинизация или соответственно феминизация, т. е. организм становится интерсексом. Подобные явления наблюдаются и при так называемой паразитарной кастрации у ракообразных, вызываемой, например у краба Inachus, паразитическим рачком саккулиной.
Блок 2. Модификационная изменчивость. Типы модификаций и её причины
2.1 Модификационная изменчивость
Модификационная изменчивость - это эволюционно закрепленные реакции организма на изменения условий внешней среды при неизменном генотипе. Такой тип изменчивости имеет две главные особенности. Во- первых, изменения затрагивают большинство или все особи в популяции и у всех них проявляются одинаково. Во-вторых, эти изменения обычно имеют приспособительный характер. Как правило, модификационные изменения не передаются следующему поколению. Классический пример модификационной изменчивости дает растение стрелолист, у которого надводные листья приобретают стреловидную форму, а подводные - лентовидную.
Если у гималайского кролика на спине удалить белую шерсть и поместить его в холод, на этом месте вырастет черная шерсть. Если черную шерсть удалить и наложить теплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре 30*С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, появится "гималайская", окраска. Такая изменчивость признаков, вызванная действием внешней среды и не передающаяся по наследству, называется модификационной
Обычно, говоря о модификационных изменениях, имеют в виду морфологические изменения (например, изменение формы листьев) или изменения окраски (некоторые примеры приведены в п. Влияние генотипа и среды на фенотип ). Однако нередко в эту группу включают и физиологические реакции. Регуляция работы генов лактозного оперона кишечной палочки представляет собой пример такой физиологической реакции. Напомним, в чем она состоит. При отсутствии в среде обитания бактерий глюкозы и при наличии лактозы бактерия начинает синтезировать ферменты для переработки этого сахара. Если же в среде появляется глюкоза, эти ферменты исчезают и бактерия возвращается к стандартному обмену веществ.
Другой пример физиологической реакции - увеличение числа эритроцитов в крови у человека, поднявшегося в горы. Когда человек спускается вниз, где содержание кислорода нормально, число эритроцитов возвращается к норме.
В обоих примерах модификационные изменения имеют ясно выраженный приспособительный характер, поэтому их часто называют физиологическими адаптациями.
Большинство модификаций не наследуется. Однако известны и длительные модификационные изменения, сохраняющиеся и в следующем поколении (иногда даже в нескольких поколениях).
Как известно, эволюционная теория, разработанная Ж.Б. Ламарком (1744-1829), основывалась на ошибочном постулате о наследовании изменений, приобретаемых в течение жизни, т.е. о наследовании модификации. Само по себе представление Ж.Б. Ламарка об эволюции органических форм было, несомненно, прогрессивным для своего времени, но его объяснение механизма эволюционного прогресса было неверным и отражало распространенное заблуждение, характерное для биологов XVIII столетия.
Ч. Дарвин (1809-1882) в своем «Происхождении видов…» разделил изменчивость на определеннуюинеопределенную. Эта классификация в общем соответствует нынешнему делению изменчивости на ненаследственную и наследственную.
Одним из первых исследователей, изучавших модификационную изменчивость, был К. Нэгели (1865), который сообщил, что если альпийские формы растений, например ястребинки, перенести на богатую почву Мюнхенского ботанического сада, то у них обнаруживается увеличением мощности, обильное цветение, а некоторые растения изменяются до неузнаваемости. Если же формы вновь перенести на бедные каменистые почвы, то они возвращаются к исходной форме. Несмотря на полученные результаты, К. Нэгели оставался сторонником наследования приобретенных свойств.
Впервые строгий количественный подход к исследованию модификационной изменчивости с позиций генетики применил В. Иогансен. Он изучал наследование массы и размера семян фасоли - признаков, в значительной степени меняющихся как под влиянием генетических факторов, так и условий выращивания растений.
