Особенность генетической инженерии

Характеристика истории прикладной генетической инженерии. Синтез совокупности приёмов, методов и технологий получения рекомбинантной дезоксирибонуклеиновой кислоты. Особенность влияния генов на человека. Анализ среды и наследственности организма.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.12.2014
Размер файла 23,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Генная инженерия

1.1 История генной инженерии

1.2 Среда и наследственность

1.3 О влиянии генов на человека

Заключение

Список литературы

Введение

Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

Генетическая инженерия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Наследственность - присущее всем организмам свойство сохранять и передавать потомству характерные для них признаки, особенности строения, функционирования и индивидуального развития.

Все дело в генах, с завистью говорим мы, объясняя чей-то блестящий талант: «У них в роду все такие способные!» Все дело в генах, с горечью говорим мы, видя, как человек страдает от наследственного недуга: «У них на роду написано болеть!»

Век биологии - век новых сражений за истину.

За последние десятилетия ученые с известной степенью вероятности установили в каких именно хромосомах находятся гены, мутация которых вызывает ту или иную болезнь. Однако замена «дефектных» генов на здоровые не только крайне сложна, но и не очень эффективна - одно и то же заболевание бывает вызвано разными мутациями, из-за чего ход болезни часто не поддается прогнозированию.

Актуальность данной темы обусловлена тем, что за сто лет своего существования генетика добралась до человека, и теперь уже она его не оставит. Она нарисует его индивидуальный генетический портрет, даст ему в руки миниатюрный прибор, в котором будет собрана вся его наследственная информация. Каждый получит предупреждение: в каком возрасте болезнь Альцгеймера приступит к разрушению его памяти, насколько велик для него риск заболеть раком или диабетом. Генетика порождает новую медицину - к этому и стремились сто лет назад ее основатели.

Целью данной работы является изучение генной инженерии.

Исследование данной работы предопределило ряд задач:

Рассмотреть историю генной инженерии.

Проанализировать влияние генов на человека.

В качестве теоретической базы были использованы работы Ж. Бейсона, А. Волкова и других авторов.

1. Генная инженерия

1.1 История генной инженерии

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50 - 60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали ее вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно условно разделить на три этапа. Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование. Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных. Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг, С. Коэн, Х. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.

Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК .

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Например, получение «биологических реакторов» - микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определёнными ценными для человека признаками. Методы генной инженерии позволяют провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний.

Технология рекомбинантных ДНК использует следующие методы:

специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

конструирование рекомбинантной ДНК;

гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

введение рекомбинантной ДНК в клетки или организмы.

1.2 Среда и наследственность

Излечивая больного, предотвращая распространение инфекционных заболеваний, врач использует могучее влияние среды на живой организм. Лечить - это значит так изменить среду, чтобы эти изменения шли на пользу больному, помогая ему бороться с болезнью. В борьбе с инфекциями наука достигла поразительных результатов. Лечение наследственных или врожденных заболеваний - дело гораздо более трудное. В случае врожденной болезни инфицирующий возбудитель отсутствует. Нет врага, которого следует уничтожить. Излечимы ли наследственные болезни, возможна ли их профилактика? Неужели действительно нет способов воздействовать извне на наследственный недуг, снять с помощью лекарства, диеты, лечебной гимнастики, хирургическим путем, наконец, симптомы заболевания?

Наследственно обусловленные болезни человека привлекают к себе в настоящее время огромное внимание ученых всех стран. Создаются специальные научные институты для их изучения, периодически созываются съезды по медицинской генетике, издаются специальные журналы. Эта новая глава медицины развивается быстрым темпом. Современному человечеству удалось в какой-то мере справиться с рядом болезней, таких, как многие инфекции (туберкулез, оспа, тифы, сифилис, малярия и др.) или как многие хирургические заболевания, вследствие чего значительно увеличилась средняя продолжительность жизни современных людей; в то же время в отношении наследственных болезней до последнего времени почти ничего еще не было сделано. Понятен тот огромный интерес, который в настоящее время привлекают к себе эти заболевания.

