Законы Менделя
Генетика как наука о закономерностях наследственности и изменчивости. Генетическая схема закона расщепления Менделя. Цитологические основы первого и второго законов Менделя. Генетическая схема закона независимого комбинирования (наследования) признаков.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 17.11.2014 |
Размер файла | 37,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Основные понятия генетики
2. Методы генетики
3. Закон расщепления, или второй закон Менделя
1. Основные понятия генетики
Генетика -- наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году. Наследственность -- свойство организмов передавать свои признаки от одного поколения к другому. Изменчивость -- свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида. Признак -- любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее. Фенотип -- совокупность всех внешних и внутренних признаков организма. Ген -- функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген -- участок ДНК, определяющий возможность развития отдельного элементарного признака. Генотип -- совокупность генов организма. Локус -- местоположение гена в хромосоме. Аллельные гены -- гены, расположенные в идентичных локусах гомологичных хромосом. Гомозигота -- организм, имеющий аллельные гены одной молекулярной формы. Гетерозигота -- организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой -- рецессивным. Рецессивный ген -- аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным. Доминантный ген -- аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
2. Методы генетики
генетика закон мендель
Основным является гибридологический метод -- система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода:
1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков;
2) строгий количественный учет наследования признаков у гибридов;
3) индивидуальная оценка потомства от каждого родителя в ряду поколений.
Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар -- дигибридным, нескольких пар -- полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак -- цвет горошин, альтернативные признаки -- желтый цвет, зеленый цвет горошин. Кроме гибридологического метода, в генетике используют: генеалогический -- составление и анализ родословных; цитогенетический -- изучение хромосом; близнецовый -- изучение близнецов; популяционно-статистический метод -- изучение генетической структуры популяций.
3. Закон расщепления, или второй закон Менделя
Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.
Признаки |
Доминантные |
Рецессивные |
Всего |
|||
Число |
% |
Число |
% |
|||
Форма семян |
5474 |
74,74 |
1850 |
25,26 |
7324 |
|
Окраска семядолей |
6022 |
75,06 |
2001 |
24,94 |
8023 |
|
Окраска семенной кожуры |
705 |
75,90 |
224 |
24,10 |
929 |
|
Форма боба |
882 |
74,68 |
299 |
25,32 |
1181 |
|
Окраска боба |
428 |
73,79 |
152 |
26,21 |
580 |
|
Расположение цветков |
651 |
75,87 |
207 |
24,13 |
858 |
|
Высота стебля |
787 |
73,96 |
277 |
26,04 |
1064 |
|
Всего: |
14949 |
74,90 |
5010 |
25,10 |
19959 |
Анализ данных таблицы позволил сделать следующие выводы:
1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть -- другой (рецессивный) признак из альтернативной пары;
2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.
Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть -- рецессивный, называютрасщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении. При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.
Генетическая схема закона расщепления Менделя
P |
+Aa желтые |
Ч |
>Aa желтые |
|||
Типы гамет |
A |
a |
A |
a |
||
F2 |
AA желтые |
Aa желтые 75% |
Aa желтые |
Aa зеленые 25% |
Закон чистоты гамет
С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:
1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
2. организмы содержат два фактора, определяющих развитие признака;
3. при образовании гамет в каждую из них попадает только один из пары факторов;
4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).
В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах. Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание -- скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин -- желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.
Р |
+Аа желтые |
Ч |
>aа зеленые |
|
Типы гамет |
A a |
a |
||
F |
Аа желтые 50% |
аa зеленые 50% |
Цитологические основы первого и второго законов Менделя. Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение. Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую -- а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма -- гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого -- с геном а. При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа -- желтый цвет горошин. У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет -- половина гамет будет нести ген А, другая половина -- ген а. Оплодотворение -- процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них -- гетерозиготы (несут гены А и а), 1/4 -- гомозиготы по доминантному признаку (несут два гена А) и 1/4 -- гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву -- зеленого (1/4).
Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян -- доминантные признаки, зеленая окраска (а) и морщинистая форма (b) -- рецессивные признаки. Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1). Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 -- зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена). При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Р |
+АABB желтые, гладкие |
Ч |
>aаbb зеленые, морщинистые |
|
Типы гамет |
AB |
ab |
||
F1 |
AaBb желтые, гладкие, 100% |
|||
P |
+АaBb желтые, гладкие |
Ч |
>AаBb желтые, гладкие |
|
Типы гамет |
AB Ab aB ab |
AB Ab aB ab |
Генетическая схема закона независимого комбинирования признаков
Гаметы: |
> |
AB |
Ab |
aB |
ab |
|
+ |
||||||
AB |
AABB желтые гладкие |
AABb желтые гладкие |
AaBB желтые гладкие |
AaBb желтые гладкие |
||
Ab |
AABb желтые гладкие |
AАbb желтые морщинистые |
AaBb желтые гладкие |
Aabb желтые морщинистые |
||
aB |
AaBB желтые гладкие |
AaBb желтые гладкие |
aaBB зеленые гладкие |
aaBb зеленые гладкие |
||
ab |
AaBb желтые гладкие |
Aabb желтые морщинистые |
aaBb зеленые гладкие |
aabb зеленые морщинистые |
Анализ результатов скрещивания по фенотипу: желтые, гладкие -- 9/16, желтые, морщинистые -- 3/16, зеленые, гладкие -- 3/16, зеленые, морщинистые -- 1/16. Расщепление по фенотипу 9:3:3:1. Анализ результатов скрещивания по генотипу: AaBb -- 4/16, AABb -- 2/16, AaBB -- 2/16, Aabb -- 2/16, aaBb -- 2/16, ААBB -- 1/16, Aabb -- 1/16, aaBB -- 1/16, aabb -- 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1. Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (21) в соотношении (3 + 1)1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (22) в соотношении (3 + 1)2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (23) в соотношении (3 + 1)3. Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (31), то при дигибридном образуется 9 разных генотипов -- 32, при тригибридном скрещивании образуется 33 -- 27 разных генотипов. Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.