Убежденным противником наследования свойств, приобретенных в онтогенезе, был А. Вейсман (1833-1914). Последовательно отстаивая дарвиновский принцип естественного отбора как движущуюся силу эволюции, он предложил разделить понятия соматогенныхи бластогенных изменений, т.е. изменения свойств соматических клеток и органов, с одной стороны, и изменения свойств генеративных клеток - с другой. А. Вейсман указал на невозможность существования механизма, который передавал бы изменения соматических клеток половым таким образом, чтобы в следующем поколении организмы изменялись адекватно тем модификациям, которые претерпели родители во время своего онтогенеза.
Иллюстрируя это положение, А. Вейсман поставил следующий эксперимент, доказывавший ненаследование приобретенных признаков. На протяжении 22 поколений он отрубал белым мышам хвосты и скрещивал их между собой. В общей сложности он обследовал 1592 особи и ни разу не обнаружил укорочения хвоста у новорожденных мышат.
2.2 Типы модификаций и её изменчивость
Различают возрастные, сезонные и экологические модификации. Они сводятся к изменению лишь степени выраженности признака; нарушения структуры генотипа при них не происходит. Следует отметить, что четкой границы между возрастными, сезонными и экологическими модификациями провести невозможно.
Возрастные, или онтогенетические, модификации выражаются в виде постоянной смены признаков в процессе развития особи. Это наглядно демонстрируется на примере онтогенеза земноводных (головастики, сеголетки, взрослые особи), насекомых (личинка, куколка, имаго) и других животных, а также растений. У человека в процессе развития наблюдаются модификации морфофизиологических и психических признаков. Например, ребенок не сможет правильно развиваться и физически и интеллектуально, если в раннем детстве на него не будут оказывать влияние нормальные внешние, в том числе социальные, факторы. Например, долгое пребывание ребенка в социально неблагополучной среде может вызвать необратимый дефект его интеллекта.
Онтогенетическая изменчивость, как и сам онтогенез, детерминируется генотипом, где закодирована программа развития особи. Однако особенности формирования фенотипа в онтогенезе обусловлены взаимодействием генотипа и среды. Под влиянием необычных внешних факторов могут происходить отклонения в формировании нормального фенотипа.
Сезонные модификации, особей или целых популяций проявляются в виде генетически детерминированной смены признаков (например, изменение окраски шерсти, появление подпушка у животных), происходящей в результате сезонных изменений климатических условий.
Ярким примером такой изменчивости является опыт с горностаевым кроликом. У горностаевого кролика на спине выбривают наголо определенный участок (спина горностаевого кролика нормально покрыта белой шерстью) и затем кролика помещают на холод. Оказывается, что в таком случае на оголенном месте, подвергшимся влиянию низкой температуры, появляется темнопигментированный волос и в результате на спине - темное пятно. Очевидно, что развитие того или иного признака кролика - его фенотип, в данном случае горностаевая окраска, зависит не только от его генотипа, но и от всей совокупности условий, в которых происходит это развитие.
Советский биолог Ильин показал, что температура окружающей среды имеет больше значение в развитии пигмента у горностаевого кролика, причем для каждой области тела есть свой порог температуры, выше которого вырастает белая шерсть, а ниже - черная
Сезонные модификации можно отнести к группе экологических модификаций. Последние представляют собой адаптивные изменения фенотипа в ответ на изменения условий среды. Экологические модификации фенотипически проявляются в изменении степени выраженности признака. Они могут возникать на ранних стадиях развития и сохраняться в течении всей жизни. Примером может служить различные формы листа у стрелолиста, обусловленные влиянием среды: стреловидные надводные, широкие плавающие, лентовидные подводные.
Растение стрелолиста, образующее три типа листьев: подводные, плавающие и надводные.
Экологические модификации затрагивают количественные (количество лепестков в цветке, потомства у животных, масса животных, высота растений, размер листа и т.д.) и качественные (окраска цветков у медуницы, чины лесной, примулы; цвет кожи у человека под влиянием ультрафиолетовых лучей и др.) признаки. Так, например, Леваковский при выращивании в воде ветки ежевики вплоть до ее распускания обнаружил существенные изменения в анатомическом строении ее ткани. В аналогичном эксперименте Константен выявил фенотипические различия в строении надводной и подводной частей листа у лютика.