Совершенствование методов биохимического исследования позволило выделить группу заболеваний почек, в развитии которых ведущую роль играют наследственные факторы. Клинический диагноз этих заболеваний весьма затруднен, т.к. по течению они напоминают нефрит или пиелонефрит; их предложено называть нефритоподобными заболеваниями почек (нефропатиями). Важная роль при этом принадлежит тщательному изучению семейного анамнеза, составлению и анализу родословной. Данные лабораторных исследований характеризуются отсутствием свойственных нефриту признаков - нет отеков или повышения кровяного давления.

Генетическую основу своего здоровья нужно учитывать именно для того, чтобы не болеть. Американские медики разработали тест под шуточным названием «Доживете ли до семидесяти?». Ученые собрали большой статистический материал и сделали выводы относительно влияния некоторых особенностей образа жизни и наследственности человека на его долголетие. Оказалось, физический труд в отличие от умственного прибавляет несколько лет жизни. Спорт также увеличивает ее продолжительность. Установлено, что лица, занимающиеся спортом 5 раз в неделю, живут на четыре года дольше; 2-3 раза в неделю - на два года дольше, чем те, кто игнорирует физические нагрузки или обращается к спорту лишь эпизодически. Как видим, занятия физической культурой благотворно влияют на человека, и людям, занятым умственным трудом, необходимо компенсировать ограничение двигательной активности. Но вернемся к тесту. Длительный сон (свыше 10 часов в сутки) отрицательно влияет на продолжительность жизни, сокращая ее на 4 года по сравнению с 7-8-часовым сном, что также объясняется снижением двигательной активности, а значит, и ухудшением кровообращения. Тест показал, что агрессивные люди вспышками гнева укорачивают свой век, тогда как спокойные - продляют его благодаря собственной уравновешенности. Разница в продолжительности жизни этих двух категорий лиц составляет шесть лет. На продолжительность жизни отрицательно влияют курение, употребление спиртного, наркотиков, избыточный вес, положительно влияет образование. Среднее удлиняет ее на год, а высшее - на два. Образование развивает интеллект и культуру, которые влияют на всю организацию жизни человека. генетический инженерия наследственность организм

1.3 О влиянии генов на человека

Одни и те же вопросы, задаваемые уже не первый год, сближают душу и тело и тут же непоправимо разделяют их. Неужели гены полностью и изначально программируют нашу жизнь? Неужели мы не способны измениться вообще? Или же наше поведение можно объяснить влиянием внешней среды, умением чему-то учиться? Итак, может ли человек развиваться, или все предопределено от века?

На протяжении всего XX столетия ученые по-разному отвечали на эти важнейшие вопросы бытия. В самом начале века была популярна вульгарная теория наследственности. В двадцатые годы маятник качнулся в обратную сторону. Заговорили о теории «бихевиоризма». Внезапно первопричиной всему стала окружающая среда. Самого же человека, как утверждали поклонники «новоуча» (вот оно, «время перековки»!), можно научить буквально всему. Человек есть существо перевоспитываемое. Итак, из непокорного материала он прямо на глазах превращался в пластилин, поднесенный к перстам социальных и политических ваятелей. В конце семидесятых годов империя биологов нанесла ответный удардуши, духа, сознания, эго - вылились в череду беспрерывных поражений. Новые сведения о нашей природе поступали одно за другим. В последние годы не проходило и месяца, чтобы не выявлялось: «Ген такой-то ответствен за то-то». Список казался неисчерпаемым. Среди десятков других «управделами» отрекомендовались ген авантюризма, ген обжорства, ген верности, ген робости, ген алкоголизма. Даже религиозность, политические воззрения или социальная позиция якобы передавались по наследству. Со времен иронических пассажей Джонатана Свифта мир не казался таким предопределенным, как это явствовало из откровений генетиков.

«За несколько дней до сотворения мира, - говорил он, - определено было, чтобы мой нос и этот столб столкнулись, и поэтому провидение сочло нужным послать нас в мир одновременно и сделать соотечественниками и согражданами. Если бы глаза мои были открыты, то, по всей вероятности, дело кончилось бы гораздо хуже. Разве не оступаются ежедневно люди, несмотря на всю свою предусмотрительность?» («Сказка бочки», пер. А. Франковского). Ретивые генетики, пожалуй, подправили бы Свифта, сказав, что движением носа, что шмякнулся о столб, конечно же, руководил «дефектный ген», мешавший индивиду держать нос по ветру и, наоборот, . Преемники «теории наследственности» бросились в новую атаку. Они опирались на поразительные открытия, сделанные генетиками.

