Особенности распределения ферментов в клетке

Фракционирование клеточных структур. Способы выделения клеточных органелл. Физико-химические свойства цитоплазмы. Ферменты, их химическая природа и функциональное значение. Митохондрии и их важные биохимические функции. Транспортные системы клетки.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 08.12.2014
Размер файла 445,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМ. Н.И. ПИРОГОВА»

КАФЕДРА БИОХИМИИ

Реферат

по теме: «Особенности распределения ферментов в клетке»

Подготовили студентки 2-ого курса,

207-ой группы, лечебного факультета

Содержание

1. Обнаружение локализации фермента

2. Внутриклеточная локализация

Список используемой литературы

1. Обнаружение локализации фермента

клетка органелла митохондрия цитоплазма

Фракционирование клеточных структур

Разработан ряд методик для исследования изолированных отделов клетки.

Самым распространённым методом выделения клеточных структур является центрифугирование.

Виды центрифугирования:

1.Дифференциальное центрифугирование - специальный способ разделения веществ, основанный на разной скорости седиментации отдельных частиц.

В препаративной энзимологии чаще всего пользуются методом дифференциального центрифугирования гомогенатов тканей.

Применяют таким образом:

-разрушают клеточную структуру с помощью подходящего дезинтегратора

-получают гомогенизированную массу

-массу подвергают дифференциальному центрифугированию при температуре 0-4°С.

Для выделения интактных органелл важно, чтобы среда, в которой проводится гомогенизация, была изотонической, т.е. осмотическое давление буфера должно соответствовать давлению внутри клетки. Если раствор гипотоничен, органеллы будут «впитывать» дополнительную воду и лопнут, а в гипертонических растворах они, напротив, сморщиваются.

Вслед за гомогенизацией следует фильтрование через марлю для удаления интактных клеток и соединительных тканей. Собственно фракционирование клеточных органелл проводится с помощью дифференциального центрифугирования, т.е. центрифугирования при различных скоростях вращения ротора. При этом ступенчатое увеличение центробежной силы (которую принято выражать величиной, кратной нормальному ускорению свободного падения g = 9,81 м/с2) приводит к последовательному осаждению различных органелл, т.е. их разделению в соответствии с плотностью и размером.

Изучение распределения ферментов.

Обычно распределение ферментов изучают в последовательных индивидуальных фракциях, изолированных при дробном центрифугировании гомогенатов:

а. фракции ядер, которые получают при низкой скорости центрифугирования;

б. фракции митохондрий, которые получают при средней скорости центрифугирования (фракция митохондрий не является гомогенной, поскольку из неё удаётся изолировать частицы, т.е. лизосомы, размер которых колеблется между митохондриями и микросомами)

г. фракции микросом (или рибосом), которые получают при очень высокой скорости центрифугирования; (фракция микросом является гетерогенной, поскольку вместе со своим источником - эндоплазматическим ретикулуумом - имеет неоднородное строение)

д. растворимая фракция цитоплазмы - супернатант.

Выделение клеточных органелл обычно проводят при низких температурах (0-5°С) для того, чтобы уменьшить степень деградации материала за счет реакций, катализируемых ферментами; последние высвобождаются в процессе разрушения ткани. Добавление тиолов и хелатирующих агентов необходимо для защиты функциональных SH-групп от окисления.

Молекулы-маркеры

В процессе фракционирования важно контролировать чистоту фракций. Присутствие в определенной фракции той или иной органеллы и наличие других компонентов определяют с помощью молекул-маркеров. Обычно это органеллоспецифичные ферменты (ферменты-маркеры). Распределение ферментов-маркеров в клетке отражает локализацию в ней соответствующих каталитических реакций. Более детально эти вопросы обсуждаются в разделах, посвященных отдельным органеллам.

Зональное центрифугирование

Зональное центрифугирование представляет собой эффективный способ разделения структур, имеющих сходную плавучую плотность, но различающихся по форме и массе частиц.

В качестве примеров можно привести разделение субъединиц рибосом, различных классов полисом, а также молекул ДНК, имеющих различную форму.

Центрифугирование осуществляют либо в бакет-роторах, либо в специально устроенных зональных роторах для предотвращения конвекции при центрифугировании в стаканах бакет-ротора или в камере зонального ротора создают слабый градиент (обычно сахарозы). Пробу наносят в виде зоны или узкой полосы в самом верху градиентного столбика. Для субклеточных частиц обычно используется градиент сахарозы от 15 до 40% (вес/объем) большинство этих частиц в достаточной степени разделяется центрифугированием при 100000 д в течение 1--4 ч.

