Физиология микроорганизмов
Характеристика биохимических и энергетических процессов, которые происходят в бактериальной клетке и обеспечивают воссоздание ее структурного материала. Изучение химического состава и дыхания микроорганизмов, особенностей метаболизма и развития бактерий.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 13.11.2014 |
Размер файла | 22,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
Содержание
Введение
1. Химический состав микроорганизмов
2. Ферменты микроорганизмов
3. Метаболизм бактерий
4. Дыхание микроорганизмов
5. Рост и размножение микроорганизмов
Выводы
Список литературы
Введение
Физиология микроорганизмов изучает биохимические и энергетические процессы, которые происходят в бактериальной клетке и обеспечивают воссоздание ее структурного материала и энергетические потребности.
Бактерии являються сложными живыми организмами, в которых происходят разнообразные биохимические превращения. Они предопределяют рост, размножение, продукцию ферментов, токсинов и других биологически активных веществ, отвечают за регуляцию функциональной активности клеток, их высокую пластичность и способность адаптироваться к условиям внешней среды.
Человек использовал бактерии, ещё не зная об их существовании. С помощью заквасок, содержащих Бактерии, приготовляли кисломолочные продукты, уксус, тесто и т.д. Впервые бактерии увидел А. Левенгук -создатель микроскопа, исследуя растительные настои и зубной налёт. К концу 19 - началу 20 вв. было выделено большое число бактерий, обитающих в почве, воде, пищевых продуктах и т.п., были открыты многие виды болезнетворных бактерий. Классические исследования Л. Пастера в области физиологии бактерии послужили основой для изучения у них обмена веществ. Вклад в исследование бактерии внесли русские и советские учёные С.Н. Виноградский, В.Л. Омелянский, Л. Исаченко, выяснившие роль бактерии в круговороте веществ в природе, который делает возможной жизнь на Земле. Это направление в микробиологии неразрывно связано с развитием геологии, биогеохимии, почвоведения, с учением В.И. Вернадского о биосфере.
1.Химический состав микроорганизмов
По составу веществ клетки микроорганизмов мало чем отличаются от клеток животных и растений. В них содержится 75-85% воды, остальные 16-25% составляет сухое вещество. Вода в клетке находится в свободном и в связанном состоянии. Связанная вода входит в состав коллоидов клетки (белки, полисахариды и др.) и с трудом высвобождается из них. Свободная вода участвует в химических реакциях, служит растворителем для различных соединений, образующихся в клетке в процессе обмена веществ.
Сухое вещество клетки состоит из органических и минеральных веществ.
Если содержание сухого вещества принять за 100%, то на долю минеральных веществ приходится 2-14%, остальная часть сухого вещества представлена органическими соединениями: белки - до 52%, полисахариды - до 17%, нуклеиновые кислоты (РНК до 16%, ДНК до 3%), липиды - до 9%.
Эти соединения входят в состав различных клеточных структур микроорганизмов и выполняют важные физиологические функции. В клетках микроорганизмов находятся и другие вещества - органические кислоты, их соли, пигменты, витамины и др.
По химическому составу микроорганизмы мало отличаются от других живых клеток. Значительную часть клетки составляет вода: 70-85% от общей массы. Значение воды в жизнедеятельности клетки огромно. В ней растворяются различные химические вещества, диссоциируют электролиты, формируются коллоиды. Поэтому микробы могут расти и размножаться только в питательных средах, содержащих воду. Сухой остаток микробной клетки составляет 15-30%. Из них 90-97% приходятся на долю элементов - органогенов: углерода (50%), кислорода (30%), азота (12%), водорода (8%). Процент остальных зольных элементов, например натрия, калия, кальция, фосфора, железа, магния и др., составляет 3-10. Относительная плотность микробной клетки 1,055. Большинство микроорганизмов имеет отрицательный электрический заряд, а спирохеты - положительный. Органические вещества представлены в клетке в основном белками, углеводами, жирами, нуклеиновыми кислотами: ДНК и РНК. Общее количество органических веществ может значительно колебаться в зависимости от среды обитания (от 40 до 90%) .Белки составляют основную часть органических веществ в клетке (40-80%) и определяют важнейшие биологические свойства микроорганизмов. Это простые белки- протеины и сложные - протеиды. Белки построены из аминокислот, состав которых характерен для различных видов микроорганизмов. Большое значение имеют нуклеопротеиды, представляющие соединения белка с нуклеиновыми кислотами: ДНК и. РНК. Наряду с ними в клетке встречаются гликопротеиды, липопротеиды, хромопротеиды.