Между тем человек становился все «прозрачнее». Ученые заявили, что такие наклонности человека, как агрессивность или гомосексуализм, тоже коренятся в наших генах. Подобные открытия провоцировали следующий вывод: ген агрессивности управляет поведением человека, в то время как его обладатель не несет никакой ответственности за совершенные им деяния. «Несчастного хозяина гена» - возьмем самый крайний случай - нельзя даже осудить за убийство. Ген, знаете ли, попутал. Под выстрелами биологов падает бездыханное тело юриспруденции. Оппоненты говорят обратное: мы всегда имеем дело не только с различными генетическими факторами, но и с окружающим нас миром.

Понятие «окружающий мир» имеет мало общего с привычным термином «среда». Как считают генетики, «окружающий мир» не является чем-то неизбежно-императивным для человека, чем-то вроде клетки, в которую заточен бедняга, «имевший несчастие родиться». Нет, человек сам выбирает, выискивает себе свою среду (даже в темном царстве ребенок может плениться лучиком света), воздействует на среду и, в свою очередь, ею же, своей избранницей, переделывается - таким образом, человек и окружающая его среда находятся, так сказать, в «диалоговом режиме»: «Она его заела, он ее достал».

Гены решают многое, но не все. Мы уступаем им нашу конституцию, но то, что восстает против всеобщего закона - дух, - становится достоянием нашего знания, нашей воли. Да, мы часто идем на поводу у генов. Мы наследуем цвет глаз и окраску волос, форму носа и оттенок кожи. Мы наследуем многие недуги. Все, с чем мы приходим в жизнь, впрямь заложено в наших генах. Они - инструкция нашей конструкции. (Если точно говорить: наследственность определяет норму реакции, норму изменчивости.) Именно они определяют строение ферментов и протеинов, жизненно важных для работы всех клеток нашего организма. И все же, если в генах нет какого-то уж очень серьезного изъяна, любые их вариации можно как-то компенсировать путем влияния, воздействия окружающих, подражания им.

Заключение

Проделанная работа позволяет сделать вывод о том, что на технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний. Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, можно исправлять дефектные гены и лечить наследственные заболевания.

Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Сейчас, даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

Таким образом, современное состояние науки о наследственности и хромосомных болезнях не дает никаких оснований для безучастного наблюдения над проявлением тяжелых наследственных пороков у человека, как это имело место еще недавно. Однако сегодня ученым удалось выяснить только связь между нарушениями хромосомного аппарата, с одной стороны, с различными патологическими изменениями в организме человека - с другой. Касаясь вопроса о завтрашнем дне медицинской генетики, можно сказать, что установление взаимосвязи между наследственными заболеваниями и хромосомными повреждениями представляет для клинической медицины большой практический интерес. Выявление причин первоначальных нарушений в системе хромосом, а также изучение механизма развития хромосомных болезней - также задача ближайшего будущего, причем задача первостепенного значения.

Список литературы

1. Бейсон Ж. Генетика. - М.: Просвещение, 2007. - 128с.

2. Берг Р. Наследственность и наследственные болезни человека. - М.: Наука, 2007. - 140с.

3. Волков А. В поисках «человека прозрачного»: Как гены влияют на человека // Знание-сила. - 2006. - № 10. -С.61-63

4. Гайсинович А.Е. Зарождение генетики. - М.: Наука, 2007. - 194

5. Голубовский М. И снова: о наследовании приобретенных признаков // Знание-сила. - 2007. - № 8. - С.44-52

6. Дубинин Н.П. Генетика вчера, сегодня и завтра. - М.: Наука, 2008. - 210с.

7. Иванова Л. Забота об окружающей среде - забота о здоровье // Воспитание школьников. - 2008. - № 10. - с.45 - 46

8. Лурия А.Р. О природе психологических функций и ее изменчивости в свете генетического анализа // Вопросы психологии. - 2007. - № 4. - С.4-19

9. Сойфер В. Арифметика наследственности. - М., 2007. - 253с.

10. Строганов Ю. Монстры из докторского альбома. // Труд, 1996. - 2 апр. С.4.