В 1895 г. французский ботаник Г. Боннье провел опыт, ставший классическим примером экологической модификации. Он разделил одно растение одуванчика на две части и выращивал их в разных условиях: на равнине и высоко в горах. Первое растение достигло нормальной высоты, а второе оказалось карликовым. Такого рода изменения бывают и у животных. Например, Р. Вольтерк в 1909 г. наблюдал изменения высоты шлема у дафний в зависимости от условий питания.
Экологические модификации, как правило, обратимы им со сменой поколений при условии изменения внешней среды могут проявиться. Например, потомство низкорослых растений на хорошо удобренных почвах будет нормальной высоты; определенное количество лепестков в цветке какого-либо растения в потомстве может не повториться; у человека с кривыми ногами вследствие рахита бывает вполне нормальное потомство. Если же на ряду поколений условия не меняются, степень выраженности признака в потомстве сохраняются, ее нередко принимают за стойкий наследственный признак (длительные модификации).
При интенсивном действии многих агентов наблюдается ненаследуемые изменения, случайные (по своему проявлению) по отношению к воздействию. Такие изменения называют морфозами. Очень часто они напоминают фенотипическое проявление известных мутаций. Тогда их называютфенокопиями этих мутаций. В конце 30-х - начале 40-х годов И.А. Рапопорт исследовал действия на дрозофилу многих химических соединений, показав, что, например, соединения сурьмы - brown (коричневые глаза); мышьяковистая кислота и некоторые другие соединения - изменения крыльев, пигментации тела; соединения бора - eyeless (безглазие), aristopredia (превращение арист в ноги), соединения серебра - yellow (желтое тело) и т.д. При этом некоторые морфозы при воздействии на определенную стадию развития индуцировались с высокой частотой (до 100%).
Характеристики модификационной изменчивости:
1. Адаптивные изменения (пример, стрелолист).
2. Приспособительный характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют их выживанию. Примером служит изменение содержания влаги в листьях растений в засушливых и влажных районах, окраски у хамелеона, формы листа у стрелолиста в зависимости от условий среды.
3. Обратимость в пределах одного поколения, т.е. со сменой внешних условий у взрослых особей меняется степень выраженности тех или иных признаков. Например, у крупного рогатого скота в зависимости от условий содержания может колебаться удой и жирность молока, у кур - яйценоскость).
4. Модификации адекватны, т.е. степень выраженности признака находится в прямой зависимости от вида и продолжительности действия того или иного фактора. Так, улучшение содержания скота способствует увеличению живой массы животных, плодовитости, удоя и жирности молока; на удобренных почвах при оптимальных климатических условиях повышается урожайность зерновых культур и т.д.
5. Массовый характер. Массовость обуславливается тем, что один и тот же фактор вызывает примерно одинаковое изменение у особей, сходных генотипически.
6. Длительные модификации. Впервые были описаны в 1913 г. нашим соотечественником В. Иоллосом. Путем раздражения инфузорий туфелек, он вызвал у них появление ряда морфологических особенностей, которые сохранялись в течение большого числа поколений, до тех пор, пока размножение было бесполым. При изменении условий развития длительные модификации не наследуются. Поэтому ошибочно мнение, что воспитанием и внешним воздействием можно закрепить в потомстве новый признак. Например, предполагалось, что от хорошо дрессированных животных потомство получается с лучшими «актерскими» данными, чем от недрессированных. Потомство дрессированных животных действительно легче поддается воспитанию, но объясняется это тем, что оно наследует не приобретенные родительскими особями навыки, а способность к дрессировке, обусловленную наследуемым типом нервной деятельности.
7. Норма реакций (предел модификации). Именно норма реакции, а не сами модификации, наследуются, т.е. наследуется способность к развитию того или иного признака, а форма его проявления зависит от условий внешней среды. Норма реакции - это конкретная количественная и качественная характеристикам генотипа, т.е. определенное сочетание генов в генотипе и характер их взаимодействия.