Углеводы являются наиболее вариабельной частью клетки (10-30%), и состав их различен не только у разных видов, но даже у штаммов бактерий. Он зависит от возраста и условий развития микробов. Бактерии содержат простые углеводы - моно- и дисахариды, комплексные углеводы - полиозиды и большие углеводные макромолекулы - полисахариды. Углеводы выполняют в клетке пластическую роль, имеют большое значение как источник энергии, необходимой для обменных процессов. У некоторых микроорганизмов, например пневмококков, полисахаридный состав капсул настолько специфичен, что определение его позволяет разграничить отдельные типы внутри вида. В настоящее время раскрыты и изучены полисахаридные комплексы большинства кишечных бактерий, менингококков, пневмококков и многих других микроорганизмов.Большое значение имеют также комплексные углеводы, содержащие азот. Например, глюкозамин, входящий в состав клеточной стенки бактерий, определяет ее форму.
Липиды состоят в основном из нейтральных жиров, фосфолипидов и свободных жирных кислот. Количество их зависит от возраста культуры и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%. Фосфолипиды являются составной частью цитоплазматической мембраны. Липиды также входят в комплекс веществ, образующих клеточные стенки бактерий, особенно грамотрицательных, и определяющих токсические свойства микроорганизмов. Количество-липидов в клетке колеблется от 1 до 40%.
Нуклеиновые кислоты - дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) являются важнейшей составной частью клетки. В ДНК бактерий зашифрована вся наследственная информация клетки, а РНК участвует в процессах считывания этой информации, передачи и синтеза белка. Количество нуклеиновых кислот достигает 5-30%.В состав бактерий входят также сложные небелковые азотистые вещества: различные пурины, полипептиды, аминокислоты.
Минеральный состав микроорганизмов различен и меняется в зависимости от состава питательной среды. Основные элементы, необходимые для жизнедеятельности клетки,- натрий, калий, фосфор, кальций, магний, железо, медь, сера, хлор, кремний. Фосфор, например, входит в состав нуклеиновых кислот, фосфолипидов, многих коферментов. Некоторые фосфорорганические соединения являются своеобразными аккумуляторами энергии, например аденозинтрифосфорная кислота (АТФ). Железо - обязательная часть дыхательных ферментов клетки. Медь содержится в некоторых дыхательных ферментах. Натрии играет роль в поддержании осмотического давления в клетке.
2.Ферменты Микроорганизмов
Ферменты - вещества, способные каталитически влиять на скорость биохимических реакций. Они играют важную роль в жизнедеятельности микроорганизмов. Открыты ферменты в 1814 г. русским академиком К.С.Кирхгофом. Как и другие катализаторы, ферменты в реакциях превращения веществ принимают участие лишь в качестве посредников. Количественно в реакциях они не расходуются. Ферменты микроорганизмов обладают целым рядом свойств: При температуре до 40-50єС увеличивается скорость ферментативной реакции, но затем скорость падает, фермент перестает действовать. При температуре выше 80°С практически все ферменты необратимо инактивируются.
По химической природе ферменты бывают однокомпонентными, состоящими только из белка, и двухкомпонентными, состоящими из белковой и небелковой частей. Небелковая часть у ряда ферментов представлена тем или иным витамином. На активность фермента оказывает большое влияние рН среды. Для одних ферментов наилучшей является кислая среда, для других - нейтральная или слабощелочная.
Ферменты обладают высокой активностью. Так, молекула каталазы разрушает в минуту 5 млн молекул пероксида водорода, а 1 г амилазы при благоприятных условиях превращает в сахар 1 т крахмала.
Каждый фермент обладает строгой специфичностью действия, т. е. способностью влиять только на определенные связи в сложных молекулах или лишь на определенные вещества. Например, амилаза вызывает расщепление только крахмала, лактаза - молочного сахара, целлюлаза - целлюлозы и т. д.