Центрифугирование в градиенте плотности

Наиболее распространенный способ создания градиента плотности -- центрифугирование раствора полимера в смеси двух или более жидкостей, отличающихся по плотности, молекулярным массам или по обоим показателям. Полимер собирается в области, где плотность раствора близка к плотности полимера в растворе, т. е. где создаётся парциальный удвоённый объем полимера в смеси растворителей.

Метод центрифугирования в градиенте плотности имеет две разновидности:

1) метод, основанный на измерении скорости седиментации в градиенте сахарозы;

2) метод равновесного центрифугирования, в котором используется градиент хлористого цезия.

В первом варианте используется заранее приготовленный градиент, а во втором -- градиент создается под действием поля центробежных сил непосредственно в ходе эксперимента.

Другие методики разрушения клеток включают ферментативный лизис, разрушающий клеточные стенки, или механическое разрушение замороженных тканей (размолом или с помощью вращающихся ножей; под большим давлением; осмотическим шоком; многократным чередованием замораживания и оттаивания).

Сравнительно легко, обнаружить локализацию фермента методами цито - и гистохимии. Для этого тонкие срезы органа инкубируют с соответствующими субстратами и после инкубации локализацию продукта реакции открывают добавлением подходящих химических реактивов по развитию специфической окраски.

2. Внутриклеточная локализация

Ферменты, участвующие в синтезе белков, нуклеиновых кислот и ферменты энергетического обмена присутствуют во всех клетках организма. Но клетки, которые выполняют специальные функции содержат и специальные ферменты. Так клетки островков Лангерганса в поджелудочной железе содержат ферменты, катализирующие синтез гормонов инсулина и глюкагона. Ферменты, свойственные только клеткам определенных органов называют органоспецифическими: аргиназа и урокиназа - печень, кислая фосфатаза - простата. По изменению концентрации таких ферментов в крови судят о наличии патологий в данных органах.

В клетке отдельные ферменты распределены по всей цитоплазме, другие встроены в мембраны митохондрий и эндоплазматического ретикулума, такие ферменты образуют компартменты, в которых происходят определенные, тесно связанные между собой этапы метаболизма.

Многие ферменты образуются в клетках и секретируются в анатомические полости в неактивном состоянии - это проферменты. Часто в виде проферментов образуются протеолитические ферменты (расщепляющие белки). Затем под воздействием рН или других ферментов и субстратов происходит их химическая модификация и активный центр становится доступным для субстратов.

Существуют также изоферменты - ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию.

Клеточные структуры, имеющие набор ферментов для различных реакций обмена веществ:

1.Клеточная стенка; клеточная мембрана

2.Цитозоль

3.Лизосомы

4.Митохондрии

5. Аппарат Гольджи

6. Эндоплазматическая сеть (ретикулум). Мы рассмотрим ферменты первых четырёх органелл.

1.Клеточная стенка: структура и функции

А. Структура клеточной стенки

Клеточная стенка (нередко в качестве синонима термина "клеточная стенка" в учебной и научной литературе используется термин "клеточная оболочка".) у растений - это структурное образование, располагающееся по периферии клетки, за пределами плазмалеммы, придающее клетке прочность, сохраняющее ее форму и защищающее протопласт.

Клеточная стенка растений противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточных стенок действуют как своеобразный скелет, поддерживающего форму растения и придающего ему механическую прочность. Клеточная стенка, обладая большой прочностью, в то же время способна к росту, и прежде всего к росту растяжением. Эти два в известной степени противоположных требования удовлетворяются за счет особенностей ее строения и химического состава.

Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечный свет. Через нее легко проникают вода и низкомолекулярные вещества, но для высокомолекулярных веществ она полностью или частично непроницаема. У многоклеточных организмов стенки соседних клеток скреплены между собой пектиновыми веществами, образующими срединную пластинку.

При специальной обработке растительных тканей некоторыми веществами (крепкие щелочи, азотная кислота) стенки соседних клеток разъединяются в результате разрушения срединной пластинки. Этот процесс называется мацерацией. Естественная мацерация происходит у перезрелых плодов груши, дыни, персика и др.

В результате тургорного давления стенки соседних клеток в углах могут округляться и между ними образуются межклетники.

Стенка клетки представляет собой продукт жизнедеятельности ее протопласта. Поэтому стенка может расти, только находясь в контакте с протопластом. Однако при отмирании протопласта стенка сохраняется, и мертвая клетка может продолжать выполнять функции проведения воды или играть роль механической опоры.

Основу клеточной стенки составляют высокополимерные углеводы: молекулы целлюлозы (клетчатки), собранные в сложные пучки - фибриллы, образующие каркас, погруженный в основу (матрикс), состоящий из гемицеллюлоз, пектинов и гликопротеидов. Молекулы целлюлозы состоят из большого числа линейно расположенных мономеров - остатков глюкозы. Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже в концентрированных щелочах. Эластичный целлюлозный скелет придает клеточной оболочке механическую прочность. Первоначально число микрофибрилл, образованных молекулами целлюлозы, в клеточной стенке относительно невелико, но с возрастом оно увеличивается, и клетка теряет способность к растяжению.