Сравнительная характеристика наследственной и ненаследственной изменчивости
Свойство |
Ненаследственная (адаптивные модификации) |
Наследственная |
|
Объект изменений |
Фенотип в пределе нормы реакции |
Генотип |
|
Фактор возникновения |
Изменения условий окружающей среды |
Рекомбинация генов вследствие слияния гамет, кроссинговер, мутации |
|
Наследование свойств |
Не наследуется |
Наследуется |
|
Значения для особи |
Повышает жизнеспособность, приспособленность к условиям окружающей среды |
Полезные изменения приводят к выживанию, вредные - к гибели организма |
|
Значение для вида |
Способствует выживанию |
Приводит к появлению новых популя-ций, видов в результате дивергенции |
|
Роль в эволюции |
Адаптация организмов к условиям окружающей среды |
Материал для естественного отбора |
|
Форма изменчивости |
Групповая |
Индивидуальная |
|
Закономерность |
Статистическая закономерность вариационных рядов |
Закон гомологических рядов наследственной изменчивости |
Примеры модификационной изменчивости
У человека:
- увеличение уровня эритроцитов при подъеме в горы
- увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей.
- развитие костно-мышечной системы в результате тренировок
- шрамы (пример морфоза).
У насекомых и других животных:
- изменение окраски у колорадского жука вследствие длительного влияния на их куколки высоких или низких температур.
- смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца).
- различная окраска бабочек-нимфалид (например, Araschnia levana), развивавшихся при разной температуре.
У растений:
- различное строение подводных и надводных листьев у водяного лютика, стрелолиста и др.
- развитие низкорослых форм из семян равнинных растений, выращенных в горах.
У бактерий:
- работа генов лактозного оперона кишечной палочки (при отсутствии глюкозы и при присутствии лактозы они синтезируют ферменты для переработки этого углевода).
Блок 3. Репликация и её молекулярные механизмы. Особенности организации и репликации хромосом эукариот
хромосома наследственный половой эукариота
3.1 Репликация и её молекулярные механизмы
Репликация (редупликация), процесс воспроизведения (синтеза) дезоксирибонуклеиновой кислоты (ДНК). При этом из одной молекулы ДНК в результате её удвоения образуются две молекулы - точные копии исходной ДНК (лат. «репликацио» - повторение). Биологический смысл репликации - сохранение и точная (неискажённая) передача генетической информации в ряду поколений клеток и организмов, а также при воспроизведении ДНК-содержащих структур (митохондрий, пластид, некоторых вирусов). Поэтому репликация всегда предшествует делению ядер у эукариотических клеток, делению клеток бактерий, размножению вирусов и т.п.
Репликация, так же как другие важнейшие молекулярно-генетические процессы - транскрипция и трансляция, основана на матричном принципе биосинтеза и комплементарном взаимодействии между молекулами. Перед началом синтеза специальный фермент расплетает цепи двойной спирали ДНК, они расходятся (не полностью), и на каждой цепи другой фермент находит точку начала синтеза. Затем на обеих цепях, как на матрицах, происходит синтез новых цепей, причём избирательное соединение нуклеотидов строящейся цепи с цепью старой осуществляется по принципу комплементарности азотистых оснований. Расплетание цепей родительской ДНК и репликация идут параллельно. После завершения синтеза каждая новая молекула ДНК состоит из одной старой, родительской, цепи и одной новой. Такой способ репликации получил название полуконсервативного. На разных этапах процесса участвуют большое число разных ферментов, а также белки, препятствующие, напр., запутыванию цепей ДНК. В зависимости от формы ДНК - кольцевой или линейной - способы репликации имеют свои особенности. Репликация может осуществляться одновременно на многих участках одной молекулы ДНК.
Две замечательные особенности характеризуют процесс репликации - высокая скорость и высокая точность. Так, вся молекула ДНК кишечной палочки (состоит из 4ґ106пар нуклеотидов) реплицируется за 20 мин, т. е. в одну секунду образуется участок ДНК размером приблизительно в 3000 пар нуклеотидов. Такая скорость возможна только при чрезвычайно «согласованном» действии всего комплекса ферментов, ведущих репликацию. У эукариот скорость репликации ниже - 100-300 пар нуклеотидов в секунду. Высокую точность репликации, столь важную для сохранения специфичной для каждого биологического вида наследственной информации, обеспечивают комплементарное спаривание нуклеотидов (возможная ошибка - одно неправильное спаривание на 108 --109) и наличие ферментов, способных узнавать и исправлять (вырезать) ошибки репликации.