Ферменты, присущие данному микроорганизму и входящие в число компонентов его клетки, называются конститутивными. Существует и другая группа - ферменты индуцируемые (адаптивные), которые вырабатываются клеткой только при добавлении к среде вещества (индуктора), стимулирующего синтез данного фермента. В этих условиях микроорганизм синтезирует фермент, которым, он не обладал.
По характеру действия ферменты подразделяются на экзоферменты, которые выделяются клеткой во внешнюю среду, и эндоферменты, которые прочно связаны с внутренними структурами клетки и действуют внутри нее.Хотя ферменты вырабатываются клеткой, но и после ее смерти они временно еще остаются в активном состоянии и может произойти автолиз (от греч. аutos - сам, lysis - растворение) - саморастворение или самопереваривание клетки под влиянием ее собственных внутриклеточных ферментов.
В настоящее время известно более 1000 ферментов. Ферменты делятся на 6 классов:
1-й класс - оксидоредуктазы - играют большую роль в процессах брожения и дыхания микроорганизмов, т. е. в энергетическом обмене. 2-й класс - трансферазы (ферменты переноса) катализируют реакции переноса групп атомов от одного соединения к другому.
3-й класс - гидролазы (гидролитические ферменты). Они катализируют реакции расщепления сложных соединений (белки, жиры и углеводы) с обязательным участием воды.
4-й класс - лиазы включают двухкомпонентные ферменты, отщепляющие от субстратов определенные группы (СО2, Н2О, NНз и т. д.) негидролитическим путем (без участия, воды).
5-й класс - изомеразы - это ферменты,.катализирующие обратимые превращения органических соединений в их изомеры.
6-й класс -лигазы (синтетазы) - это ферменты, катализирующие синтез сложных органических соединений из более простых. Лигазы играют большую роль в углеводном и азотном обмене микроорганизмов.
Применение ферментов микробов в пищевой и легкой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Препараты амилолитических ферментов применяют при производстве этилового спирта из крахмалосодержащего сырья вместо зернового солода, а в хлебопекарной промышленности взамен солода при приготовлении заварного ржаного хлеба; добавляют грибные амилазы и в пшеничное тесто. Поскольку в этом препарате помимо амилазы имеются, хотя и в небольшом количестве, другие ферменты (мальтаза, протеазы), процесс изготовления теста ускоряется, увеличиваются объем и пористость хлеба, улучшаются его внешний вид, аромат и вкус. Применение этих ферментных препаратов в пивоварении позволяет частично заменить солод ячменем. С помощью грибной глюкоамилазы получают глюкозную патоку и кристаллическую глюкозу из крахмала. Пектолитические ферментные грибные препараты используют в соко-морсовом производстве и виноделии. В результате разрушения пектина этими ферментами ускоряется процесс выделения сока, повышается его выход, фильтрация и осветление. Ферментные препараты, содержащие микробные протеазы, используют для повышения стойкости (предохранения от белкового помутнения) вина и пива, а в сыроделии - взамен (частично) сычужного фермента. Целесообразно применять микробные протеазы для размягчения мяса, ускорения созревания мяса и сельди, получения из отходов рыбной и мясной промышленности пищевых гидролизатов и для других технологических процессов переработки животного и растительного сырья.
3.Метаболизм бактерий
Метаболизм (обмен веществ) бактерий представляет собой совокупность двух взаимосвязанных противоположных процессов катаболизма и анаболизма.
Катаболизм (диссимиляция) - распад веществ в процессе ферментативных реакций и накопление выделяемой при этом энергии в молекулах АТФ.
Анаболизм (ассимиляция) - синтез веществ с затратой энергии.
Особенности метаболизма у бактерий состоят в том, что: его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных; процессы диссимиляции преобладают над процессами ассимиляции; субстратный спектр потребляемых бактериями веществ очень широк - от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества - загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения); бактерии имеют очень широкий набор различных ферментов - это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.