Гемицеллюлозы отличаются от целлюлозы составом мономеров и разветвленным их расположением в молекулах. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются. Кроме гемицеллюлоз в матрикс, а также в срединную пластинку входят пектиновые вещества, или пектины, и полисахариды, образованные мономерами - уроновыми кислотами. Эти вещества скрепляют, склеивают оболочки соседних клеток. Молекулы гемицеллюлоз, пектина и гликопротеидов соединяют целлюлозные микрофибриллы.

Помимо полисахаридов, в матриксе стенок многих клеток часто обнаруживаются неуглеводные компоненты. Наиболее обычен из них лигнин - полимерное вещество полифенольной природы. Содержание его в стенках некоторых видов клеток может достигать 30%. Лигнин откладывается при завершении роста стенки. Процесс отложения лигнина получил название одревеснения, или лигнификации. Стенка, пропитанная лигнином, очень прочна и тверда. Лигнифицируются чаще всего оболочки клеток, подвергающихся механическим нагрузкам.

Стенки некоторых типов клеток могут включать слои липидов: воска, кутина и суберина. Кутин и воск обычно покрывают наружные стенки клеток эпидермы. Слой кутина создает на поверхности растения водо- и воздухонепроницаемый слой кутикулы. Суберин пропитывает стенки. Он непроницаем для воды и газов, поэтому такая суберинизированная, или опробковевшая, клетка быстро отмирает.

Б. Ферменты, встречающиеся в клеточной стенке:

В настоящее время становится ясно, что растительные клетки образуют обычно целый ряд внеклеточных (внешних по отношению к цитоплазматической мембране) ферментов, которые либо локализуются в клеточной стенке, либо выделяются в среду, окружающую клетки. Страус и Кемпбелл исследовали секрецию ферментов в культуре ткани у шести различных видов высших растений. Ткани всех изученных видов выделяли в среду амилазу, пероксидазу, кислую фосфатазу и оксидазу индолилуксусной кислоты.

2.Цитозоль

А. Физико-химические свойства цитоплазмы.

Кинетика химических реакций в цитоплазме обусловливается сложным сочетанием факторов, среди которых структурные особенности протоплазмы имеют большое значение. Белки протоплазмы отличаются большими химическими возможностями вследствие отличия их строения, химической природы, гетерополярности и поэтому могут вступать в безграничное количество реакций с различными веществами, которые содержатся в протоплазме или поступают извне. В результате этих реакций может измениться форма макромолекулы, что приведет к изменению ее химической активности. Таким образом, изменчивость свойств белков -- важная особенность живого вещества.

Цитоплазма построена по коацерватному типу и представляет сложную коллоидную систему из белковых, углеводных и липидных соединений. В разработанной известным советским ученым А. И.Опариным теории о происхождении жизни на Земле большое значение придается выделению органических веществ, белоксодержащих комплексов в форме коацерватных капель из первичных водных растворов.

Белки относятся к гидрофильным коллоидам. Такими же свойствами обладают и другие соединения, входящие в состав протоплазмы. Коллоидная природа протоплазмы имеет существенное биологическое значение. Благодаря наличию большого количества мельчайших частиц в коллоидных системах развиваются огромные суммарные поверхности, которые играют чрезвычайно большую роль. На них может происходить связывание, адсорбция разнообразнейших активных веществ и прежде всего тех, которые снижают поверхностное натяжение. На мицеллах происходит связывание ферментов и других соединений, адсорбируются различные питательные вещества. Все это создает условия для различных химических реакций.

Кроме рассмотренных свойств белков, наблюдается еще явление денатурации. При этом гидрофильные коллоиды -- белки -- становятся гидрофобными, теряют стойкость и вследствие этого легко коагулируют. Такая типичная денатурация происходит при нагревании белков. Денатурированные белки, т. е. белки, которые утратили свои естественные свойства (выпали в осадок), имеют способность адсорбировать красители. Внешне белки могут казаться неизменными, но поглощению красителя можно определить начало явления денатурации.

Белковые вещества, как амфотерные соединения, вследствие реакций с электролитами изменяют свой заряд, что отражается на состоянии коллоидной системы, а также на ее растворимости. С электролитами связаны величина и знак заряда биоколлоидов протоплазмы, соотношение между процессами гидратации и дегидратации, коацервации и т. д.