Репликацией называют также матричный биосинтез РНК на РНК (у некоторых, т. н. РНК-содержащих вирусов) и удвоение хромосом, которому предшествует репликация ДНК.
Механизм репликации и репарации по Уотсону и Крику . В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК) или рибонуклеиновых кислот (РНК), осуществляемый по матричному принципу. Предложенная в 1953 Дж. Уотсоном и Ф. Криком модель строения ДНК -- так называемая двойная спираль -- с одной стороны, объяснила, каким образом записана генетическая информация в молекуле ДНК, с другой -- позволила понять и экспериментально изучать химические механизмы удвоения генетического материала. Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность Репликация Пара гуанин -- цитозин стабилизируется тремя водородными связями, пара аденин -- тимин -- двумя, что резко снижает вероятность неправильного спаривания оснований. Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает: 1) разрыв водородных связей и расплетение нитей двойной спирали; 2) синтез на одиночных нитях комплементарных цепей. В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая -- синтезированная заново (полуконсервативный механизм Репликация). У высших организмов -- эукариотов, клетки которых содержат сформированное ядро, основную генетическую функцию несут сложно организованные структуры -- хромосомы, состоящие из ДНК, РНК, белков и других веществ. В интерфазе, предшествующей делению клеток осуществляется Репликация ДНК и других компонентов хромосом; затем удвоенные хромосомы разъединяются и распределяются равномерно между дочерними клетками. Таким образом вся наследственная информация в относительно неизмененном виде передаётся от клетки к клетке, от поколения к поколению. Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный. Цепи молекулы ДНК расходятся, образую репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле. Процесс репликации ДНК. Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключительной точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков, - так называемая ДНК-репликазная система, или реплисома. Функциональная единица репликации - репликон, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК, ограниченный точкой начала, в которой инициируется репликация, и точкой окончания, в которой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частота инициации определяется взаимодействие специальных регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единственной точке начала репликации ведет к репликации всего генома. В каждом клеточном цикле репликация инициируется только один раз. Плазмиды и вирусы, являющиеся автономными генетическими элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке - хозяине. Эукариотичные хромосомы (хромосомы всех организмов, за исключением бактерий и синезеленых водорослей) содержат большое число репликонов, каждый из которых также однократно инициируется за один клеточный цикл. Структура, которая образуется во время репликации, называется репликативной вилкой.
Репликация у прокариотов и эукариотов. Процесс реплдикации осуществляется с помощью ферментов, которые получили название ДНК-полимераз. Участок молекулы ДНК, в котором начали расплетаться комплементные нити, называется вилкой репликации. Она образуется у прокариот в определенной генетически детерминированной точке. В молекуле ДНК у эукариот таких точек инициации репликации («стартовых точек») бывает несколько. У эукариот процесс репликации ДНК идет неодинаково. Объясняется это тем, что полинуклеотидные цепи в молекуле ДНК антипараллельны, т. е. 5'-конец одной цепи соединяется с 3'-концом другой, и наоборот. Материнская цепь, на которой синтез идет от точки старта 5'->3' в виде сплошной линии, называется лидирующей, а вторая цепь, на которой синтез идет от 3'->5' (в противоположном направлении) отдельными фрагментами получила название запаздывающей. Синтез этой цепи сложнее синтеза лидирующей цепи. Он протекает с участием фермента лигазы отдельными фрагментами. Эти фрагменты (участки кодовой нити ДНК) содержат у эукариот 100-200, а у прокариот 1000-2000 нуклеотидов. Они получили название фрагментов Оказаки, по имени открывшего их японского ученого.У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро. Так, у бактерии скорость репликации составляет 30 мкм в минуту. За минуту к нитке-матрице присоединяется около 500 нуклеотидов, у вирусов за это время - около 900 нуклеотидов. У эукариот процесс репликации протекает медленно. У них дочерняя нить удлиняется на 1,5-2,5 мкм в минуту. Репарация ДНК, коррекция ДНК и мутации. Как уже упоминалось, между завершением репликации и началом митоза проходит около 1 ч. Все это время в клетке идут активные процессы репарации и коррекции ДНК. Если во время репликации к нуклеотиду материнской цепи ДНК присоединяется некомплементарный нуклеотид дочерней цепи, то с помощью ферментов он будет вырезан и заменен на комплементарный. Эти ферменты представляют собой те же самые ДНК-полимеразы и ДНК-лигазы, которые используются в процессе репликации. Этот процесс называют коррекцией ДНК.