Ферменты бактерий по локализации делятся на 2 группы:
экзоферменты - ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (например, протеазы, полисахариды, олигосахаридазы);
эндоферменты - ферменты бактерий, действующие на субстраты внутри клетки (например, ферменты, расщепляющие аминокислоты, моносахара, синтетазы).
Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи, т.е. для одних - репрессируется, а для других - индуцируется субстратом. Ферменты, синтез которых зависит от наличия соответствующего субстрата в среде (например, бета-галактозидаза, бета-лактамаза), называются индуцибельными.
Другая группа ферментов, синтез которых не зависит от наличия субстрата в среде, называется конститутивными (например, ферменты гликолиза). Их синтез имеет место всегда, и они всегда содержатся в микробных клетках в определенных концентрациях.
Изучают метаболизм бактерий с помощью физико-химических и биохимических методов исследования в процессе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих то или иное соединение в качестве субстрата для трансформации. Такой подход позволяет судить об обмене веществ путем более детального изучения процессов различных видов обмена (белков, углеводов) у микроорганизмов.
4. Дыхание микроорганизмов
Дыхание микробов представляет собой биологическое окисление различных органических соединений и некоторых минеральных веществ, в результате чего образуется энергия в виде (АТФ), часть которой используется микробной клеткой в физиологических процессах жизнедеятельности, а остальное количество выделяется в окружающую среду. Биологическое окисление протекает путем дегидрирования (отщепления водорода) от окисляемого соединения и последующего присоединения его к активному кислороду или к другому акцептору (если окисление идет в анаэробных условиях). Совокупность окислительно-восстановительных ферментных реакций, осуществляющих последовательный перенос водорода с окисляемого продукта на кислород, называют тканевым дыханием.
Биологическое окисление субстрата происходит по типу прямого окисления или дегидрогенирования.
Прямое окисление осуществляется с помощью оксидаз путем непосредственного окисления вещества кислородом воздуха. Прямое окисление присуще большинству сапрофитных микроорганизмов.
Непрямое окисление представляет собой реакцию дегидрогенирования и сопровождается одновременным переносом двух электронов. В зависимости от условий, в которых протекают реакции дегидрогенирования, различают аэробное и анаэробное дегидрогенирование.
Классификация микроорганизмов по типу дыхания:
Облигатные аэробы - развиваются только при свободном доступе кислорода.
Микроаэрофилы - нуждаются в незначительном количестве кислорода.
Облигатные анаэробы - развиваются без доступа кислорода.
Факультативные анаэробы - могут развиваться как при доступе кислорода так и без него.
5. Рост и размножение микроорганизмов
Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.
Рост - это увеличение размеров отдельной особи.
Размножение - способность организма к воспроизведению.
Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.
Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.
При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:
1. Фаза исходная (латентная) - микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.
2. Фаза логарифмического инкубационного роста - идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 15-30 мин.
3. Стационарная фаза - число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.
4. Фаза отмирания - характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.
5ч 10 15 20 25 30 35 40 45 Время нед нед
Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.
При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур. Чтобы знать, как получить чистую культуру того или иного микроорганизма, надо внимательно ознакомиться с практической частью данной главы.
Выводы
Микроорганизмы служат излюбленными объектами для решения общих вопросов генетики, биохимии, биофизики, космической биологии и др. Культуры бактерий применяются для количественного определения аминокислот, витаминов, антибиотиков. Плодородие почв в значительной мере связано с жизнедеятельностью бактерии, минерализующих растительные и животные остатки с образованием соединений, усваиваемых с.-х. растениями. Вместе с тем, синтезируя живое вещество клеток, бактерии накапливают большие количества органических соединений в почве. В верхних слоях окультуренной почвы на площади в 1 га содержится несколько тонн бактериальных клеток. Живущие в почве азотфиксирующие бактерии обогащают почву азотом. Исключительно велика роль клубеньковых бактерий, фиксирующих газообразный азот. Заражение семян бобовых растений нитрагином - препаратом, содержащим клетки клубеньковых бактерий, повышает урожай растений и накопление азота в почве. С помощью бактерий, сбраживающих пектиновые вещества, осуществляют мочку льна, конопли, кенафа и других лубяных культур. Разные виды бактерии применяют при получении из молока кисломолочных продуктов, масла и сыра.