Важную роль во всех этих процессах играет поверхность протоплазмы; она является ареной для осуществления процессов адсорбции и десорбции, что влияет на движение частиц, которое может иметь большую скорость, проходить одновременно в противоположных направлениях и влиять также на свойства самой протоплазмы -- вязкость, эластичность, проницаемость и др.

Особенности протоплазмы не дают возможность рассматривать ее как истинно золеобразную жидкость, поскольку она по упругости приближается к гелю. Явление взаимного превращения золя в гель наблюдается на протяжении всей жизнедеятельности клетки. На состояние протоплазмы влияют концентрация водородных ионов, а также соотношение между содержанием одно- и двухвалентных катионов. В присутствии кальция коагуляция белков в протоплазме происходит при более низкой температуре. Свойства протоплазмы обусловливаются сложностью многофазной, полидисперсной, коллоидной системы. Цитоплазма имеет три слоя: внешний -- плазмалемма, внутренний -- тонопласт и лежащий между ними -- мезоплазма. Пограничные слои плазмалеммы и тонопласт вязкие и эластичные, а мезоплазма более текучая и менее эластичная.

Межмицеллярные пространства в протоплазме, кроме воды, содержат еще и липоиды, которые находятся в непрочной связи с некоторыми боковыми цепочками белковых веществ. Эти боковые цепочки заканчиваются одной или двумя гидрофобными группами СН3, обладающими способностью присоединять к себе жиры. Кроме того, молекулы липоидных веществ имеют гидрофильные группы СООН, СОН, NH2, которые определяют способность липоидов взаимодействовать с водой. Следовательно, гидрофобные группы молекул будут ориентированы к плазмалемме, а гидрофильные -- к мезоплазме. Липиды способны снижать поверхностное натяжение жидкостей; согласно законам физической химии, они концентрируются главным образом на поверхности.

Во взрослых клетках, которые имеют вакуоли, на внутренней поверхности протоплазмы, граничащей с клеточным соком, также образуется обогащенный липидами внешний слой, аналогичный плазмалемме; одновременно происходит скопление содержащихся в клеточном соке липидов возле поверхности вакуоли, которая граничит с протоплазмой. Поэтому тонопласт богаче липидами, чем мезоплазма. Структура протоплазмы чрезвычайно подвижна, и имеющиеся в протоплазме вещества непрерывно вступают во взаимодействие как друг с другом, так и с органическими веществами или минеральными солями, которые поступают в клетку или вырабатываются протоплазмой.

Так, под влиянием сахара структура протоплазмы может измениться (из золя перейти в гель).

Таким образом, протоплазма является сложной гетерогенной коллоидной структурой, которая включает большое количество различных компонентов. Дисперсной средой является комплексный гидрозоль с высоким содержанием белковых и других макромолекул, Сахаров, неорганических солей, например фосфатов. Важную роль играет вода, которая насыщает всю систему коллоидов протоплазмы, образуя непрерывную фазу.

В живой протоплазме постоянно происходят процессы новообразования и распада различных веществ, коагуляция коллоидов и их обратное превращение в золи, образование коацерватов, гелей и т. д. Происходящие в протоплазме процессы непосредственно зависят от состояния и свойств структур, из которых она состоит. Изменения протоплазменных структур под воздействием внешних условий имеют приспособительный характер.

Б. Ферменты, их химическая природа и функциональное значение. Факторы, влияющие на активность ферментов

Основные ферменты цитозоля:

Амилаза

Липаза панкреатическая

Глицеро-3-фосфатдегидрогеназа

Гостидаза

Сорбитолдегидрогеназа

Лактатдегидрогеназа

Алкогольдегидрогеназа

Креатинкиназа

Глюкозо-6-фосфатдегидрогеназа

Аланинаминотрансфераза

Аспарататаминотрансфераза ликогенсинтетаза

Ферменты подразделяются на одно- и двухкомпонентные. Первые состоят только из молекул белка, вторые из белковой части, получившей название апофермента, и соединения небелковой природы, называемой простетической группой. В двухкомпонентных ферментах белок-носитель называют еще фероном, а небелковую активную группу -- агоном. У двухкомпонентных ферментов, небелковая часть которых легко отделяется от апофермента, проететические группы называют коферментами. Размеры кофермента во много раз меньше размеров белковой молекулы (апофермента).

Коферментами ферментов пиридиновых дегидрогеназ являются:

- никотинамидадениндинуклеотид (НАД);

- никотинамидадениндинуклеотидфосфат (НАДФ);

- флавиннуклеотиды -- коферменты флавиновых ферментов;

- производные фолиевой кислоты -- коферменты фермента глицинтрансформиминазы.

Специфическая деятельность ферментов является одним из важнейших факторов организации процессов обмена веществ в живом организме, их согласованности и направленности.