Благодаря репарации и коррекции ДНК ошибки транскрипции, называемые мутациями, встречаются очень редко. Появление мутаций приводит к синтезу в клетке дефектных белков вместо нормальных, вследствие этого ее функции часто нарушаются, и она может даже погибнуть. Геном человека содержит не менее 30000 генов, и период между двумя поколениями составляет в среднем 30 лет, поэтому любой геном, унаследованный от родителей, должен нести не менее 10 мутаций. Однако от этих мутаций можно найти защиту. Как известно, человеческий геном представлен двойным набором хромосом, поэтому из двух аналогичных генов хотя бы один почти наверняка будет нормальным.
3.2 Особенности организации и репликации хромосом эукариот
Во-первых, генетический материал должен обладать способностью к самовоспроизведению, чтобы в. процессе размножения передавать наследственную информацию, на основе которой будет осуществляться формирование нового поколения. Во-вторых, для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянной свою организацию. В-третьих, материал наследственности и изменчивости должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в меняющихся условиях. Только в случае соответствия указанным требованиям материальный субстрат наследственности и изменчивости может обеспечить длительность и непрерывность существования живой природы и ее эволюцию.
Современные представления о природе генетического аппарата позволяют выделить три уровня его организации: генный, хромосомный и геномный. На каждом из них проявляются основные свойства материала наследственности и изменчивости и определенные закономерности его передачи и функционирования.
Генный уровень организации генетического аппарата
Элементарной функциональной единицей генетического аппарата, определяющей возможность развития отдельного признака клетки или организма данного вида, является ген (наследственный задаток, по Г. Менделю). Передачей генов в ряду поколений клеток или организмов достигается материальная преемственность - наследование потомками признаков родителей.
Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организмов (клеток), т.е. отдельное качество или свойство, по которому они отличаются друг от друга.
Большинство перечисленных выше особенностей организмов или клеток относится к категории сложных признаков, формирование которых требует синтеза многих веществ, в первую очередь белков со специфическими свойствами - ферментов, иммунопротеинов, структурных, сократительных, транспортных и других белков. Свойства белковой молекулы определяются аминокислотной последовательностью ее полипептидной цепи, которая прямо задается последовательностью нуклеотидов в ДНК соответствующего гена и является элементарным, или простым, признаком.
Основные свойства гена как функциональной единицы генетического аппарата определяются его химической организацией,
Химическая организация гена
Исследования, направленные на выяснение химической природы наследственного материала, неопровержимо доказали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Ф. Мишером (1868) в ядрах клеток гноя. Нуклеиновые кислоты являются макромолекулами, т.е. отличаются большой молекулярной массой. Это полимеры, состоящие из мономеров - нуклеотидов, включающих три компонента: сахар (пентозу), фосфат и азотистое основание (пурин или пиримидин). К первому атому углерода в молекуле пентозы С-1' присоединяется азотистое основание (аденин, гуанин, цитозин, тимин или урацил), а к пятому атому углерода С-5' с помощью эфирной связи - фосфат; у третьего атома углерода С-3' всегда имеется гидроксильная группа - ОН
Соединение нуклеотидов в макромолекулу нуклеиновой кислоты происходит путем взаимодействия фосфата одного нуклеотида с гидроксилом другого так, что между ними устанавливается фосфодиэфирная связь. В результате образуется полинуклеотидная цепь. Остов цепи состоит из чередующихся молекул фосфата и сахара. К молекулам пентозы в положении С-1' присоединено одно из перечисленных выше азотистых оснований
Сборка полинуклеотидной цепи осуществляется при участии фермента полимеразы, который обеспечивает присоединение фосфатной группы следующего нуклеотида к гидроксильной группе, стоящей в положении 3', предыдущего нуклеотида. Благодаря отмеченной специфике действия названного фермента наращивание полинуклеотидной цепи происходит только на одном конце: там, где находится свободный гидроксил в положении 3'. Начало цепи всегда несет фосфатную группу в положении 5'. Это позволяет выделить в ней 5' и 3 '-концы.