микроорганизм бактерия клетка
Список литературы
1. Учебное пособие. Мандро Николай Михайлович, Землянская Наталья Ивановна, Бондаренко Валерий Васильевич, Бурик Виктор Владимирович. Основы общей микробиологии, вирусологии и болезни зверей и птиц.
2. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 8: Инженерная энзимология. - М.: 1987 г.
3. В.М. Богданов, Р.С. Баширова и др. Техническая микробиология пищевых продуктов. - М.: 1968 г.
4. С. Прескотт, С. Дэнс Техническая микробиология. - М.: 1952 г.
5. Безбородов А.М., Астапович Н.И. Секреция ферментов у микроорганизмов. - М.: 1984 г.
Размещено на Allbest.ru
...Подобные документы
Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.
реферат [21,1 K], добавлен 29.09.2009Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.
лекция [1,3 M], добавлен 12.10.2013Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.
презентация [35,1 M], добавлен 11.11.2013Наследственность и генетические рекомбинации у бактерий. Химический состав, размножение и особенности питания бактериальной клетки. Ферменты микроорганизмов. Мутация, молекулярные изменения в хромосоме. Деление стафилококка путем врастания перегородок.
презентация [2,4 M], добавлен 23.02.2014Понятие дыхания как физиологического процесса, обеспечивающего нормальное течение метаболизма организмов. Виды дыхания микроорганизмов. Химизм аэробного дыхания. Достоинства и недостатки дыхания кислородом. Появление аэробного дыхания в процессе эволюции.
реферат [391,8 K], добавлен 11.06.2014Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.
презентация [6,4 M], добавлен 13.09.2015Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.
контрольная работа [223,5 K], добавлен 02.10.2011Характеристика строения бактериальной клетки. Механизмы поступления питательных веществ к клетку. Описание биохимической структуры микроорганизмов. Генетический материал бактерий, изображение их ядерной структуры. Симбиотические отношения микроорганизмов.
курсовая работа [391,9 K], добавлен 24.05.2015Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.
презентация [3,8 M], добавлен 24.01.2017Типы дыхания микроорганизмов. Транспорт электронов при дыхании и различных типах анаэробного способа получения энергии. Наиболее доступные источники углерода для бактерий. Механизм поступления питательных веществ. Использование неорганического азота.
реферат [799,3 K], добавлен 26.12.2013Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.
реферат [27,2 K], добавлен 21.01.2010Рассмотрение минерального состава микробной клетки. Описание классов химических соединений и их функций. Изучение органогенов, микроэлементов и ультрамикроэлементов молекул, их локализации в микробной клетке. Прокариотические и эукариотические клетки.
дипломная работа [427,2 K], добавлен 15.01.2015Обобщение факторов, от которых зависит рост и размножение микроорганизмов, то есть увеличение количества химических компонентов микробной клетки. Изучение понятия бактериальной массы, которая выражается плотностью бактерий. Завершенное деление клетки.
реферат [19,9 K], добавлен 10.05.2012Изучение особенностей микроорганизмов. Микроэкологический риск при использовании высоких технологий. Характеристика технологии приготовления препаратов и опытов. Правила микроскопирования. Влияние гигиенических навыков на распространение микроорганизмов.
научная работа [23,6 K], добавлен 06.09.2010Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.
шпаргалка [50,2 K], добавлен 04.05.2009Общие понятия об обмене веществ и энергии. Анализ потребностей прокариот в питательных веществах. Типы метаболизма микроорганизмов. Сравнительная характеристика энергетического метаболизма фототрофов, хемотрофов, хемоорганотрофов и хемолитоавтотрофов.
курсовая работа [424,3 K], добавлен 04.02.2010Изучение морфологии, ультраструктуры, физиологических свойств и таксономического положения термофильных метанобразующих бактерий. Анализ особенностей дыхания, питания, размножения и энергетических процессов. Влияние температуры на активность бактерий.
реферат [215,6 K], добавлен 31.01.2015Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.
презентация [1,1 M], добавлен 17.03.2015Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.
реферат [37,3 K], добавлен 26.04.2010Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.
реферат [28,8 K], добавлен 05.03.2016