Многочисленные биологические катализаторы в организме -- ферменты, отличающиеся исключительной специфичностью и эффективностью действия, ускоряют только определенные превращения данного вещества.

Распределение скоростей ферментативных превращений, которые создаются в организме, в значительной мере определяет специфичность процессов обмена веществ.

Действия ферментов согласованны: продукты катализа одного фермента поступают к другому, а не рассеиваются в содержимом клетки; реакции, выделяющие энергию, тесно связаны с реакциями, требующими затрат энергии. Установлено, что окисление сахаров и жиров происходит с выделением энергии, тогда как синтез белков требует затрат ее.

Активность ферментов зависит от условий внешней среды, окружающей молекулу фермента. Каждый фермент работает в определенных границах температуры и рН. Для большинства ферментов температурный оптимум лежит в пределах 40--50°С. В клетке одновременно работает множество ферментных систем, и каждый фермент требует определенной реакции среды.

Наивысшая активность большинства растительных ферментов отмечается при слабокислой или нейтральной реакции, характерной для растительных клеток. Такое влияние рН объясняется непосредственным действием концентрации водородных ионов на свойства центра, определяющие образование фермент-субстратного комплекса. Кроме того, ионы водорода оказывают влияние на степень ионизации субстрата и молекулы ферментного белка.

Скорость ферментативной реакции в сильной степени зависит от концентрации субстрата в среде, но если достаточно субстрата, то и от содержания фермента.

Активность ферментов в сильной степени зависит от содержания в реакционной среде различных дополнительных ионов и соединений. Вещества или ионы, увеличивающие каталитическую активность ферментов, получили название активаторов.

Роль активаторов ферментов выполняют ионы различных металлов: К+, Са2+, Mg2+, Fe2+, Cа2+ и др. Активация может осуществляться одним или несколькими ионами. Например, амилаза, катализирующая расщепление крахмала и липаза, -- распад жиров, активируются ионами Са2+; алкогольдегидрогенеза, катализирующая окисление спиртов до альдегидов, -Zn2+; пероксидаза и каталаза -- Fe2+; аргиназа, участвующая в гидролитическом расщеплении аргинина, -- Со2+; Mn2+; Ni2+.

Для проявления максимальной активности фермента требуется определенная концентрация ионов-активаторов в среде.

Усиление активности ферментов под действием ионов объясняется прежде всего тем, что многие ферменты содержат их в своей молекуле и представляют собой так называемые металлоферменты.

К металлоферментам относятся каталаза и пероксидаза, содержащие железо, амилаза, в состав которой входит кальций; нитратредуктаза, содержащая молибден. В ряде случаев активность ферментов в присутствии ионов металлов поддерживается образованием координационных связей между активным центром фермента и субстратом.

Существуют вещества, подавляющие действие ферментов, которые получили название ингибиторов ферментов. Ингибиторы делят на два класса: общие и специфические. К общим ингибиторам относят соли тяжелых металлов -- свинца, серебра, ртути, вольфрама, которые денатурируют белок и, следовательно, подавляют действие ферментов.

Наибольшее значение имеют специфические ингибиторы, которые находят практическое применение. Они действуют только на одну ферментативную реакцию. Присоединяясь к активному центру фермента, ингибитор препятствует образованию комплекса фермент -- субстрат, вследствие чего часть молекул фермента переходит в неактивное состояние и скорость ферментативной реакции замедляется или прекращается.

3. Лизосомы: структура и состав

А. Структура лизосом

Лизосомы -- это органеллы диаметром 0,2-2,0 мкм, окруженные простой мембраной, способные принимать самые разные формы. Обычно на клетку приходится несколько сотен лизосом. Функция лизосом заключается в деградации клеточных компонентов. Деградация достигается за счет присутствия в лизосомах около 40 типов различных расщепляющих ферментов -- гидролаз с оптимумом действия в кислой области. Главный фермент лизосом -- кислая фосфатаза. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа. Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент случайно попадет в цитоплазму.

Б. Функции

Главная функция лизосом -- ферментативная деградация попавших в них макромолекул и органелл. Примером может служить деградация отработавших митохондрий по механизму аутофагии (захвата органеллы) (1). После захвата органеллы первичные лизосомы превращаются во вторичные, в которых и идет процесс гидролитического расщепления (2). В итоге образуются «остаточные тела», состоящие из негидролизовавшихся фрагментов. Лизосомы ответственны также за деградацию макромолекул и частиц, захваченных клетками путем эндоцитоза и фагоцитоза, например липопротеинов, протеогормонов и бактерий (гетерофагия). В этом случае лизосомы сливаются с эндосомами (3), содержащими вещества, подлежащие деградации.

В. Ферменты, их химическая природа и функциональное значение.