Среди нуклеиновых кислот различают два вида соединений: дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Изучение состава основных носителей наследственного материала - хромосом - обнаружило, что их наиболее химически устойчивым компонентом является ДНК, которая представляет собой субстрат наследственности и изменчивости.
Как и у прокариот, репликация ДНК в клетках эукариотических организмов осуществляется полуконсервативно, о чем свидетельствует распределение Н-тимидиновой метки по сестринским хроматидам во втором и последующих митозах после инкубации клеток с радиоактивными предшественниками. Выяснено, что репликация у эукариот носит двунаправленный характер.
Принцип регуляции репликации ДНК эукариот в онтогенезе был открыт английским цитогенетиком Г. Кэлланом в 1972 г. С помощью радиоавтографии меченных 3Н-тимидином волокон ДНК, полученных из клеток животных непосредственно на предметном стекле, Кэллан определил скорость репликации и расстояние между соседними центрами инициации в S-фазе соматических и эмбриональных клеток.
По первому показателю между этими типами клеток больших различий не наблюдалось. Число сайтов инициации репликации было максимальным в раннем эмбриогенезе, минимальным в предмейотической S-фазе и промежуточным в соматических клетках. Эти данные в принципе были подтверждены позднее прямым электронно-микроскопическим анализом реплицирующейся ДНК из дробящихся яиц дрозофилы. Таким образом, суть регуляции процесса репликации у эукариот заключается в изменении числа сайтов инициации репликации. Этот механизм позволяет увеличить продолжительность фазы S (а, следовательно, всего митотического цикла) с 3,5 мин (на ранних стадиях дробления яиц дрозофилы) до десятков часов в предмейотической S-фазе. Упаковка ДНК и гистонов в нуклеосомы происходит в фазе S, поскольку гистоны синтезируются синхронно с репликацией ДНК.
Список использованной литературы
1. http://biofile.ru/bio/11229.html
2. https://ru.wikipedia.org/wiki
3. http://medicalplanet.su/genetica/57.html
4. Гольдшмидт Р., Механизм и физиология определения пола, м.--П., 1923 (лит. до 1922 г. вкл.)
5. Мясоедов С. В., Явления размножения и пола в органическом мире, Томск, 1935;
6. Рыжков В. Л., Генетика пола, Хар., 1936;
7. Либерман Л. Л., Врождённые нарушения полового развития, Л., 1966
8. http://medbiol.ru/medbiol/genetic_sk/0003ef0d.htm
9. http://sbio.info/page.php?id=12112
10. http://shift-ed.narod.ru/bio/2-31.html
Размещено на Allbest.ru
...Подобные документы
Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.
реферат [32,7 K], добавлен 23.07.2015Морфологические, физиологические и биохимические признаки пола. Половые хромосомы, их отношение к определению пола. Механизмы наследования генных признаков. Типы хромосомного определения пола. Генетически обусловленные наследственные болезни человека.
презентация [1,1 M], добавлен 01.10.2013Изменчивость - возникновение индивидуальных различий. Сравнительная характеристика форм изменчивости. Модификационная изменчивость. Генотипическая изменчивость. Комбинативная изменчивость.
реферат [21,2 K], добавлен 04.09.2007Модификационная изменчивость - процесс взаимосвязи организма со средой; популяции и чистые линии; фенотип и генотип. Мутационная изменчивость: типы, классификация. Закон гомологических рядов в наследственной изменчивости, использование в селекции.