11. Фишер Э. Дешифровщики наследственности: Об истории и достижениях генетики // ГКО. - 1999. - № 9. - С.131-140

12. Щелкунов С.Н. Генетическая инженерия. - Новосибирск, 2006. - 304с.

Размещено на Allbest.ru

...

Подобные документы

  • История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат [55,0 K], добавлен 26.10.2011

  • Раскрытие содержания генетической инженерии как системы использования методов молекулярной генетики и молекулярной биологии для конструирования наследственных свойств организмов. Синтез ДНК и полимеразная цепная реакция. Ферменты генетической инженерии.

    презентация [2,6 M], добавлен 05.02.2014

  • Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат [32,4 K], добавлен 23.07.2008

  • Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат [26,3 K], добавлен 11.11.2010

  • Ферменты генетической инженерии. Типы нуклеаз и их действия. Методы получения химер. Использование специфических термостабильных ДНК-полимераз. Ферментативная активность рестриктаз. Образование фосфодиэфирной связи между двумя основаниями одной цепи ДНК.

    контрольная работа [15,0 K], добавлен 21.04.2011

  • Явление наследственности. Современная медицинская генетика. Генетика человека на этапе становления и ее проблемы. Ген цветовой слепоты (дальтонизм). Методы генетической инженерии и биотехнологии по конструированию микроорганизмов с заданными свойствами.

    реферат [32,7 K], добавлен 31.10.2008

  • Строение молекулы ДНК. Ферменты генетической инженерии. Характеристика основных методов конструирования гибридных молекул ДНК. Введение молекул ДНК в клетку. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК.

    реферат [2,7 M], добавлен 07.09.2015

  • Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.

    презентация [325,1 K], добавлен 24.02.2015

  • Экспрессия генов - способность контролировать синтез белка. Структура и свойства генетического кода, его универсальность и просхождение. Передача генетической информации, транскрипция и трансляция. Митохондриальный и хлоропластный генетические коды.

    реферат [41,5 K], добавлен 27.01.2010

  • Пути получения гена и создание генетической конструкции. Получение генетически измененных организмов. Примеры генной инженерии: светящиеся в темноте коты, эко-свинья, ядовитая капуста, быстрорастущий лосось, лекарственные яйца, банановые вакцины.

    презентация [469,9 K], добавлен 26.10.2016

  • Регуляция экспрессии у генетически модифицированных растений. Исследование функционирования промоторов бактериального и вирусного происхождения в трансгенных растениях. Регуляторные последовательности, используемые в генетической инженерии растений.

    курсовая работа [39,4 K], добавлен 03.11.2016

  • Выявление параллелизма в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Понятие генетической рекомбинации, исследование явления на дрозофилах, проведенное Т. Морганом. Основные положения хромосомной теории наследственности.

    презентация [582,2 K], добавлен 28.12.2011

  • Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.

    контрольная работа [617,9 K], добавлен 14.02.2013

  • Характеристика среды как совокупности окружающих человека условий. Способность родительских организмов передавать потомству все свои признаки и свойства, роль наследственных и средовых факторов развития человека. Связь наследственности и среды обитания.

    презентация [3,9 M], добавлен 02.01.2012

  • Последовательность приемов генетической инженерии, используемая при создании генетически модифицированных организмов. Классификация основных типов рестриктаз, используемых для фрагментации ДНК. Ферменты, синтезирующие ДНК на матрице ДНК или РНК.

    презентация [97,3 K], добавлен 27.04.2014

  • Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.

    презентация [6,2 M], добавлен 24.06.2013

  • Организация генома и кодируемые белки вируса иммунодефицита человека. Транскрипция провирусной дезоксирибонуклеиновой кислоты и синтез вирусных веществ. Анализ получения сыворотки и плазмы крови. Характеристика референсных сиквенсов и электрофореграмм.

    дипломная работа [1,3 M], добавлен 04.06.2017

  • Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация [2,2 M], добавлен 21.02.2014

  • Сущность генетической инженерии, методы идентификации трансгенных организмов; получение и технология ГМО, отличие от традиционной селекции, преимущества и недостатки. Состояние и перспективны развития рынка генетически модифицированных товаров в мире.

    курсовая работа [1,1 M], добавлен 20.11.2010

  • Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация [615,8 K], добавлен 26.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.