Ферменты лизосом: рибонуклеаза, дезоксирибонуклеаза, фосфатаза, гликозидазы, арилсульфатазы (органические эфиры серной кислоты), коллагеназа, катепсины.

Г. Функции

Лизосомы представляют собой крайне полиморфные образования, строение которых можно рассмотреть только в электронном микроскопе. Их разнообразие связано с тем, что они заполнены разными веществами и структурами, находящимися на различных стадиях расщепления и переваривания. Простейшие лизосомы (протолизосомы или первичные лизосомы) - это окруженные мембраной пузырьки с гомогенным содержимым, локализующиеся около аппарата Гольджи. Образование лизосом аналогично развитию секреторных гранул. Синтез ферментов осуществляется на рибосомах гранулярного ретикулума, а процесс оформления лизосом происходит в аппарате Гольджи. Доказательством того, что образование лизосом связано с внутриклеточным сетчатым аппаратом, является не только их локализация, но и выявление кислой фосфатазы помимо лизосом и в комплексе Гольджи.

Вторичные лизосомы образуются из первичных лизосом либо в связи с процессом фагоцитоза, либо в результате аутолиза.

В результате фагоцитоза в цитоплазме клеток появляются фагосомы - вакуоли, окруженные фрагментом плазматической мембраны, внутри которых находится захваченная частица. Эти фагосомы с первичными лизосомами, образуют пищеварительные вакуоли - одну из разновидностей вторичных лизосом. Под действием гидролаз внутри пищеварительной вакуоли происходит расщепление захваченных макромолекул до мономеров, которые используются клеткой.

Лизосома может быть использована вторично и вновь соединиться уже с другой фагосомой. В других случаях она работает лишь один раз и, исчерпав свои возможности, в новый пищеварительный процесс уже вступить не может.

В результате процесса аутолиза образуется другая разновидность вторичных лизосом - так называемые аутолизосомы. Явление аутолиза (переваривания структур, принадлежащих самой клетке) связано с тем, что жизнь клеточных структур не безгранична. Старые органоиды отмирают и начинают перевариваться лизосомами. Мономерами, образующимися в процессе аутолиза, клетка также может воспользоваться.

Из сказанного ясно, что разнообразие тонкого строения лизосом обусловлено тем, что они заполнены разными перевираемыми структурами, как принадлежащими самой клетке, так и попавшими в нее извне.

Не все, попавшее в лизосому, может подвергнуться расщеплению. Так, например, среди гидролаз лизосом находится лишь очень небольшой процент липаз, поэтому в телолизосомах липидные компоненты часто не расщепляются. Образуются остаточные тельца - лизосомы, заполненные непереваренными остатками, исчерпавшие весь свой запас гидролаз. Такие структуры - телолизосомы - либо выводятся за пределы клетки, как, например, у простейших, либо сохраняются в клетке до момента ее гибели. В некоторых нервных клетках такие балластные вещества в виде окрашенных непереваренных частиц (например, зерен липофусцина, являющихся показателем старения) сохраняются на протяжении всей жизни организма.

Следует также упомянуть о тех случаях, когда гидролитические ферменты проявляют свою активность за пределами лизосом. Например, при некоторых патологических состояниях клетки мембрана, окружающая лизосомы, становится проницаемой для ферментов, которые выходят за пределы лизосом и начинают переваривать клетку. Таким образом, уничтожение стареющих, гибнущих клеток может происходить двумя путями. Либо эти клетки захватываются макрофагами и расщепляются гидролазами их лизосом, либо включается в действие аппарат аутолиза самой клетки.

Совершенно иной внеклеточный способ использования лизосом наблюдается в процессе гистогенеза костной ткани и при перестройке кости. В этом случае специальные симпластические структуры - остеокласты выделяют лизосомы в промежуточное вещество костной ткани, которое разрушается под действием гидролаз лизосом.

Лизис хвоста головастика тоже представляет собой процесс, связанный с деятельностью лизосом.

Таким образом, лизосомы играют роль и для внеклеточных процессов и имеют приспособительное значение для организма в целом.

3.Митохондрии: структура и функции

А. Структура митохондрий

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Митохондрии - это цитоплазматические органеллы. Их количество и форма варьируют в зависимости от функции клетки. Например, у млекопитающих в клетках печени имеется по 1000-1500 митохондрий. Все они имеют общие структурные особенности матрикс, внутреннюю и внешнюю мембрану Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии -- изменчивые и пластичные органеллы.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики , ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Б. Метаболические функции

Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем в-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л), то есть поглощение из цитозоля ионов Са2+ . Концентрация Са2+ в цитозоле должна поддерживаться на очень низком уровне, так как даже незначительные изменения концентрации этих ионов служат регуляторными сигналами для различных клеточных процессов (разд. 13.3.7). Во внутренней мембране имеется транспортный белок, эффективно переносящий Са2+ в матрикс за счет энергии мембранного потенциала.