Цитологические основы третьего закона Менделя
Пусть А -- ген, обусловливающий развитие желтой окраски семян, а -- зеленой окраски, В -- гладкая форма семени, b -- морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а -- с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ, Ab, aB, ab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.
Размещено на Allbest.ru
...Подобные документы
Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.
реферат [22,1 K], добавлен 29.03.2003Истоки генетики. Первые идеи о механизме наследственности. Естественный отбор. Изучение теории пангенезиса Ч. Дарвина. Законы единообразия гибридов первого поколения и независимого комбинирования признаков. Значение работ Менделя для развития генетики.
реферат [34,7 K], добавлен 26.11.2014Основные законы наследственности. Основные закономерности наследования признаков по Г. Менделю. Законы единообразия гибридов первого поколения, расщепления на фенотипические классы гибридов второго поколения и независимого комбинирования генов.
курсовая работа [227,9 K], добавлен 25.02.2015Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.
контрольная работа [69,6 K], добавлен 08.02.2011Генетика и эволюция. Факторы эволюции. Естественный отбор. Теория пангенезиса Дарвина. Классические законы Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования признаков. Современная генетика.
реферат [35,0 K], добавлен 21.06.2007Изучение предмета и методов генетики. История открытия и основные достоинства гибридологического метода. Генетическая символика. Моногибридизм. Законы Менделя. Правило чистоты гамет. Анализ расщепления. Понятие и условия дигибридизма и полигибридизма.
реферат [659,9 K], добавлен 19.03.2013Классические законы Менделя. Первый, второй, третий закон. Условия существования законов. Признание законов. Значение работы Менделя для развития генетики. Опыты Менделя послужили основой для развития современной генетики – науки.
реферат [21,3 K], добавлен 17.12.2004Представления о наследственности. Единообразие гибридов первого поколения. Скрещивание Менделя. Закон независимого наследования различных признаков. Гены-модификаторы и полигены. Построение генетических карт. Хромосомные аберрации по половым хромосомам.
реферат [134,5 K], добавлен 06.09.2013Генетика как наука о законах и механизмах наследственности и изменчивости, ее развитие. Современные формулировки законов Менделя. Открытие ДНК швейцарским ученым Иоганном Фридрихом Мишером в 1869 г. Свойства генетического кода. Стадии репродукции вирусов.
презентация [4,8 M], добавлен 14.08.2015Законы, условия выполнения законов Менделя. Закон Т. Моргана. Аллельные и неаллельные гены, группы крови и их определение. Совместимость эритроцитов. Использование данных о группе крови. Хромосомная теория наследственности Т. Моргана.
презентация [207,3 K], добавлен 23.03.2011Дослідження Менделя. Спадкоємство при моногібридному схрещуванні і закон розщеплювання. Ген, як одиниця функції, рекомбінації, мутації. Дигібридне схрещування і закон незалежного розподілу. Короткий виклад суті гіпотез Менделя. Характеристика приматів.
контрольная работа [28,8 K], добавлен 10.03.2011Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.
презентация [3,3 M], добавлен 15.04.2014Законы наследования признаков. Фундаментальные свойства живых организмов. Наследственность и изменчивость. Классический пример моногибридного скрещивания. Доминантные и рецессивные признаки. Опыты Менделя и Моргана. Хромосомная теория наследственности.
презентация [2,9 M], добавлен 20.03.2012Понятие дигибридного скрещивания организмов, различающихся по двум парам альтернативных признаков (по двум парам аллелей). Открытие закономерностей наследования моногенных признаков австрийским биологом Менделем. Законы наследования признаков Менделя.
презентация [3,3 M], добавлен 22.03.2012Изменчивость (биологическая)- разнообразие признаков и свойств у особей и групп особей любой степени родства, ее формы. Генетическая рекомбинация и трансформация. Изменчивость фагов и микроорганизмов. Практическое применение изменчивости микроорганизмов.
реферат [20,6 K], добавлен 26.12.2013Типы наследования признаков. Законы Менделя и условия их проявления. Сущность гибридизации и скрещивания. Анализ результатов полигибридного скрещивания. Основные положения гипотезы "Чистоты гамет" У. Бэтсона. Пример решения типовых задач о скрещивании.
презентация [22,0 K], добавлен 06.11.2013Генетика как наука о наследственности от Г. Менделя и сегодня. Хромосомные нарушения и наследственные болезни как следствие изменений генетической информации. Методы изучения генетики человека и роль воспроизводства в развитии живого, клонирование.
реферат [17,3 K], добавлен 29.06.2008Закон Менделя, заключающийся в том, что гибриды первого поколения при дальнейшем размножении расщепляются, в потомстве снова появляются особи с рецессивным фенотипом. Изучение методов генетики, таких как генеалогический, близнецовый и цитогенетический.
презентация [338,5 K], добавлен 10.01.2011Этапы развития генетики как науки и вклад отечественных ученых в ее развитие. Гибридологический метод Менделя. Хромосомная теория наследственности Моргана. Мутации как нарушения последовательности чередования нуклеиновых оснований в структуре гена.
реферат [36,0 K], добавлен 16.01.2012Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.
презентация [4,0 M], добавлен 21.02.2014