курсовая работа [53,6 K], добавлен 09.06.2011Наследственная информация, понятие хромосомы. Последствия изменения числа хромосом в кариотипе человека. Процедура определения кариотипа. Хромосомная теория наследственности, генетика пола. Явление наследования, сцепленного с полом. Хромосомные болезни.
контрольная работа [15,9 K], добавлен 24.12.2011Генетика пола. Генетические механизмы формирования пола. Наследование признаков, сцепленных с полом. Наследование признаков, контролируемых полом. Хромосомная теория наследственности. Механизм сцепления. Биотехнологии и генная инженерия.
реферат [72,9 K], добавлен 06.10.2006Пол и половые признаки. Генетические механизмы формирования пола. Обзор генного механизма дифференцировки пола. Сцепленное с полом рецессивное и доминантное наследование. Недостаточность органического фосфора в крови. Мышечная дистрофия Дюшена, гемофилия.
презентация [109,1 K], добавлен 21.03.2014Особенности определения пола - совокупности морфологических, физиологических, биохимических, поведенческих и других признаков организма, обеспечивающих репродукцию. Анализ первичных и вторичных половых признаков. Аномалии сочетания половых хромосом.
презентация [732,4 K], добавлен 19.05.2010Сущность и источники генетической изменчивости в природных популяциях. Характеристика комбинативного и мутационного видов наследственной изменчивости. Особенности фенотипической изменчивости, происходящей в результате влияния условий окружающей среды.
курсовая работа [1,2 M], добавлен 14.09.2011Хромосомная теория наследственности Томаса Моргана. Установление закономерностей расположения генов в хромосомах. Понятие кроссинговера. Аутосомы и половые хромосомы организма. Гемофилия и дальтонизм - наследование заболеваний, сцепленных с полом.
презентация [1,1 M], добавлен 12.12.2010Внешнее строение и окраска дрозофилы. Длительность онтогенеза дрозофилы и особенности первого спаривания, яйцо и оплодотворение. Созревание яиц и сперматозоидов, определение пола. Геном дрозофилы и его использование в генетическом моделировании.
презентация [532,4 K], добавлен 26.10.2015Характеристика модификационной изменчивости, ее классификация и механизм. Окружающая среда как причина модификаций, ее анализ и закономерности. Понятие вариационного ряда и его графическое отображение. Сущность дарвинизма и естественного отбора.
реферат [28,5 K], добавлен 16.01.2011Теория прыгающих генов Б. Мак-Клинток, транспозоны как последовательности ДНК, способные к перемещению. Типы мобильных элементов и их свойства, значение в жизни организма. Транспозирующиеся элементы прокариот. Подвижные генетические элементы у эукариот.
лекция [38,5 K], добавлен 21.07.2009Пределы модификационной изменчивости для разных признаков и при разных условиях, норма реакции. Управление доминированием, доминантные и рецессивные признаки. Понятие мутаций, их частота и причины; генные, хромосомные мутации. Закон гомологических рядов.
реферат [22,7 K], добавлен 13.10.2009Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.
презентация [5,8 M], добавлен 11.11.2014Предпосылки эволюции: изменчивость и наследственность. Формы изменчивости, основные понятия и термины. Наследственные изменения - мутации. Эволюционная характеристика мутаций. Генетические различия между близкими группами. Корреляции.
курсовая работа [280,9 K], добавлен 09.11.2006Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.
презентация [7,4 M], добавлен 07.01.2013Закономерности наследственности и мутационной изменчивости как основа теории селекции, ее задачи и методы. Выведение новых пород животных, сортов растений, микроорганизмов с учетом законов эволюции, роль внешней среды в развитии и формировании признаков.
презентация [16,6 K], добавлен 02.11.2011Выявление параллелизма в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Понятие генетической рекомбинации, исследование явления на дрозофилах, проведенное Т. Морганом. Основные положения хромосомной теории наследственности.
презентация [582,2 K], добавлен 28.12.2011Проведение исследования в области генетики и изменчивости микроорганизмов. Характеристика S- и R-форм колоний. Фенотипическая изменчивость (модификация). Возникновение бактериальной мутации. Генетические рекомбинации и трансформация. Структура плазмидов.
реферат [20,3 K], добавлен 07.06.2015