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем

Митохондрии осуществляют важные биохимические функции, в частности, именно в них происходит аэробное окисление. Вот почему эти органеллы часто называют энергетической фабрикой организма. Энергия хранится в АТР (аденозинтрифосфат). Из трех энергетических источников нашей пищи аминокислоты и жиры подвергаются распаду только в результате аэробного окисления, которое происходит в митохондриях. Кроме того, в них осуществляется цикл лимонной кислоты. Мембрана митохондрий содержит упорядоченную мультиферментную систему, а распределение ферментов в функционально значимом порядке гарантирует упорядоченную последовательность биохимических реакций.

В. Транспортные системы

Митохондрии имеют внутреннюю и внешнюю мембраны.

Внутренняя мембрана непроницаема для большинства низкомолекулярных соединений. Она удерживает не только продукты промежуточного метаболизма (например, пируват и ацетил-КоА), но и неорганические ионы (Н+ и Na+). Поэтому в цитоплазме и митохондриях существуют независимые пулы ионов и метаболитов. Напротив, внешняя мембрана содержит порообразующие белки, которые делают ее проницаемой для низкомолекулярных соединений.

Транспортные системы

Обмен между цитоплазмой и матриксом обеспечивается специальными транспортными системами, локализованными во внутренней мембране митохондрий и способными переносить разнообразные вещества (пируват, фосфат, АТФ, АДФ, глутамат, аспартат, малат, 2-оксоглутарат, цитрат, жирные кислоты) по механизмам типа антипорт (обменная диффузия, А), симпорт (сопряженный транспорт, S) или унипорт (облегченная диффузия, U) (см. рис. 221). Имеется переносчик и для ионов Са2+, который наряду с ЭР регулирует концентрацию Са2+ в цитоплазме.

Большая часть АТФ. продуцируемого митохондриями в матриксе, доставляется в цитоплазму с помощью АДФ/АТФ-транслоказы в обмен на АДФ (обменная диффузия). Фосфат поступает в митохондрии вместе с протонами независимо от транспорта АДФ/АТФ.

Аналогичным образом при участии пируватспецифичного переносчика осуществляется одновременный перенос через внутреннюю мембрану пирувата и протонов.

Транспорт жирных кислот

В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином. Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.

Малатный челнок

Для импорта восстановительных эквивалентов в форме НАДН+Н+ (кофермент-связанного водорода), образующихся в цитоплазме путем гликолиза, в митохондриях имеются несколько челночных систем. В митохондриях млекопитающих этот транспорт осуществляется в основном при помощи челночного механизма, использующего пару малат-оксалоацетат. Основной функцией этого механизма является перенос восстановительных эквивалентов в составе малата. Малат, попадая в матрикс при посредстве переносчика, окисляется до оксалоацетата под действием малатдегидрогеназы. Оксалоацетат переносится обратно в цитоплазму лишь после трансаминирования в аспартат. Поскольку оксалоацетат может образовываться в избыточном количестве, в реакции трансаминирования и последующем транспорте принимает участие глутамат и 2-оксоглутарат. На схеме показано, что малатный челнок функционирует в обоих направлениях, обеспечивая перенос восстановительных эквивалентов от цитоплазматического НАДН в митохондрии без переноса НАД+. В митохондриях насекомых трансмембранный перенос восстановительных эквивалентов осуществляется с помощью глицерофосфатного челнока.

Движущей силой транспортных процессов во внутренней мембране митохондрий служит концентрационный градиент метаболитов или электрохимический потенциал (см. рис. 143). Например, карнитиновая система транспорта жирных кислот работает за счет высоких концентраций ацил-КоА в цитоплазме. Движущей силой импорта фосфата и пирувата служит протонный градиент, в то время как обмен АТФ/АДФ и выброс ионов Са2+ зависят от трансмембранного потенциала внутренней мембраны митохондрий.

Г. Ферменты митохондрий

Основные ферменты митохондрий:

Ферменты митохондрий состоят из растворимых и нерастворимых белков: флавопротеиды, цитохромы -- компоненты дыхательной цепи -- жестко фиксированы на мито-хондриальной мембране и гребнях. Растворимые ферменты принимают участие в биосинтезе фосфолипидов и жирных кислот; здесь же находится полный набор ферментов, катализирующих превращения цикла трикарбоновых кислот.

Список используемой литературы

1. http://medbiol.ru/medbiol/botanica/00148102.htm

2. http://test.kirensky.ru/books/book/biochemistry/chapter_03.htm

3. http://chem21.info/info/188427/

4. Кольман Я., Рём К.-Г..Наглядная биохимия

5. http://bono-esse.ru/blizzard/A/Chimia/Bio_chinija/Fermenti_classificacija_localizacija_primenenie.html

6. Физиологическое значение цитоплазмы ферментов и фотосинтеза(с http://baza-referat.ru)

7. http://www.bsu.ru/content/hecadem/alekseeva_ev/cl_763/files/m16415.htm

...

Подобные документы

  • Свойства цитоплазмы, химическая природа и функциональное значение ферментов. Действие недостатка воды на растение. Современные представления о сущности фотосинтеза. Физиологическая роль каротиноидов, химизм аэробной фазы дыхания, заслуга Г. Кребса.

    контрольная работа [129,7 K], добавлен 12.07.2010

  • Основные механизмы деятельности клетки. Клетка как единица физиологических процессов обмена. Основные представления о регуляции. Функции клеточных органелл, мембранные системы внутриклеточных органелл. Обмен веществами между клеткой и окружающей средой.

    презентация [268,6 K], добавлен 04.02.2016

  • Изучение физико-химических свойств цитоплазмы и ее составных частей: органоидов клетки (ядро, пластиды, митохондрии, рыбосомы), аппарата Гольджи, эндоплазматической сети. Ознакомление с видами электронных микроскопов и основными принципами их работы.

    курсовая работа [787,5 K], добавлен 14.07.2010

  • Химические элементы, входящие в состав живой материи. Синтез микроорганизмами различных ферментов. Физиология и принципы культивирования микроорганизмов. Метаболизмы, дыхание микроогранизмов, краткая характеристика питательных сред, рост и размножение.

    реферат [26,1 K], добавлен 21.01.2010

  • Классификация органелл клетки общего и специального значения. Основные задачи и функции плазмалеммы. Эндоплазматическая сеть, ее строение и структура. Цитоплазматический матрикс, структура микрофиламентов и микротрубочек. Пластинчатый комплекс Гольджи.

    презентация [3,4 M], добавлен 16.02.2014

  • Локализация ферментов в клетке и изменение его количества. Протеолитические ферменты пищеварительного тракта. Закон действия масс. Сохранение сбалансированности катаболических и анаболических процессов. Химическая модификация и аллостерическая регуляция.

    презентация [142,2 K], добавлен 15.03.2014

  • Рассмотрение характеристик клетки как элементарной целостной системы живого организма. Типы клеток животных и растений. Строение и функции мембраны, цитоплазмы, митохондрии, аппарата Гольджи, лизосом, вакуоль, рибосом. Описание органоидов движения.

    презентация [3,1 M], добавлен 16.02.2015

  • Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

    презентация [6,8 M], добавлен 27.12.2011

  • Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.

    презентация [2,2 M], добавлен 07.12.2014

  • Изучение назначения ферментов или энзимов - белковых молекул или молекул РНК (рибозимов) или их комплексов, ускоряющих (катализирующих) химические реакции в живых системах. Локализация ферментов в клетке. Наследственные и приобретенные ферментопатии.

    реферат [50,5 K], добавлен 20.12.2011

  • Разделение веществ с помощью центрифугирования. Определение скорости седиментации и радиуса ротора. Дифференциальное центрифугирование как самый распространенный метод выделения клеточных органелл из гомогенатов тканей. Анализ субклеточных фракций.

    курсовая работа [3,1 M], добавлен 26.07.2009

  • Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация [27,2 K], добавлен 28.11.2015

  • Синтез белка Xvent-2 в клетках зародышей с целью дальнейшей дифференцировки стволовых клеток. Выделение клеточных органелл. Реагенты и растворы для изоэлектрического фокусирования. Получение биологического материала. Результаты работы и их обсуждение.

    курсовая работа [4,5 M], добавлен 27.06.2015

  • Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка [893,3 K], добавлен 20.06.2013

  • Общая характеристика и основные типы ферментов. Химические свойства ферментов и катализируемых ими реакций. Селективность и эффективность ферментов. Зависимость от температуры и от среды раствора. Активный центр фермента. Скорость ферментативных реакций.

    презентация [1,8 M], добавлен 06.10.2014

  • Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация [12,3 M], добавлен 03.11.2013

  • Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.

    презентация [2,2 M], добавлен 08.11.2012

  • Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.

    курсовая работа [21,9 K], добавлен 13.04.2009

  • История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.

    реферат [529,8 K], добавлен 16.08.2009

  • Специфические белки, катализирующие химические реакции в живых системах. Характеристика и классификация ферментов, их размеры и строение. Влияние условий среды на активность ферментов: факторы и кофакторы; заболевания, связанные с нарушением их выработки.

    презентация [1,4 M], добавлен 07.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.